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Monkeypox is a contagious disease caused by the monkeypox virus. There is currently
an outbreak of monkeypox in the U.S. and other countries where the virus is not usually
seen. We develop and analyze a deterministic mathematical model for the monkeypox
virus by proposing a spatiotemporal model describing the dynamics of the virus between
humans. The existence, the positivity, and the boundedness of the solutions have been
proved. Moreover, with the help of the optimal control, we add two different controls
(blocking of contact and treatment in the case of infection) to prevent the propagation of
monkeypox between humans. Finally, we present brief comments and numerical simula-
tions to illustrate our findings. The results show that keeping diseased people apart from
the general population minimizes the spread of disease.
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1. Introduction

Numerous instances of monkeypox have been found and reported to the World Health Organization
(WHO) since May 13, 2022, in around 12 non-African nations where the infection is not endemic [14,26].
The monkeypox disease is widespread in West and Central Africa, but ongoing reports from a couple of
countries outside of Africa suggest that the study of disease transmission is changing and evolving [8,17].
The situation with expanding cases will keep on changing as reconnaissance and checking of monkeypox
infection disease spreads to non-endemic nations and more cases will be recognized, which could pose a
serious danger to worldwide general well-being [26]. The monkeypox infection is a two-fold abandoned
DNA infection with two unmistakable clades: the West African clade and the Congo Basin (Central
African) clade. It is an individual from the Orthopoxvirus variety and is connected with the smallpox
infection [9]. The primary human to get the monkeypox zoonotic infection, which was first distinguished
in monkeys in a Danish research center in 1958 [6,14,25,26], contracted it in the Democratic Republic
of the Congo in 1970. In the post-smallpox time, individuals younger than 40 have diminished cross-
defensive resistance, which is changing the study of disease transmission of the human monkeypox
infection and its geographic circulation in West and Central Africa [7–9,13]. In May 2022, a larger than
usual number of non-endemic countries detailed different instances of monkeypox infection disease [14].
As of May 21, there were 92 research centers affirmed instances of monkeypox and 28 thought cases, with
most of the cases happening in the UK, Portugal, and Spain [26]. Furthermore, cases of monkeypox
have been reported in the UK, Australia, Belgium, Canada, France, Germany, Italy, Netherlands,
Portugal, Spain, Sweden, and the United States of America (USA). No deaths have been attributed to
the monkeypox infection in these countries. As per news sources dated May 23rd, 2022, monkeypox
cases have been accounted for in Switzerland and Austria, as per news sources.

Human-to-human Kissing, cuddling, kneading, oral, butt-centric, and vaginal sex can all bring
about transmission. You could come into contact with contaminated sheet material or different mate-
rials during or after sexual action. To forestall the spread of the infection, all nations should rapidly
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Fig. 1. Reported cases of the human monkeypox epidemic in each nation in June 23, 2022.

search for instances of monkeypox. Recognition, finding, and separation of monkeypox cases are vital
for safeguarding cutting edge medical care laborers and research facility experts to keep away from new
cases and lay out effective therapy ways to deal with end of flow flare-ups. On account of the sickness’
absence of consideration before, its transmission components are ineffectively known. Nonetheless, a
couple of scientists have endeavored to comprehend the elements of the monkeypox infection by uti-
lizing numerical models. The research by Bhunu and Mushayabasa (see [4]) serves as the basis for an
inquiry into the pox-like dynamics of the monkeypox virus. The writers of Bhunu et al. [3] have proved
that the disease will be eradicated from both non-human primates and humans with the planned ther-
apeutic intervention. Usman and Adamu [24] examine the dynamics of the monkeypox virus in rats
and humans using stability analysis. TeWinkel [23], Somma et al. [21], Bankuru et al. [2], and Grant et
al. all offer major additions [11]. We added spatial diffusion into our model to better model, assess, and
regulate the transmission of the human monkeypox virus, as early epidemiological models frequently
assumed that the population was evenly distributed throughout the area under study, which is not
true. Furthermore, our primary goal is to limit the transmission of the virus by reducing the number
of exposed and infected people, decreasing interactions between susceptible people and lowering the
cost of treating sick people. For more studies on compartment systems using various optimal control
techniques, we refer to the following references [27–30].

