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Abstract 

Mobile robots control systems achieve greater efficiency through the use of robust environmental analysis 

algorithms based on data collected from optical sensors such as depth cameras, Light Detection and Ranging sensors 

(LIDARs). These data sources provide information about control object environment in point cloud. The work of such 

algorithms, as a rule, is aimed at detecting the objects of interest and searching for the specified objects, as well as 

relocating its own position on the scene. There are many different approaches for solving object detection problem in 

point clouds, but most of them require high computational resources. In this work, many variations of the random 

sample consensus (RANSAC) method are analyzed for objects defined by a mathematical model of an analytical 

form. Statistical characteristics of data analysis were used to compare the methods. The results demonstrate the most 

energy efficient flat surface detection method that processes 60 RGB-D camera frames per second. 
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1. Introduction 

The detection problem and primary analysis of environmental objects are relevant for the mobile robots 

automated control systems, since the result of solving this problem is the basis for the robot localization and 

navigation. Such systems should be the most resource-efficient and at the same time provide effective control. The 

map determination surrounding robot and object analysis can be ensured by LIDAR. Optical systems which are based 

on the phenomena of light reflection usually demonstrate high accuracy in the representing of environment 3D map 

[1], [2], but have many erroneous indicators due to uneven scattering of light in the environment [3]. Therefore, for 

the synthesis of a high-precision control system, it is necessary to use an optimal algorithm for detecting objects from 

a 3D sparse map of the environment.  

AI-based methods, primarily neural networks, cannot be used for this task [4], [5], as the inference time is much 

longer than the time it takes to get new data from the sensors, which means that it is impossible to analyze these data 

using the neural network in real time (more than 30 frames per second). This problem can be also solved in the other 

way, one of them is Random Sample Consensus (RANSAC) method. RANSAC algorithm has numerous 

modifications which can adapt it to the specific tasks solving as well as significantly improves its properties: 

algorithm complexity, speed, accuracy, robustness, etc. Thus, the aim of paper is to analyze the existing RANSAC 

family methods, among which: Basic RANSAC implementation (BASE); R-RANSAC with Sequential Probability 

Ratio Test (SPRT); R-RANSAC with Tdd test (TDD); Maximum Likelihood SAC (MLE); Progressive SAC (PRO); 

RANSAC with L-estimator (LSE); Genetic Algorithm SAC (GA), for plane detection and to choose the most optimal 

one that can work in real time. 
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2. Related work 

Analysis of objects on a sparse 3D map is performed using the body geometric and optical characteristics. The 

logical representation of the body of a certain set of points    that need to be separated from the general set of points 

  can be presented as a set of certain three-dimensional primitives  , and written as a system of equations, where 

each equation    describe a geometric primitive (line, plane, parallelepiped, sphere, etc.). Optical characteristics (color 

and intensity) can be written as a set of constraints   to the system   in the form of inequalities. Thus, a mathematical 

model for objects that need to be detected on a certain set of points is    given as a system of equations with 

constraints. 

The search process by the RANSAC algorithm consists of two steps: generating a statistical hypothesis with a 

given confidence probability; testing the hypothesis on the required mathematical model [6]. These steps are 

performed iteratively until the desired result accuracy or other algorithm stop criterion is reached. 

Variations of the original RANSAC method, as noted above, can improve its properties for different types of 

problems and mathematical models [7]. Typically, RANSAC family algorithms are grouped by application: with 

specific features: accurate, fast, robust; and their performance is estimated by fitting the model to data and estimating 

planar homography [8]. The adaptations of the random sampling method considered in section III are investigated to 

select the optimal detection algorithm on board the UAV, therefore the most important criteria for evaluating the 

method are the speed of its work and the algorithmic complexity of calculating the algorithm. The paper does not 

consider the methods of additional optimization of RANSAC algorithms by parallelization or vectorization of 

calculations, since the automatic control system also consists of other software blocks, and spends the main resources 

on board the mobile robot. 

