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In the paper we are going to introduce an operator that is involved in the inverse problem
of the continuous-in-time financial model. This framework is designed to be used in the
finance for any organization and, in particular, for local communities. It allows to set out
annual and multiyear budgets, with describing loan, reimbursement and interest payment
schemes. We discuss this inverse problem in the space of integrable functions over R

having a compact support. The concept of ill-posedness is examined in this space in
order to obtain interesting and useful solutions. Then, we will give some remarks for not
functionality of the model for a given Repayment Pattern Density γ, when this operator
is not invertible in the space. Additionally, this inverse problem is illustrated in order to
prove its ability to be used in a financial strategy.
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1. Introduction

Over the last two decades, we have seen significant progress in econometric theory [1], computational
and estimation methods to test and implement continuous-time models. The continuous-time approach
in these areas has produced models with a rich variety of testable implications. It is useful to begin our
survey with an overview of some of the major developments in the field. There are many references that
deal with research works in finance and the way in which the practitioners viewed the finance research
field. The book [2] by Merton laid the foundations for the development of intertemporal asset pricing
theory. The purpose of the paper [3] is to build a bridge between continuous time models, which are
central in the modem finance literature, and (weak) GARCH processes in discrete time, which often
provide parsimonious descriptions of the observed data.

We built in previous work [4,5], the continuous-in-time model which is designed to be used for the
finances of public institutions. This model is based on using measures over time interval to describe
the loan scheme, the reimbursement scheme and the interest payment scheme; and, on using mathe-
matical operators. At the same time, some mathematical operators as convolution and primitive are
implemented in [6] for continuous-in-time financial model. This development is given in the form of
an API (Application Programming Interface). This API is marketed by the company MGDIS. Some
aspects of the modeling of the asset prices for the financial market are studied in [7].

This way to proceed gives good results, works well and software tools implementing it help organi-
zations to foresee the consequences of their decisions allowing to elaborate their projects. We highlight
that the discrete model utilizes tables and creates outcomes in Excel format. Each value in the tables
is a synthetic of a given quantity over a given period of time. In order to provide answers from the
discrete model to the implemented one, the key idea is to report these outcomes on any set of periods
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of time without reimplementing it. To build the new framework that is the improvement of the discrete
one, measures are managed and defined during the whole time period.

The understanding of most inverse financial problems has a rapid state of development that a
review of the subject will inevitably needs to be updated rapidly. Moreover, it is important to quote
some contributions in the field. For example, the paper [8] presents a phase retrieval problem and
a specific inverse option pricing problem. The paper [9] by Potthast deals with the time-harmonic
acoustic obstacle scattering problem with Dirichlet boundary condition. In the paper [10], the authors
have developed a series of novel variational source conditions for Linear Inverse Problems in Hilbert
Spaces.

We are motivated by a recently developed nonlinear inverse scale in Schwartz space. The questions
of the inverse problem in Schwartz space are currently investigated in [11] for ill-posed problems.
Further, we mention the paper [12] introduced by Hadamard in the field of ill-posed problems. These
problems are ill-conditioned or underdetermined. We say that problem is ill-posed, if and only if, the
operator involved in the model denoted by L, is invertible. For completing the history of the inverse
problem of the model, the inverse problem stability in Hilbert space L

2([tI,Θmax]) is discussed in [13].
On the other hand, the differential evolution algorithm described in [14] is applied to data inversion to
layer geo-electrical models. Since some aspects of the model are explored over Schwartz space and also
space of square-integrable functions, this present work aims to enrich the model over another space.
We choose it such having less integrability than two, changing consequently, important properties of
solution. The main result of the present paper is to find new technique with determining regularized
solution to discrete ill-posed in the space of integrable functions L

1([tI,Θmax]) having their support in
interval [tI,Θmax]. The solvability of this inverse problem is to show existence and uniqueness of the
solution.

The rest of this paper is arranged as follows. In Section 2, we introduce the definition of the
operator L and others. We give an overview of its property, described by its injectivity. Next, the
regularized solution to discrete ill-posed is investigated in L

1([tI,Θmax]) by determining the inverse of
operator L under some assumptions. In the same part, examples are provided in order to show that
Repayment Pattern Density γ does not hold the expectation given in theory. Section 3 makes the
model useful within an automatic strategy elaboration to manage financially desired goals and that
satisfies imposed constraints.