The structure of this paper is the following: Section 2 is staunched to the basic mathematical model
problem. Section 3, we demonstrate some fundamental properties of solutions. In Section 4, we discuss
the optimal control of partial differential equations. As application, the numerical results related to
our control problem are given in Section 5. In the end, we conclude the article in Section 6.

2. The basic mathematical model

In this paper, we suggest an optimal control problem utilizing a spatiotemporal epidemic model. There
is no doubt that the environment in which we live is spatially heterogeneous, where individuals tend to
move about and where their densities depend on space. We write S(t, x), SM (t, x), SW (t, x), EM (t, x),
EW (t, x), I(t, x), and R(t, x) to show that the populations reflect the appropriate geographical and
temporal behavior for the population densities of susceptible (Men and Women), exposed (Men and
Women), infected, and removed, respectively. As a strategy of control, two controls (1 − u(t, x)) and
v(t, x) are introduced which represent respectively the blocking of contacts between susceptible and
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exposed persons and the treatment applied on the infected. The time t belongs to a finite interval
[0, T ], while x varies in a bounded domain Ω ⊆ R

2. The population dynamics is given by the following
system



























































































∂S

∂t
= dS∆S +Λ− αS −mS,

∂SM

∂t
= dSM

∆SM + εαS − (1− u)β1SMEM − (1− u)β2SMEW −mSM ,

∂SW

∂t
= dSW

∆SW + (1− ε)αS − (1− u)β3SWEM − (1− u)β4SWEW −mSW ,

∂EM

∂t
= dEM

∆EM + (1− u)β1SMEM + (1− u)β2SMEW −mEM − γ1EM ,

∂EW

∂t
= dEW

∆EW + (1− u)β3SWEM + (1− u)β4SWEW −mEW − γ2EW ,

∂I

∂t
= dI∆I + γ1EM + γ2EW − (g +m+ r)I − vI,

∂R

∂t
= dR∆R+ (g + v)I −mR,

(1)

where (t, x) ∈ Q = [0, T ] × Ω, with the homogenous Neumann boundary conditions

∂S

∂η
=
∂SM

∂η
=
∂SW

∂η
=
∂EM

∂η
=
∂EW

∂η
=
∂I

∂η
=
∂R

∂η
= 0, (t, x) ∈ Σ = [0, T ]× ∂Ω, (2)

where ∂
∂η

is the outward normal derivative, and the symbol ∆ is the usual Laplacian operator.

Fig. 2. Schematic representation of the model.

The initial distribution data φi are non-negative functions for i = 1, 2, 3, 4, 5, 6, 7.

S(0, x) = φ1(x) > 0, SM(0, x) = φ2(x) > 0, SW (0, x) = φ3(x) > 0, (3)

EM (0, x) = φ4(x) > 0, EW (0, x) = φ5(x) > 0, I(0, x) = φ6(x) > 0 and R(0, x) = φ7(x) > 0.

The meanings of the notations are shown in the following table.

3. Fundamental properties of solutions

Firstly, we introduce some notations, let C = ([0, T ],X) be the Banach space of continuous functions
from [0, T ] into X with the usual supremum norm.

In our case, X is the Banach space C(Ω,R7), where C(E,F ) denotes the space of continuous
functions from the topological space E into the space F .

Theorem 1. For any initial data φ ∈ C satisfying the condition (3), there exists a unique solution of
problem (1)–(3) defined on

[

0,+∞
[

and this solution remains non negative and bounded for all t > 0.
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Table 1. Parameters meaning.