3. Applied methods overview 

In this work, variations of RANSAC algorithms for planes detection in a sparse map of points are analyzed. The 

mathematical model for hypothesis testing looks like this:  

{
 
 

 
 
                       
                               

 
          

   

 ,                                                      (1) 

where   is the detected plane number;    is the plane equation;    is the subset of points that define the  th plane; 

      is the confidence probability;           is maximum distance from a point to a plane at which it is defined as 

inlier.  

Stopping criterion for plane searching in point cloud: 

     
            ,                                                                    (2) 

where   is the number of previous iterations;    is the ratio of the number of subset points    to the total number of 

points in cloud  .  

Therefore, the basic (base) variation of random sample consensus method, considered by us, has an algorithm 

corresponding to the original paper [9]:  

Set:                                   

1 Sample set            from   randomly; 

2 Estimate model    parameters (           ) using sample data   ; 

3 Compute inliers    and count them             

4 Update inliers             and error               if        

5 Repeat 1–4 until not (2) and increase iteration variable        

Algorithm 1: The basic RANSAC algorithm for objects detection specified by model (1) 
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3.1. RANSAC variations based on partial evaluation 

Increasing the surface detection speed of the random sampling algorithm by reducing the test sample at stage 3 

(Algorithm 1) can significantly increase the efficiency of the algorithm, with a slight decrease in the accuracy of its 

operation. The most popular variations using partial model estimation of RANSAC algorithm are the Tdd and SPRT 

methods. The method of preliminary estimation of the model (Tdd) [10], uses a much smaller sample of data for testing 

and in the case of passing preliminary testing, the hypothesis generated in stage 2 (Algorithm 1) is tested on the full set 

of points. Another approach, R-RANSAC with SPRT, is based on successive evaluation of small subsamples of the 

point cloud, an iterative method until the probability ratio of the hypothesis is lower than a certain, given threshold 

[11]. The general algorithm using the property of partial estimation of the model can be presented as follows: 

Set test set:         ,                 

Set:                                   

1 Sample set            from   randomly; 

2 Estimate model    parameters (           ) using sample data   ; 

3 Compute inliers    from   and count them             

4 Update inliers             and error               if        

5 Compute inliers    from   if hypothesis is accepted 

6 Repeat 1–4 until not (2) and increase iteration variable        

Algorithm 2: Algorithm of RANSAC variations based on partial hypothesis evaluation 

3.2. Guided sampling RANSAC methods 

The RANSAC algorithm can be improved by guided sampling for hypothesis generation/testing. Such methods 

are aimed at increasing the convergence speed of the RANSAC algorithm. The main idea of increasing the efficiency, 

introducing the cost function and a priori probabilities for the global point cloud, and selecting the data to generate the 

hypothesis    non-randomly, in step 1 (Algorithm 1). However, these modifications of the method make it slow due to 

the additional computational load of global search in point cloud M. The most well-known methods are based on 

guided data sampling: MLESAC [12] and PROSAC [13]. Both methods use a semi-random algorithm to generate a 

hypothesis, but the Progressive algorithm calculates a preliminary estimate of the coincidence of the planar 

homography and sorts points in cloud   for subsequent iterations. A guided sampling algorithm that modifies base 

RANSAC method: 

Set:                  – prob. of choosing   point  

Set:                                    

1 Sample set            from   based on     ; 

2 Estimate model    parameters (           ) using sample data   ; 

3 Compute inliers    and count them             

4 Update inliers             and error               if        

5 Update priors      if hypothesis is accepted 

6 Repeat 1–5 until not (2) and increase iteration variable        

Algorithm 3: Sampling strategy for the sample consensus algorithm 

3.3. Adaptations to improve accuracy and robustness 

The accuracy of RANSAC algorithm corresponds to the ratio of the number of matches    to the valid values of 

the model  . The robustness of the algorithm, on the contrary, is determined by the number of incorrectly 

determined matches. Methods that allow increasing the accuracy and robustness of the algorithm use the general idea 

of refining the model at each iteration of the algorithm. The genetic algorithm (GA) and Least Squares (LSE) 

adaptations are most often used, which have a rather strong impact on the computational complexity, but provide high 
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accuracy. The GA for the random sampling method has a relatively unique algorithm [14] because it manages the data 

set as a hypothesis-generating genome. In the case of a poorly generated hypothesis, the genome receives a penalty 

that reduces its chances for development. LSE adaptation performs model fitting based on mathematical optimization 

at each iteration of the method [15]. Algorithms can be written as follows: 