2. Inverse problem of the model in L
1([tI,Θmax])

The purpose of this section is to build mathematical properties of the financial model. It concerns also
some general results of the inverse problem for any density γ. We proceed by denoting Cc([tI,Θmax])
as the continuous functions space defined over non-empty time interval [tI,Θmax] with the usual norm
‖ ‖L∞([tI,Θmax]) which is well known as

‖ψ‖L∞([tI,Θmax]) = sup
t∈[tI,Θmax]

{

|ψ(t)|
}

.

We build the continuous-in-time financial model on the Radon measure space M([tI,Θmax]) which is a
continuous and linear form acting on the continuous functions space Cc([tI,Θmax]) defined over a time
interval [tI,Θmax]. The set of Radon measures M([tI,Θmax]) is a Banach space provided with the usual
norm

‖µ‖M((tI ,Θmax)) = sup
ψ∈Cc([tI,Θmax]),ψ 6=0

{

〈µ,ψ〉

‖ψ‖L∞([tI,Θmax])

}

.

For any interval [t1, t2], t2 > t1, L
1([t1, t2]) stands for the space of integrable functions over R having

their support in [t1, t2]. Similarly, L2([t1, t2]) is the space of square-integrable functions over R having
their support in [t1, t2]. If measure µ̃ is absolutely continuous with respect to the Lebesgue measure dt,
then, this means that it reads µ(t)dt, i.e. µ̃ = µ(t)dt, where t is the variable in R. Other measures, are
not absolutely continuous with respect to dt, for instance Dirac masses. They illustrated concentrated
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actions or payments. This density µ(t) of measure µ̃ can be seen as a time density. These densities are
considered in L

1([t1, t2]). In the sequel, we would like to know more about these measures or densities.
We will set out to introduce the financial quantities that are involved in the model and the relations
between them. For a positive number Θγ such that Θγ < Θmax − tI, we set the Repayment Pattern γ
such that

γ ∈ L
∞([0,Θγ ]). (1)

The Repayment Pattern Measure γ̃ is a non-negative measure with a total mass equal to 1, i.e.
∫ +∞

−∞
γ̃ = 1. (2)

The equality (2) means that the payment of an amount 1 which is expressed in monetary unit that
is borrowed at the initial time t = 0. The Loan Measure κ̃E and the Repayment Measure ρ̃K are
connected by a convolution operator [15]

ρ̃K = κ̃E ⋆ γ̃. (3)

The measure ρ̃IK is the repayment of the Current Debt KRD at initial time tI. It is called an initial
Debt Repayment Scheme given by

∫ +∞

tI

ρ̃IK = KRD(tI).

Defining the linear operator L: L1([tI,Θmax−Θγ ])∩Cc([tI,Θmax−Θγ ]) → L
1([tI,Θmax]) by the operator

that is acting on Loan Density κE ,

L[κE ](t) = κE(t)− (κE ⋆ γ)(t)− α

∫ t

tI

(κE − κE ⋆ γ)(s) ds. (4)

The Algebraic Spending Measure σ̃ is defined such that the difference between spendings and incomes
required to satisfy the current needs. Its Density σ is decomposed as a sum of operators L given by
equality (4) and D

σ(t) = L[κE ](t) +D[ρIK](t),

where the operator D: L
1([tI,Θmax]) ∩ Cc([tI,Θmax]) → L

1([tI,Θmax]) is acting on the Initial Debt
Repayment Density ρIK, defined as

D[ρIK](t) = −α

∫ Θmax

t

ρIK(s) ds − ρIK(t).

We denote by F the Fourier Transform Operator, and by F−1 its operator inverse. The convolution
of Loan Density κE in the space of integrable functions L

1([tI,Θmax − Θγ ]) and Pattern Density γ
in space L

∞([0,Θγ ]) defines a function staying in the space of integrable functions over R having its
support in [tI,Θmax], i.e. κE ⋆ γ ∈ L

1([tI,Θmax]). From this, the first part in expression (4) defines a
density κE − κE ⋆ γ which belongs also to the same space L

1([tI,Θmax]). Besides of this,
∥

∥

∥

∥

∥

∫ t

tI

(κE − κE ⋆ γ)(s) ds

∥

∥

∥

∥

∥

L1([tI,Θmax])

=

∫ Θmax

tI

∣

∣

∣

∣

∣

∫ t

tI

(κE − κE ⋆ γ)(s) ds

∣

∣

∣

∣

∣

dt

6

∫ Θmax

tI

∣

∣

∣

∣

∣

∫ Θmax

tI

(κE − κE ⋆ γ)(s) ds

∣

∣

∣

∣

∣

dt

6 (Θmax − tI)

∫ Θmax

tI

|(κE − κE ⋆ γ)(s)| ds

6 (Θmax − tI)‖κE − κE ⋆ γ‖L1([tI,Θmax]).