Parameter Description
Λ Number of birth
α probability of becoming susceptible
εα Recruitment rate for susceptible men
m Natural mortality rate
r Death rate due to the infection
g Guerison rate

γ1, γ2 Proportion of exposed human to infected humans
β1, β2, β3, β4 Transmission rates
(1− ε)α Recruitment rate for susceptible women

dS , dSM
, dSW

, dEM
, dEW

, dI , dR Diffusion rates

Proof. We define F = (F1, F2, . . . , F7) : C → X by

F1(t, x) = Λ− αF1 −mF1,

F2(t, x) = εαF1 − (1− u)β1F2F4 − (1− u)β2F2F5 −mF2,

F3(t, x) = (1− ε)αF1 − (1− u)β3F3F4 − (1− u)β4F3F5 −mF3,

F4(t, x) = (1− u)β1F2F4 + (1− u)β2F2F5 −mF4 − γ1F4,

F5(t, x) = (1− u)β3F3F4 + (1− u)β4F3F5 −mF5 − γ2F5,

F6(t, x) = γ1F4 + γ2F5 − (g +m+ r)F6 − vF6,

F7(t, x) = (g + v)F6 −mF7,

then, system (1)–(3) can be rewritten as the following abstract functional differential equation

w′(t) = Aw + F (wt), t > 0, (4)

w(0) = 0,

where w = (S, SM , SW , EM , EW , I, R)
T , φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7)

T , and Aw =
(dS∆S, dSM

∆SM , dSW
∆SW , dEM

∆EM , dEW
∆EW , dI∆I, dR∆R)

T , it is clear that F is locally Lipshitz
in X. From [1,20], we deduce that system (4) admits a unique local solution on [0, Tmax], where Tmax

is the maximal existence time for solution of system (4).
In addition, we have S(t, x) > 0, SM (t, x) > 0, SW (t, x) > 0, EM (t, x) > 0, EW (t, x) > 0,

I(t, x) > 0, and R(t, x) > 0 because 0 is a sub-solution of each equation of system (1) [12].
Now, we show the boundedness of solution. From (1)–(3)



























∂S

∂t
− dS∆S 6 Λ−mS,

∂S

∂η
= 0,

S(0, x) = φ1(x) 6‖ φ1 ‖∞= max
x∈Ω

φ1(x)

by comparison principale [16], we have S(t, x) 6 S1(t) where S1(t) = φ1(x)e
−mt + Λ

m
(1 − e−mt) is the

solution of the problem






∂S1

∂t
= Λ−mS1,

S1(0) = ‖φ1‖∞,

since S1(t) 6 max( Λ
m
, ‖φ1‖∞) for t ∈

[

0,+∞
[

, we have that S(t, x) 6 max( Λ
m
, ‖φ1‖∞),∀(x, t) ∈

Ω×[0, Tmax]. From Theorem 3.1 given by Alikakos in [19], to establish the L∞ boundedness of SM (t, x),
SW (t, x), EM (t, x), EW (t, x), I(t, x) and R(t, x), it is sufficient to show the L1 uniform boundedness
since

∂S

∂η
=
∂SM

∂η
=
∂SW

∂η
=
∂EM

∂η
=
∂EW

∂η
=
∂I

∂η
=
∂R

∂η
= 0
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and

∂

∂t
(S + SM + SW + EM + EW + I +R)

−∆(dSS + dSM
SM + dSW

∆SW + dEM
EM + dEW

EW + dII + dRR)

< Λ−m(S + SM + SW + EM + EW + I +R),

we get

∂

∂t

∫

Ω

(S+SM +SW +EM +EW +I+R) dx 6 Λmes(Ω)−m

∫

Ω

(S+SM +SW +EM +EW +I+R) dx,

hence
∫

Ω

(S+SM+SW+EM+EW+I+R) dx 6 mes(Ω)max

{

Λ

m
, ‖ φ1 + φ2 + φ3 + φ4 + φ5 + φ6 + φ7 ‖∞

}

,

which implies that, sup
t>0

∫

Ω
SM(t, x) 6 K = mes(Ω)max

{

Λ
m
, ‖ φ1 + φ2 ‖∞

}

, analogously for SW , EM ,

EW , I, R.
Using Theorem 3.1 [19], we deduce that there exists a positive constant K∗ that depends on K and

on ‖φ1 + φ2 + φ3 + φ4 + φ5 + φ6 + φ7‖∞ such that

sup
t>0

‖SM (t, x)‖∞ 6 K

similarly for SW , EM , EW , I, R.
From the above, we have proved that S(t, x), SM (t, x), SW (t, x), EM (t, x), EW (t, x), I(t, x), and

R(t, x) are L∞ bounded on Ω ×
[

0, Tmax

[

.
Therefore, it follows from the standard theory for semilinear parabolic system (see [5]) that Tmax =

+∞. �

4. The optimal control problem

This section discusses the optimal control of partial differential equations, which was first introduced
by J. L. Lions in the 1970s [10, 22].