Set:                                   

1 Sample set           from   randomly,    ; 

2 Estimate model/models    parameters (           ) using sample data   ; 

3 Compute inliers          and count them                         

4 Choose the best model or optimize based on inliers                                     

5 Update inliers             and error               if        

6 Repeat 1-5 until not (2) and increase iteration variable        

Algorithm 4: A general algorithm for increasing the accuracy of the RANSAC method 

4. Evaluation 

Evaluation of methods for detecting planes is performed on the basis of comparison of performance 

characteristics of algorithms and visual estimation of planar homography of the result. For each data set, 100 

algorithm tests were performed, and RMS values of the evaluation criteria (Fig. 1-2).  

Table 1. Comparison of variations of the RANSAC method for plane detection by the number of iterations. 

Failure rate Method Abbr. Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Data10 Mean 

10% 

BASE 7 7 7 7 7 7 7 7 7 7 7 

TDD 7 7 7 7 7 7 7 7 7 7 7 

SPRT 9 8 9 8 9 9 9 9 9 9 9 

GA 7 6 6 7 7 7 7 7 6 7 7 

PRO 7 7 7 7 6 7 7 7 7 7 7 

MLE 4 4 4 4 4 4 5 4 4 5 4 

LSE 6 6 6 6 6 6 6 6 6 6 6 

5% 

BASE 8 8 8 8 8 8 8 8 8 8 8 

TDD 8 8 8 7 8 8 8 8 8 8 8 

SPRT 10 11 10 11 11 10 11 12 11 11 11 

GA 8 8 8 8 7 7 7 8 7 8 8 

PRO 8 7 7 7 8 8 7 8 8 7 8 

MLE 5 5 5 5 5 5 5 6 5 5 5 

LSE 7 7 7 7 7 7 7 7 7 7 7 

Table 2. Comparison of variations of the RANSAC method for plane detection by search time [ms]. 

Failure rate Method Abbr. Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Data10 Mean 

10% 

BASE 53 49 46 48 45 45 46 49 47 48 48 

TDD 19 18 19 18 18 19 19 19 18 19 19 

SPRT 15 15 17 16 16 17 16 18 16 16 16 

GA 328 297 289 294 288 285 286 294 286 291 294 

PRO 118 101 106 98 95 97 99 99 106 100 102 

MLE 146 137 127 127 129 125 134 119 126 137 131 

LSE 67 75 76 76 76 78 74 75 73 73 74 

5% 

BASE 62 68 61 69 64 60 62 64 57 55 62 

TDD 22 23 22 22 23 22 23 24 23 22 23 

SPRT 18 20 18 19 18 18 19 20 19 18 19 

GA 359 390 365 419 382 354 348 363 330 330 364 

PRO 132 135 125 140 137 126 123 127 118 114 127 

MLE 173 194 160 197 177 173 162 184 151 157 173 

LSE 78 79 77 82 78 85 83 84 86 82 81 
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We use quantification for variations of RANSAC method, using self-assembled, Microsoft Kinetic sensor-based 

datasets. The datasets are presented as a reconstructed plane (1 [m
2
]) with many small objects placed on top of the 

plane. Thus, the total complexity of datasets is 200–300 thousand points that including one plane. The confidence 

probabilities of the search algorithms are chosen to be 90% and 95%. Increasing confidence probabilities, for selected 

datasets, does not lead to increase the accuracy, but reduces the performance of the methods.  

4.1. Algorithm validation 

For the validation of RANSAC methods, two evaluation criteria were used: the number of iterations; plane 

search time. Table 1 and Table 2 demonstrate the full effectiveness of the methods according to their average values 

of the two criteria, respectively. All calculations are performed on Jetson NANO in Python v3.11 environment with 

ARM Cortex-A57 MPCore @ 1.4 GHz. 