Consequently, operator L given by (4) is well defined from space L1([tI,Θmax−Θγ])∩Cc([tI,Θmax−Θγ])
to L

1([tI,Θmax]). Noticing that we have studied in previous work [4,5,11,13] the inversion of operator
L in L

2([tI,Θmax]). We have stated its properties, taking advantage of application F as isometry in this
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space. Nevertheless, the new difficulty is due to the fact that operator F is not a bijective application
on L

1([tI,Θmax]). To tackle this difficult problem, an efficient way is investigated. It consists in using
the Gronwall lemma in such an assumption to inverse it in Theorem 1. The aim of expressing this
inversion is to show its capability to be used to forecast a financial strategy when these densities
have less integrability order than two. In other words, forecast consequences of any financial decision
consists of inverting this operator.

Lemma 1. If Loan Density γ satisfies the assumption (1) and the following analytic condition

x→ xγ(x) ∈ L
1([0,Θγ ]),

then the linear operator L given by relation (4) is a one-to-one mapping.

Proof. We will show that the kernel of the operator L is defined as

Ker(L) =
{

κE ∈ L
1([tI,Θmax −Θγ ]), κE − (κE ⋆ γ) = 0

}

. (5)

We recall in [4] that we have proven over L
2([tI,Θmax]) the following equality

κE(t)− κE ⋆ γ(t) = L[κE ](t) + α

∫ t

tI

L[κE ](s)e
α(t−s) ds, (6)

which stays true in L
1([tI,Θmax]) due to the integration by parts (see equality (3.12) of Lemma 3.2).

The way to prove that two sets are equal as mentioned in relation (5), we will prove each of two sets
is a subset of the other set. In particular, according to (6), if the Loan Density κE is supposed to be
in the kernel Ker(L), then it satisfies

κE − κE ⋆ γ = 0, (7)

achieving the direct inclusion. Conversely, injecting equality (7) in (4), confirms that density κE stays
in the kernel. Consequently, equality (5) holds. In what follows, the Fourier transform is applied to
equality (7) to get

F(κE)× (1−F(γ)) = 0.

We now use the method of proof by contradiction to prove that the function F(γ) does not coincide
with the value 1. Let us assume, for the sake of contradiction, that there exists a Pattern Density γ in
L
∞([0,Θγ ]) which satisfies

F(γ) = 1. (8)

The derivative operator is applied to equality (8) which takes the following form

F ′(γ) = 0.

From this, the derivative property of the Fourier Transform [16] implies

F(−xγ(x)) = 0.

Since the null Pattern γ is not responding to definition (2), a contradiction is obtained. Then, the
operator L is a one-to-one application, completing the proof of the lemma. Now, we will announce
Theorem 1, which is a generic result that indicates the way to reverse the process that consists in
computing the Loan Density κE from the Algebraic Spending Density σ into a process that involves
building this density. In order to prove this theorem, the previous Lemma 1 is needed. �

Theorem 1. Assuming that density γ satisfies (1), and following assumption, we have
(

1

1−F(γ)

)

∈ L
∞(]−∞,−ε[∪]ε,+∞[), (9)

for any positive real ε. Let L[κE ] = σ−D[ρIK] be a positive function and the rate α be a negative real

that satisfies the following balanced equation
∫ Θmax

tI

(

L[κE ](y) + α

∫ y

tI

L[κE ](s)e
α(y−s) ds

)

dy = 0. (10)
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Then, the Density κE is expressed in terms of σ as

κE = F−1

(

F
(

σ −D[ρIK] + α
∫ •
tI
(σ(s)−D[ρIK](s)) e

α(•−s) ds
)

1−F(γ)

)

, (11)

where

F

(

σ −D[ρIK] + α

∫ •

tI

(

σ(s)−D[ρIK](s)
)

eα(•−s) ds

)

,

stands for the Fourier Transform of function

t 7→ F

(

σ(t)−D[ρIK](t) + α

∫ t

tI

(

σ(s)−D[ρIK](s)
)

eα(t−s)ds

)

.