Let us remind our system of partial differential equations


























































































∂S

∂t
= dS∆S +Λ− αS −mS,

∂SM

∂t
= dSM

∆SM + εαS − (1− u)β1SMEM − (1− u)β2SMEW −mSM ,

∂SW

∂t
= dSW

∆SW + (1− ε)αS − (1− u)β3SWEM − (1− u)β4SWEW −mSW ,

∂EM

∂t
= dEM

∆EM + (1− u)β1SMEM + (1− u)β2SMEW −mEM − γ1EM ,

∂EW

∂t
= dEW

∆EW + (1− u)β3SWEM + (1− u)β4SWEW −mEW − γ2EW ,

∂I

∂t
= dI∆I + γ1EM + γ2EW − (g +m+ r)I − vI,

∂R

∂t
= dR∆R+ (g + v)I −mR,

where (t, x) ∈ Q = [0, T ] × Ω, with the homogenous Neumann boundary conditions

∂S

∂η
=
∂SM

∂η
=
∂SW

∂η
=
∂EM

∂η
=
∂EW

∂η
=
∂I

∂η
=
∂R

∂η
= 0, (t, x) ∈ Σ = [0, T ]× ∂Ω.

Our goal is to minimize the density of infected and exposed individuals. Mathematically, we seek
to minimize the functional objective. Therefore, we need to apply the Tikhonov regularization [18],

Jρ1,ρ2(u, v) = min
u,v

[

1

2

∫

Q

(

I(t, x) + EM (t, x) + EW (t, x)
)

dt dx
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+
ρ1

2

∫

Q

u(t, x)2dt dx+
ρ2

2

∫

Q

v(t, x)2dt dx

]

.

Now, let us apply the optimal control theory to find u and v.
Our class of admissible controls

Uad =
{

(u, v) ∈ L2([0, T ] ×Ω), 0 6 u, v 6 Γi for i = 1, 2
}

By putting w = (u, v), and w∗ = (u∗, v∗), and as ε → 0 for any w = (u, v) ∈ Uad and bounded
k = (k1, k2) such that (w + εk) ∈ Uad for ε small, the derivative (Gateaux differentiable) of the states
with respect to w are

lim
ε→0

S(w + εk)− S(w)

ε
= ψ1, lim

ε→0

SM (w + εk)− SM (w)

ε
= ψ2

simultaneously for SW , SW (t, x), EM (t, x), EW (t, x), I(t, x), and R(t, x), besides ψ1, ψ2, ψ3, ψ4, ψ5,
ψ6, ψ7 satisfy the linearized state partial differential equation

∂ψ1

∂t
= dS△ψ1 + (−α−m)ψ1,

∂ψ2

∂t
= dSM

∆ψ2 + εαψ1 + [−(1− u)β1EM − (1− u)β2EW −m]ψ2 − ((1− u)β1SM )ψ4

− ((1− u)β2SM )ψ5 + k1 (β1SMEM + β2SMEW ),

∂ψ3

∂t
= dSW

∆ψ3 + (1− ε)αψ1 + [−(1− u)β3EM − (1− u)β4EW −m]ψ3 − (1− u)β3SWψ4

− (1− u)β4SWψ5 + k1 (β3SWEM + β4SWEW ),

∂ψ4

∂t
= dEM

∆ψ4 + [(1− u)β1EM + (1− u)β2EW ]ψ2 + [(1− u)β1SM −m− γ1]ψ4

+ ((1− u)β2SM )ψ5 + k1 (−β1SMEM − β4SMEW ),

∂ψ5

∂t
= dEW

∆ψ5 + [(1− u)β3EM + (1− u)β4EW ]ψ3 + (1− u)β3SWψ4 + [(1 − u)β4SW −m− γ2]ψ5

+ k1 (−β3SWEM − β4SWEW ),

∂ψ6

∂t
= dI∆ψ6 + γ1ψ4 + γ2ψ5 − (g +m+ r + v)ψ6 − k2I,

∂ψ7

∂t
= dR∆ψ7 + (g + v)ψ6 −mψ7 + k2I

with the initial conditions

ψi(0, x) = 0 for i = 1, . . . , 7, x ∈ Ω,

and the boundary conditions

∂ψi

∂η
= 0 for i = 1, . . . , 7, (t, x) ∈ Σ.

