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1. Introduction

A whole series of works is dedicated to problems and approaches to the agreed description of kinetic and
hydrodynamic processes in dense gases, liquids, and plasma [1–17]. In [7], it is justified the necessity
and the possibility of a single description of kinetic and hydrodynamic processes in gases for values of
the Knudsen number of the order of unity. Based on this, a generalized kinetic equation was proposed
for the description of non-equilibrium processes under arbitrary conditions Knudsen numbers. The
collision integral of such an equation, in particular, includes the diffusion coefficient in the velocity
space.

Based on ideas [3, 5], by the method of non-equilibrium statistical operator, the generalized trans-
port equations for hydrodynamic variables (density of the number of particles, momentum, and total
energies) consistent with the kinetic equation for non-equilibrium of the single-particle distribution
function were obtained in [8, 11]. This approach studied time correlation functions for fluids that
describe the dynamics systems in the states close to equilibrium. The results of this approach are
equivalent research of works [1, 2] based on the Mori projective operators method. An important and
common problem with data research is the calculation of generalized transfer kernels (functions mem-
ory), which are defined as integrals of the collision between particles for different models [1, 18–29],
and generalized viscosity transfer coefficients, thermal conductivity [1, 8, 11].

A special problem is the area of short-range interactions since at short distances in dynamics of
particles not only spatio-temporal characteristics change but also pulses when particles collide in the
region of the physical volume Vph at times τph, respectively Klimontovych [6,7]. In the hydrodynamic
region, that is, for small values of frequency and wave vector, the results correspond to molecular
equation hydrodynamics in the case of simple fluids [2,30]. In a recent work [31], there is discussed the
important issue of the hydrodynamic boundary based on the classical equations of hydrodynamics in
comparison with the molecular dynamics method for four models of liquid systems. Such a description
corresponds to linear approximations by kinetic and hydrodynamic fluctuations, which leads, in par-

272 c© 2023 Lviv Polytechnic National University



Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids . . . 273

ticular, to equilibrium temporal correlation functions of the densities of the number of particles, their
momentum and energy, and memory functions that determine the generalized transfer coefficients of
viscosity, thermal conductivity, diffusion, friction, and they are the equilibrium temporal correlation
functions of the corresponding flows. In the case of non-equilibrium states far from equilibrium, the de-
scription of kinetic and hydrodynamic fluctuations becomes much more complicated. Here, in temporal
correlation functions and memory functions, averaging is performed not according to the equilibrium
distribution of particles but according to the time-dependent distribution of particles, which can be
found from the principle of the maximum of the corresponding information entropy.

A consistent description of kinetic and hydrodynamic processes is necessary for dust plasma [12,
32–39]. The non-equilibrium state of such a multicomponent system of charges and neutral particles is
connected with the dynamics of each of the components and the interaction between them. Different
components can be in the kinetic or hydrodynamic, stationary, or non-stationary states; and the
condition of local electroneutrality may be violated due to the charging and recharging of powders.
The combination of kinetic and hydrodynamic approaches is also relevant to research of non-equilibrium
properties of systems of active particles [40–46]. A vivid example of such systems is molecular, biological
fluids, and suspensions, in which the movement and behavior of various components can change due
to the transformation of accumulated energy or under the influence of external sources (pressure,
light, temperature gradients). At the same time, various components, depending on their properties,
can be at the kinetic or hydrodynamic stages of non-equilibrium processes. As a rule, the solvent is
considered from the point of view of hydrodynamic processes, when the visco-thermal properties can
change significantly due to the kinetic behavior of individual active components of the system.

The various non-equilibrium statistical theory methods for describing nonlinear kinetic and hydro-
dynamic fluctuations we discussed in the works [47–49].

In the second section, we will obtain the non-equilibrium statistical operator of the non-equilibrium
state of the far-from-equilibrium system of particles, when the parameters of a reduced description are
the non-equilibrium one-particle distribution function of particles, non-equilibrium average value of
the potential energy density of the interaction of particles. The method of non-equilibrium statistical
operator [8,10,50] is applied. At the same time, the energy of interaction between particles is presented
as the sum of short-range and long-range interactions between particles. To describe collective dynamic
processes in the system as collective variables, we introduce the Fourier components of the density,
the number of particles that are related to the Fourier components of the particle momentum density
by the continuity equation, and also through them, the long-range part of the potential energy of the
interaction of particles is expressed. At the same time, the density of the kinetic energy and the short-
lived part of the potential of the interaction of particles are described in the coordinate–momentum
space. The issue of entropy and the partition function of the non-equilibrium state of the system, as
well as non-equilibrium thermodynamic relations, are discussed.