Proof. First, employing definition (2) of the Repayment Pattern Density γ coupled with the convolu-
tion operator ⋆ to get

κE(t)− κE ⋆ γ(t) =

∫ Θγ

0
γ(y)

(

κE(t)− κE(t− y)
)

dy.

Next, using Heine theorem [17] which states that a continuous function κE on compact interval
[tI,Θmax −Θγ ] is uniformly continuous, allowing the existence of a positive constant C such that

|κE(t)− κE ⋆ γ(t)| 6 C sup
y∈[0,Θγ ]

{

|γ(y)|
}

∫ Θγ

0
y dy 6

CΘ2
γ

2
‖γ‖L∞([0,Θγ ]). (12)

Inequality (12) means that density κE − κE ⋆ γ is bounded on interval [tI,Θmax]. From this, and
according to equality (6), it follows that

σ(t)−D[ρIK](t) + α

∫ t

tI

(

σ −D[ρIK]
)

(s)eα(t−s)ds 6
CΘ2

γ

2
‖γ‖L∞([0,Θγ ]). (13)

Multiplying inequality (13) by e−αt, and applying Gronwall lemma to obtain following inequality

(

σ −D[ρIK]
)

(t)e−αt 6
CΘ2

γ

2
‖γ‖L∞([0,Θγ ])e

−αt −
αCΘ2

γ

2
‖γ‖L∞([0,Θγ ])

∫ t

tI

e−αse−
∫ t

s
αdu ds

6
CΘ2

γ

2
‖γ‖L∞([0,Θγ ])e

−αt −
αCΘ2

γ

2
‖γ‖L∞([0,Θγ ])e

−αt(t− tI)

6
CΘ2

γ

2
‖γ‖L∞([0,Θγ ])e

−αt
(

1− α(t− tI)
)

.

That is, for all variable time t in interval [tI,Θmax],

(

σ −D[ρIK]
)

(t) 6
CΘ2

γ

2
‖γ‖L∞([0,Θγ ])

(

1− α(t− tI)
)

. (14)

The function defined by t→ 1− α(t− tI) is in L
2([tI,Θmax]) because of

‖t→ 1− α(s − tI)‖L2([tI,Θmax]) =

√

∫ Θmax

tI

(

1− α(s − tI)
)2
ds

=

√

−
1

3α

[

(

1− α(Θmax − tI)
)3

− 1
]

,

is a finite quantity. From this and according to inequality (14), the operator L is in L
2([tI,Θmax]). As

L ∈ L
2([tI,Θmax]), we will show that:

L[κE ] + α

∫ •

tI

L[κE ](s) e
α(•−s) ds ∈ L

2([tI,Θmax]). (15)

Indeed, for all reals t 6 Θmax, we have
∥

∥

∥

∥

∫ •

tI

L[κE ](s) e
α(•−s) ds

∥

∥

∥

∥

L2([tI,Θmax])

=

√

∫ Θmax

tI

(
∫ t

tI

L[κE ](s) eα(t−s) ds

)2

dt
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6
√

Θmax − tI ×

∣

∣

∣

∣

∣

∫ Θmax

tI

L[κE ](s) e
α(Θmax−s) ds

∣

∣

∣

∣

∣

.

From this, and according to following inequality |eα(Θmax−s)| 6 e|α|(Θmax−tI) for all s ∈ [tI,Θmax] yields,
∥

∥

∥

∥

∫ •

tI

L[κE ](s)e
α(•−s) ds

∥

∥

∥

∥

L2([tI,Θmax])

6
√

Θmax − tI × e|α|(Θmax−tI) × ‖L[κE ]‖L1([tI,Θmax]). (16)

Next, we use Cauchy–Schwarz inequality to obtain

‖L[κE ]‖L1([tI,Θmax]) 6
√

Θmax − tI × ‖L[κE ]‖L2([tI,Θmax]). (17)

Inequalities (16) and (17) imply
∥

∥

∥

∥

L[κE ] + α

∫ •

tI

L[κE](s) e
α(•−s) ds

∥

∥

∥

∥

L2([tI,Θmax])

6 (1 + |α|(Θmax − tI) e
|α|(Θmax−tI))‖L[κE ]‖L2([tI,Θmax]),

achieving the proof of (15). In the sequel, noticing that the equality (11) is proved in [4] under the
following assumption κE ∈ L

2([tI,Θmax − Θγ ]), however, we will continue to prove it with the initial
one that is κE ∈ L