The linearized system changes in the operator form

L





















ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

ψ7





















=





















0
k1(β1SMEM + β2SMEW )
k1(β3SWEM + β4SWEW )
k1(−β1SMEM − β4SMEW )
k1(−β3SWEM − β4SWEW )

−k2I
k2I





















,

where

L = (L̄+ θ), L̄ =
∂

∂t
− d∆,

and
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θ =







































−α−m 0 0 0 0 0 0
εα −(1− u)β1EM− 0 −(1− u)β1SM −(1− u)β2SM 0 0

(1− u)β2EW −m −(1− u)β2SM
(1− ε)α 0 −(1− u)β3EM −(1− u)β3SW −(1− u)β4SW 0 0

−(1− u)β4EW −m

0 (1− u)β1EM 0 (1− u)β1SM (1− u)β2SM 0 0
+(1− u)β2EW −m− γ1

0 0 (1− u)β3EM+ (1− u)β3SW (1 − u)β4SW 0 0
(1− u)β4EW −m− γ2

0 0 0 γ1 γ2 −(g +m+ r + v) 0
0 0 0 0 0 g + v −m







































,

we seek the adjoint system, such that

〈Lψ, λ〉 = 〈ψ,L∗λ〉

or
∫

Q

(Lψ)λdt dx =

∫

Q

ψ(L∗λ) dt dx.

It will guide us to an integral, and by integration by part we get the result. We presume that
λi(T ) = 0 so that the state equations and the adjoint equations match.

Knowing that the state equations and the adjoint equations have opposite time orientations, the
adjoint operator is

L̄∗ = −
∂

∂t
− d∆ and θ∗ = θT ,

hence L∗ = L̄∗ + θT .

So, the adjoint partial differential equations becomes

L∗









λ1

λ2

λ3

λ4

λ5

λ6

λ7









=















J(w)S
J(w)SM

J(w)SW

J(w)EM

J(w)EW

J(w)I
J(w)R















=







0
0
0

EM

EW

I
0







with

λi(t, x) = 0 and
∂λi

∂η
= 0 for i = 1, . . . , 7. (5)

Now, let us assume that w∗ = (u∗, v∗) minimize Jρ(w), then for any direction k = (k1, k2)

0 6 lim
ε→0+

J(w∗ + εk)− J(w∗)

ε

= lim
ε→0+

1

ε

[

1

2

∫

Q

I(w∗ + εk)2 − I(w∗)2dt dx+
1

2

∫

Q

EM (w∗ + εk)2 − EM (w∗)2dt dx

+
1

2

∫

Q

EW (w∗ + εk)2 − EW (w∗)2dt dx+ ρ

∫

Q

w∗k dt dx

]

=

∫

Q

ψ6(I(w
∗)) + ψ4(EM (w∗)) + ψ5(EW (w∗))dt dx+ ρ

∫

Q

w∗k dt dx

=

∫

Q

(

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

)

L∗







0
0
0

EM

EW

I
0






dt dx+ ρ

∫

Q

w∗k dt dx

=

∫

Q

(

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7

)

L∗









λ1

λ2

λ3

λ4

λ5

λ6

λ7









dt dx+ ρ

∫

Q

w∗k dt dx
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=

∫

Q

(

λ1 λ2 λ3 λ4 λ5 λ6 λ7
)











0
k1(β1SMEM+β2SMEW )
k1(β3SWEM+β4SWEW )
k1(−β1SMEM−β4SMEW )
k1(−β3SWEM−β4SWEW )

−k2I
k2I











+ ρ1k1u
∗ + ρ2k2v

∗dt dx

=

∫

Q

k1(β1SMEM + β2SMEW )(λ2 − λ4) + (β3SWEM + β4SWEW )(λ3 − λ5) + ρ1u
∗)