4.2. Qualitative comparison of methods 

The choice of the most optimal method is based on the possibility of using it to analyze three-dimensional point 

clouds in real time. Thus, MLESAC (by the number of iterations, see Table 1) and R-RANSAC with SPRT (by search 

time, see Table 2) can be considered the best for our problem. To check the stability of the algorithms, the root mean 

square deviations of the two criteria for different confidence intervals are also presented (Fig.1, Fig.2).  

a  b 

Fig.1. Iteration number standard deviation for 10% (a) and 5% (b) failure rate. 

 
a  b 

Fig.2. Computation time standard deviation for 10% (a) and 5% (b) failure rate. 

According to the corresponding graphs of criteria values, it can be concluded that the R-RANSAC with SPRT 

method has significantly smaller criteria deviations. This method shows more stable search time and number of 
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iterations, unlike MLESAC. And, for a more detailed analysis, histograms of the number of tests in the range of 

criteria were constructed, demonstrating their nature of the distribution of RMS values (Fig.3). 

 

 
a  b

c  d 

Fig.3. Standard deviation histograms of iterations (a, b) and computation time (c, d)  

for 10% (a, c) and 5% (b, d) failure rate based on RANSAC with SPRT for 100 tests of 10 datasets. 

5. Conclusion 

This paper analyzes, the methods of plane detection in point clouds using the random sample consensus algorithm. 

For the actual problem of autonomous navigation, modifications of the algorithm for planes detection in  point cloud are 

considered, and the properties of the implementation and operation of each method for a deep understanding of their 

effectiveness are determined. Statistical characteristics for differentiated data sets are given in Table 1 and Table 2 are 

presented taking into account the evaluation of the planar homography of the detection result so that the deviation of the 

separated objects points subsets for various modifications of the method are minimal. And for the selected modifications 

of the algorithm, an increased number of tests were carried out, given the random nature of the method. Therefore, the 

obtained metrics of the methods accurately reflect their properties of working on real data.  

Results show that the most efficient algorithm of the RANSAC family that can be used for real-time plane 

detection is a method based on partial estimation – RANSAC with a sequential probability ratio test. As can be seen 

from the obtained quantitative characteristics of the criteria, the method converges in 8..57 iterations for 5% failure 

rate, and in 6..10 iterations for 10% failure rate, respectively. The convergence time of the method has a uniquely 

normal distribution with average values of 15[ms] for 5% failure rate, and in 15[ms] for 10% failure rate, 

respectively. Thus, it can be calculated that real-time frame processing will run at 60[fps] with a drop to 30[fps] in 5% 

of all frames analyzed.   
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Енергоефективний RANSAC алгоритм  

для детектування площин в хмарі точок 

Анатолій Жученко, Олексій Кучкін, Артем Сазонов, Данило Згурський 

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», 

просп. Перемоги 37, м. Київ, 03056, Україна 

Анотація 

Автоматичні системи контролю мобільними роботам досягають більшої ефективності за рахунок 

використання робастних алгоритмів навігації на основі оптичних датчиків, які формують тривимірну карту 

навколо об’єкту керування. Робота таких алгоритмів, зазвичай, призначена для: детектування ключових 

об’єктів навколишнього середовища; пошуку попередньо визначених об’єктів для релокації власного 

положення робота. Для вирішення проблеми детектування об’єктів з хмар точок існує багато різних підходів, 

але більшість з них мають високу обчислювальну складність. В цій роботі досліджено різні варіації методу 

консенсусу випадкової вибірки (RANSAC) для детектування об’єктів заданих математичною моделлю 

аналітичного виду. Для порівняння методів використані статистичні характеристики аналізу даних. 

Результати демонструють найбільш енергоефективний метод виявлення площин, який обробляє 60 кадрів 

RGB-D камери за секунду. 

Ключові слова: консенсус випадкової вибірки; детектування площин; БПЛА. 
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