1([tI,Θmax − Θγ ]) ∩ Cc([tI,Θmax − Θγ ]). Since the Fourier transform map F is an
isometry with respect to the L

2 norm, hence we may apply this application to relation (6), the Loan
Density κE is given in terms of the Algebraic Spending Density σ as

F(κE) =
F
(

σ −D[ρIK] + α
∫ •
tI
(σ(s)−D[ρIK](s)) e

α(•−s)ds
)

1−F(γ)
. (18)

The meaning of the equality (18) is interpreted as follows. The product of function F
(

σ − D[ρIK] +

α
∫ •
tI
(σ(s)−D[ρIK](s)) e

α(•−s) ds
)

in L
2(R) by a function 1

1−F(γ) in L
∞(]−∞,−ε[∪]ε,+∞[), is function

F(κE) which stays in the space L2(]−∞,−ε[∪]ε,+∞[) for any positive real ε. From this, and according
to the assumption (9), the Lemma is proved only over the interval ] − ∞,−ε[∪]ε,+∞[. In order to
complete the proof of the Lemma, we will show that the equality (11) stays true over an interval
containing the singularity point [18, 19], which is naturally zero.

The equality (10) is coupled with the Taylor development of function F(L[κE ] +
α
∫ •
tI
L[κE ](s) e

α(•−s) ds) around zero to give

F

(

L[κE ] + α

∫ •

tI

L[κE ](s) e
α(•−s) ds

)

(ξ)

= −i ξ

∫ Θmax

tI

y

(

L[κE ](y) + α

∫ y

tI

L[κE](s) e
α(y−s)ds

)

dy +O(ξ2). (19)

Similary, the property of the Repayment Pattern Density γ given by the definition (2) is coupled with
the Taylor development of function 1

1−F(γ) around zero in order to yield the following equality

1

1−F(γ)(ξ)
=

−i

ξ
∫ Θγ

0 y γ(y) dy +O(ξ2)
. (20)

According to these developments given by equalities (19) and (20), F(κE) is a finite term around the
singularity point ξ = 0. In other words, we can say in this case that the function F(κE) is in L

∞(R),
which gives F(κE) in L

2(R). Here, we remark that if equality given by relation (10) does not hold for
the operator L, then the function F(κE) is not in L

∞(R). Indeed, when the variable ξ is close to zero,
the equivalent function F(κE) is defined by

FR0
(κE)−

i

ξ
FI0(κE). (21)

In which, operators FR0
and FI0 depend on the Loan Density κE are defined as

FR0
(κE) =

∫ Θmax

tI
y
(

L[κE ](y) + α
∫ y

tI
L[κE ](s)e

α(y−s)ds
)

dy
∫ Θγ

0 y γ(y) dy
,
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FI0(κE) =

∫ Θmax

tI

(

L[κE ](y) + α
∫ y

tI
L[κE ](s)e

α(y−s)ds
)

dy
∫ Θγ

0 y γ(y) dy
.

According to decomposition (21), the function F(κE) diverges when the variable ξ goes to zero. �

Example 1. Considering a fixed Pattern Repayment Density γ given by

γ(t) =

(

t

Θ2
γ

+
1

2Θγ

)

1[0,Θγ ](t).

The Fourier Transform of this density γ is computed as

∀ξ ∈ R
∗, 1−F(γ)(ξ) = 1−

(

1

(ξΘγ)2
+

i

2ξΘγ

)

(

e−iξΘγ − 1
)

−
i

ξΘγ

e−iξΘγ . (22)

Fig. 1. Graph of the function defined in the equality (1) over the interval [0.05, 15.105], showing that is
L
∞(]−∞,−ε[∪]ε,+∞[).

From (22), the inverse of the modulo squared yields
∣

∣

∣

∣

1

1−F(γ)(ξ)

∣

∣

∣

∣

2

=
4(ξΘγ)

4

T 2(ξ) + Y2(ξ)
,

where functions T and Y are defined as follows

T (ξ) = 2(ξΘγ)
2 − 2(cos(ξΘγ)− 1)− 3ξΘγ sin(ξΘγ),

Y(ξ) = 2 sin(ξΘγ)− ξΘγ(3 cos(ξΘγ)− 1).