+ k2(−λ6I + λ7I + ρ2v
∗) dt dx

it holds for every function k.
Then, from the above calculation

u∗ =
(β1SMEM + β2SMEW )(λ4 − λ2) + (β3SWEM + β4SWEW )(λ5 − λ3)

ρ1
,

v∗ =
(λ6 − λ7)I

ρ2

as (u∗, v∗) ∈ Uad, we have

u∗ = min

(

1,max

(

(β1SMEM + β2SMEW )(λ4 − λ2) + (β3SWEM + β4SWEW )(λ5 − λ3)

ρ1

))

,

v∗ = min

(

1,max

(

(λ6 − λ7)I

ρ2

))

.

5. Numerical Simulations

In this section, we present the numerical results that demonstrate and validate the effectiveness of our
control technique. This strategy entails using two words of control, which stand for contact limitation
and a treatment plan, to inhibit the spread of human monkeypox disease. To simulate our results, we
wrote code in MATLAB and used various data sets. We provide numerical simulations of our optimality
system, which is formulated by state equations with initial conditions and boundary conditions, adjoint
equations with transversal criteria (5), and a characterization of the optimal control, with regard to
the numerical approach. We employ an iterative approach to solve our optimality system called the
forward-backward sweep method (FBSM) [15]. The state equations are solved using a direct method
in time by employing the Euler explicit method. In order to discretize the second order derivatives ∆S,
∆SM , ∆SW , ∆EM , ∆EW , ∆I, and ∆R, we use the second order Euler explicit method. Initiation
control variables are guessed at the beginning of the iterative method. Next, the adjoint equations
are solved backward in time. Finally, the control variables are updated with the current state and
adjoint solutions. The iterative process is repeated until a tolerance criterion is reached. To illustrate
and show the effect of each control and its influence on the spread of the disease, we choose to adopt
two scenarios, in the first scenario we simultaneously optimized the first is to prevent contact between
susceptible individuals and those who have been exposed; the second is to treat those who have already
contracted the infection

— Case 1: Applying two controls: the blocking of contacts between susceptible and exposed persons
and treatment;

— Case 2: Only with treatment control.

Firstly, in Figure 4(d), Figure 4(e), Figure 4(f) and Figure 4(g), we present simulations illustrating
the dynamics of exposed men, exposed women, infected and removed in the case where two control
variables are considered, representing the blocking of contacts between susceptible and exposed persons
and treatment (see differential system (1)). We specify that in all these figures presented here, an idea
of the spread of the disease is given by the simulations in the case where the infection starts in the
middle, in order to show both the effect of the spatial factor and the contribution of mobility in the
transmission of the disease.
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Table 2. Initial conditions and parameters values.

Parameter Value Description

S0

45 for Ωj

40 for Ω1

Initial susceptible population

E0

0 for Ωj

5 for Ω1

Initial exposed population

I0
0 for Ωj

5 for Ω1

Initial infected population

R0 0 Initial immune population
α 0.03 probability of becoming susceptible
ε 0.07 Recruitment rate from the probability of becoming susceptible
m 0.5 Natural mortality rate

γ1, γ2 0.2 Rate that exposed individuals become in f ectious
g 0.02 Recovery rate
Λ 0.01 birth rate
β1 0.00035 Men to men contact rate

β2, β3 0.00025 Men to women contact rate
β4 0.0003 Women to women contact rate
r 0.2 Mortality due to infection

di, i = 1, 2, 3, 4, 5, 6, 7 0.6 Diffusion coefficient

Fig. 3. States of system without controls. (a) Susceptibles behavior without control. (b) Susceptibles Men
behavior without control. (c) Susceptibles Women behavior without control.

Figures 3 and 4 show that when we use our spatiotemporal control strategy based on two control
words, representing contact limitation and a treatment plan, we can clearly see that the number of
infected people decreases. We assume that optimal treatments begin on day t = 1, which is the same
day that infection is detected in Ω. The impact of the spatiotemporal controls of these two control
strategies is quite remarkable in slowing the spread of infection.

In Figure 4(f), the infected population, in the absence of contact limitation and treatment of infec-
tious, increases as the susceptible are infected and reaches its maximum, then gradually decreases and
then reaches a steady state where it remains constant. With the adoption of two control strategies, as
shown in Figure 6, the infected population decreases and is reduced to low levels as infected individuals
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Fig. 4. States of system without controls. (d) Exposed Men behavior without control. (e) Exposed Women
behavior without control. (f) Infectives behavior without control. (g) Removed Women behavior without

control.

are treated, thereby reducing infectivity. The virus spreads rapidly in the first two Figures (3 and 4),
and there is a high level of contagion among the different sections of the population, which causes us
to take action to limit its spread. In Figure 6(f), after t = 250, the density of the infected population
drops from 35 infected in the absence of treatment and from 2 infected in the presence of optimal
controls, as shown in Figure 4(f).

Fig. 5. States of system with controls. (a) Susceptibles behavior with control. (b) Susceptibles Men behavior
with control. (c) Susceptibles Women behavior with control.
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Fig. 6. States of system with controls. (d) Exposed Men behavior with control. (e) Exposed Women behavior
with control. (f) Infectives behavior with control. (g) Removed Women behavior with control.

Fig. 7. States of system with treatment control. (a) Susceptibles behavior with control. (b) Susceptibles Men
behavior with control. (c) Susceptibles Women behavior with control.

For comparison purposes, only case 2 with treatment control is introduced. Figures 7 and 8 rep-
resent only the treatment administered to infected patients in order to demonstrate its efficacy and
functioning. Figure 8(g) shows that the maximum number of individuals eliminated reaches about 30
individuals, which is very beneficial and reflects the importance of our control strategy. Although this
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control is useful in times of illness, it is important to combine it with another control approach for
effective prevention.

Fig. 8. States of system with treatment control. (d) Exposed Men behavior with control. (e) Exposed Women
behavior with control. (f) Infective behavior with control. (g) Removed Women behavior with control.

These results provide important information that the application of both controls is an effective
strategy to control the spread of epidemics.

6. Conclusion

In this paper, we present an intriguing application theory to investigate the best combination of
contact restriction and treatment for spatiotemporal epidemic models described by a system of partial
differential equations. The distribution of contact blocking and treatment in space and time serves as
a control variable. The existence, positivity, and boundedness of the solutions of the state system are
proved. A numerical simulation is performed to demonstrate the effectiveness of optimal control as a
prevention and treatment tool to reduce the total number of infections of human monkeypox.

Data availability

The disciplinary data used to support the findings of this study have been deposited in the Network
Repository (http://www.networkrepository.com).
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Регуляризацiя Тихонова для просторово-часової
моделi спалаху мавпячої вiспи людини

Маруан К., Бен Рiла С., Куiдере А., Рачик М.

Лабораторiя аналiзу, моделювання та симуляцiї, кафедра математики та iнформатики,

факультет наук Бен М’сiк, Унiверситет Хасана II Касабланки, Марокко

Мавп’яча вiспа — iнфекцiйна хвороба, яка спричинена вiрусом вiспи мавп. Зараз у
США та iнших країнах, де вiрус зазвичай не зустрiчається, спостерiгається спалах
мавп’ячої вiспи. Розроблено та проаналiзовано детермiновану математичну модель
для вiрусу мавп’ячої вiспи, запропонувавши просторово-часову модель, що описує ди-
намiку вiрусу мiж людьми. Доведено iснування, додатнiсть та обмеженiсть розв’язкiв.
Крiм того, за допомогою оптимального керування додано два рiзних засоби контро-
лю (блокування контакту та лiкування у разi зараження), щоб запобiгти поширенню
мавп’ячої вiспи мiж людьми. Накiнець, подано короткi коментарi та чисельне мо-
делювання для iлюстрацiї отриманих висновкiв. Результати показують, що iзоляцiя
хворих вiд населення зводить до мiнiмуму поширення хвороби.

Ключовi слова: просторово-часова передача; мавпяча вiспа людини; регулярiзацiя

Тихонова; оптимальне керування; чисельне моделювання.
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