Remark 1. We will show in this remark that even the Repayment Pattern Density γ has a lower
bound, we could not apply Lemma 1. Indeed, if the density γ admits a lower bound over its support,
then there exists a positive real M satisfying

inf
z∈[0,Θγ ]

{

|γ(z)|
}

=M. (23)

We will show that under assumption (23), relation (9) is not satisfied. Otherwise, we will show
(

1

1−F(γ)

)

/∈ L
∞(R). (24)

By ordered compactness, we have,
∣

∣

∣

∣

1

1−F(γ)(ξ)

∣

∣

∣

∣

2

=
1

∣

∣

∣

∫ Θγ

0 γ(x)(1 − e−ixξ) dx
∣

∣

∣

2
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6
1

M2
×

1
∣

∣

∣

∫ Θγ

0 (1− e−ixξ) dx
∣

∣

∣

2 .

The integration of the exponential function x→ e−ixξ states that
∫ Θγ

0
(1− e−ixξ) dx = Θγ +

(e−iΘγξ − 1)

iξ
.

We take the square root of the modulus
∣

∣

∣

∣

∫ Θγ

0
(1− e−ixξ) dx

∣

∣

∣

∣

2

= Θ2
γ +

2(1− cos(Θγξ))

ξ2
−

2Θγ sin(Θγξ)

ξ
.

Making out that this function

ξ →
1

Θ2
γ +

2(1−cos(Θγξ))
ξ2

−
2Θγ sin(Θγξ)

ξ

is pair. For that we will show that is /∈ L
∞(R+) in order to prove (24). The functions sin(Θγξ) and

cos(Θγξ) are Taylor expanded in zero respectively up to the third-order to obtain following inequalities

sin(Θγξ) 6 Θγξ −
(Θγξ)

3

6
, cos(Θγξ) 6 1−

(Θγξ)
2

2
.

From this, we get for all positive real numbers ξ

1

Θ2
γ +

2(1−cos(Θγξ))
ξ2

−
2Θγ sin(Θγξ)

ξ

6
3

Θ4
γξ

2
.

Since the function ξ → 3
Θ4

γξ
2 is not bounded, then it is not in L

∞(R+), completing the proof of (24).

To enrich the model, a new idea consists in imposing a novel assumption on the relationship of γ,
which is usable in this form. It allows to keep the same Loan Density κE in term of the Algebraic
Spending Density σ. Following this idea leads to obtain the uniqueness of κE given in Theorem 2.

Theorem 2. Assuming that the density γ satisfies (1), and the following expression
(

1

1−F(γ)

)

∈ L
2(]−∞,−ε[∪ ]ε,+∞[), (25)

for any positive real ε such that (10) holds for the operator L. Then, the Loan Density κE can be

expressed in terms of σ as

κE = F−1

(

F
(

σ −D[ρIK] + α
∫ •
tI
(σ(s)−D[ρIK](s)) e

α(•−s) ds
)

1−F(γ)

)

.

Proof. In the first place, we will show that function
∫ •
tI
(σ(s) − D[ρIK](s)) e

α(•−s)ds is integrable over
R having their support in [tI,Θmax]. In other words,

∫ •

tI

(

σ(s)−D[ρIK](s)
)

eα(•−s)ds ∈ L
1(R).

For all reals t 6 Θmax, we have
∥

∥

∥

∥

∫ •

tI

L[κE ](s) e
α(•−s)ds

∥

∥

∥

∥

L1([tI,Θmax])

=

∫ Θmax

tI

∣

∣

∣

∣

∫ t

tI

L[κE ](s) e
α(t−s)ds

∣

∣

∣

∣

dt

6 (Θmax − tI)× e|α|(Θmax−s)‖L[κE ]‖L1([tI,Θmax]).

Detecting that the Linear operator L is acting on the Loan Density κE ∈ L
1([tI,Θmax − Θγ ]) ∩

Cc([tI,Θmax−Θγ ]) which is defined on L
1([tI,Θmax−Θγ ]). From this the Fourier transform of function

in L
1([tI,Θmax −Θγ ]) is in L

∞(R). Formally, we get

F

(

σ −D[ρIK] + α

∫ •

tI

(

σ(s)−D[ρIK](s)
)

eα(•−s)ds

)

∈ L
∞(R). (26)
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Under assumption (25), since the product of function

F

(

σ −D[ρIK] + α

∫ •

tI

(

σ(s)−D[ρIK](s)
)

eα(•−s)ds

)

in L
∞(R) by function 1

1−F(γ) which is in L
2(R), is in space L

2(R). Hence, the proof of the lemma is
achieved. �

Remark 2. The aim of this remark is to check Lemmas 1 and 2 for a constant piecewise density γ,
which is equal to 1

Θγ
over [0,Θγ ] and is equal to zero outside, i.e.

γ =
1

Θγ

1[0,Θγ ]. (27)

The Repayment Pattern Density γ given by (27) satisfies (2), because it is a non-negative density with
total mass which equals 1. The aim here is to show that this density γ does not satisfy assumption (9).
Since the modulus of 1

1−F(γ) is computed as
∣

∣

∣

∣

1

1−F(γ)(ξ)

∣

∣

∣

∣

=
|ξΘγ |

√

(ξΘγ − sin(ξΘγ))
2 + (cos(ξΘγ)− 1)2

,

then, when ξ → 0, this modulus is equivalent to

1
(ξΘγ)2

4

(

1 +
(ξΘγ)4

9

) .

Consequently, | 1
1−F(γ)(ξ) | diverges around origin, proving that

(

1

1−F(γ)

)

/∈ L
∞(R).

Taking now the same Repayment Pattern Density γ defined by equality (27). This density γ does not
satisfy assumption (9). Indeed, around infinity, we get the following equivalence:

∣

∣

∣

∣

1

1−F(γ)(ξ)

∣

∣

∣

∣

2

=
(ξΘγ)

2

(ξΘγ − sin(ξΘγ))
2 + (cos(ξΘγ)− 1)2

≃ 1,

which is not integrable between a positive number A and infinity. Consequently, we get
(

1

1−F(γ)

)

/∈ L
2(R).

3. Setting out a financial strategy

The aim of this section is to show how continuous-in-time model is used for our financial strategy.
Any organization and, in particular, local communities needs to establish a budget project for its own
strategy. It consists in predicting all consequences for future finance, which is followed by establishing
a new one if and only if the first one does not give satisfaction. Forecasting this strategy allows the
organization to make the best decisions in order to elaborate the adapted one.

Here, we give a concrete example in order to illustrate this strategy. Running the expected model
shows promising results, meaning of correspondence with respect to realistic values. This example is
presented in Figure 2, shared into seven diagrams. The first one is the Repayment Pattern Density γ
expresses the way a unit amount borrowed at the initial time is repaid. The second one is Loan Density
κE . It means how public institution defines loan scheme, stated by their financial plan, taking into
account all the process needs. Next, the third one shows the Repayment Density ρK. It translates the
result of the action of γ on κE via the convolution operator (see equality (3)). Assuming here that this
Repayment Density is not satisfactory for elaborating a given financial strategy. Then, the organization
chooses a new suitable targeted Repayment shown in the fourth diagram. In what follows, the Fourier
Transform Operator is involved in the computation. Indeed, the direct and inverse ones are used to
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Fig. 2. Financial strategy elaboration controlling constrains and goals.

calculate Loan Density in the fifth diagram. Next, this obtained Loan Density is adjusted in order
for decision-makers to be efficiently arranged. This modified Loan Density responds to encountered
problems and is generated in the sixth diagram. From this Loan, Repayment Density is computed and
stated in the last diagram.
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Деякi зауваження щодо оберненої задачi фiнансової моделi з
неперервним часом у L1([tI,Θmax])

Чаккур Т.

LGPM, CentraleSupélec, Унiверситет Париж–Сакле,
Європейський центр бiотехнологiї та бiоекономiки (CEBB)

У статтi ми збираємося ввести оператор, який бере участь в оберненiй задачi фi-
нансової моделi з неперервним часом. Ця структура призначена для використання
у фiнансах для будь-якої органiзацiї та, зокрема, для мiсцевих громад. Це дозволяє
складати рiчнi та багаторiчнi бюджети з описом схем позики, вiдшкодування та ви-
плати вiдсоткiв. Обговорюємо цю обернену задачу в просторi iнтегровних функцiй
над R з компактним носiєм. У цьому просторi розглядається концепцiя некоректно-
стi, щоб отримати цiкавi та кориснi розв’язки. Потiм даємо деякi зауваження щодо
нефункцiональностi моделi для заданої щiльностi схеми погашення γ, коли цей опе-
ратор не є оборотним у просторi. Крiм того, ця обернена задача проiлюстрована, щоб
довести її здатнiсть використовуватися у фiнансовiй стратегiї.

Ключовi слова: обернена задача; iнтегральнi оператори; фiнансова модель; щiль-
ностi та мiри.
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