In the third section, we derive the generalized transport equations for the non-equilibrium one-
particle distribution function of particles and non-equilibrium average value of the potential energy
density of particle interaction. The structure of generalized transfer kernel is revealed in detail, with
the contributions of short-range and long-range interactions between particles being highlighted. Their
connection with the generalized diffusion transfer coefficients, friction in the space of momentum and
coordinates, and the potential part of the thermal conductivity coefficient has been established. As a
result of the exclusion using self-consistency conditions of the Lagrangian parameter a(x; t) conjugated
to the non-equilibrium one-particle distribution function f1(x; t) made it possible to write the kinetic
equation for f1(x; t) in the closed form with the contribution of the generalized mean field and the
generalized integral of collisions of the Fokker–Planck type with generalized coefficients of diffusion,
friction in the momentum–coordinate space. In addition, using the self-consistency condition and inte-
gral transformations, the Lagrange parameter β(r; t) is the time-dependent local inverse temperature,
it is also determined. As a result, a closed system of non-Markov transport equations for the non-
equilibrium single-particle distribution function of particles and of the non-equilibrium average value of
the potential energy density of the interaction of the system’s particles far from the state of equilibrium
is obtained.
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2. Non-equilibrium distribution function

For a consistent description of kinetic and hydrodynamic fluctuations in classical dense gases and
liquids, it is necessary to select the basic parameters of a reduced description single-particle and collec-
tive processes. As such parameters, we choose [1–3,8, 11] the nonequilibrium one-particle distribution
function f1(x; t) = 〈n̂1(x)〉

t and the non-equilibrium mean value, the energy of interaction of particles
〈ε̂int(r)〉

t, in which the microscopic phase density of the number of particles n̂1(x) and microscopic
potential energy density interactions of the particles of the system ε̂int(r) are given by the expressions:

n̂1(x) =
N
∑

j=1

δ(x − xj) =
N
∑

j=1

δ(r− rj)δ(p − pj),

ε̂int(r) =
1

2

N
∑

j 6=l=1

Φ(|rlj|)δ(r − rj),

where xj = (rj ,pj) are the coordinates and momenta of the particles in the phase space, N is the total
number of system particles in the volume V . In the pair potential of interaction between particles
Φ(|rlj |) = Φ(|rl − rj |), selected the short-term Φsh(|rlj |) and the long-range Φlong(|rlj |) part:

Φ(|rlj |) = Φsh(|rlj |) + Φlong(|rlj |). (1)

Accordingly, the non-equilibrium value of the potential energy of the interacting particles will have the
form:

〈ε̂int(r)〉
t = 〈ε̂shint(r)〉

t +
1

2V 2

∑

q,k

ν(k) eiqr
(

〈ρ̂q+kρ̂−k〉
t − 〈ρ̂q〉

t
)

,

where ν(k) is the Fourier component of the long-range part of the particle interaction potential, q and
k are wave vectors.

ρ̂k =

N
∑

j=1

e−ikrj

is the Fourier component of the density of the number of particles, 〈ε̂shint(r)〉
t is the non-equilibrium

average value of the energy density of short-range interactions between particles. Non-equilibrium par-
ticle scattering function 〈ρ̂q+kρ̂−k〉

t = F (q,k; t) is related to the non-equilibrium dynamic structural
factor S(q,k;ω), which is measured in neutron scattering processes. The non-equilibrium mean val-
ues 〈n̂1(x)〉

t and 〈ε̂int(r)〉
t are calculated with the non-equilibrium function distribution of N -particles

̺(xN ; t),
(

〈(. . .)〉t =
∫

dΓN (. . .)̺(xN ; t)
)

, which satisfies the Liouville equation. Following the idea of
the basic parameters of a reduced description of the non-equilibrium state of the system, this function
is functional:

̺(xN ; t) = ̺
(

. . . , f1(x; t), 〈ε̂int(r)〉
t, . . .

)

.

At the same time, the moments of the non-equilibrium one-particle function, which form the basis of
the hydrodynamic description [11] for both weakly and strongly non-equilibrium processes, have the
form:

n(r; t) =

∫

dp f1(p, r; t),

p(r; t) =

∫

dp f1(p, r; t)p,

〈ε̂kin(r)〉
t =

∫

dp f1(p, r; t)
p2

2m
,

there are non-equilibrium mean values of particle number densities n(r; t), momentum p(r; t), kinetic
energy 〈ε̂kin(r)〉

t together with 〈ε̂int(r)〉
t.

To find the non-equilibrium distribution function ̺(xN ; t), we will use Zubarev’s method [10, 50],
in which the general solution the Liouville equation, taking into account the design procedure, can be

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 272–287 (2023)



Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids . . . 275

presented in the form:

̺(xN ; t) = ̺rel(x
N ; t)−

∫ t

−∞

dt′ eε(t
′−t)Trel(t, t

′)
(

1− Prel(t
′)
)

i LN̺rel(x
N ; t′), (2)

where ε → +0 after the limiting thermodynamic transition, which selects the lagging solutions of the
Liouville equation with the operator iLN . Trel(t, t

′) = exp+
(

−
∫ t
t′ dt

′
(

1−Prel(t
′)
)

iLN

)

is a generalized
evolution operator dependent on time taking into account the Kawasaki–Gunton design Prel(t). The
structure of Prel(t) depends on the relevant distribution function ̺rel(x

N ; t), which in the Zubarev
method is from the extremum of the information entropy (in particular, the Gibbs entropy) at fixed
values of the basic parameters of a reduced description, in our case f1(x; t), 〈ε̂int(r)〉

t and preserved
rationing conditions:

∫

dΓN ̺rel(x
N ; t) = 1, where dΓN =

(dx)N

N !
=

(dx1 . . . dxN )

N !
, dx = dr dp.

Thus, the relevant distribution function can be written as [3, 5, 8, 11]:

̺rel(x
N ; t) = exp

[

− Φ(t)−

∫

drβ(r; t)ε̂int(r)−

∫

dx a(x; t)n̂1(x)
]

, (3)

where Φ(t) is the Massier–Planck functional, which is determined from the normalization condition of
the relevant distribution function

Φ(t) = lnZrel(t),

where

Zrel(t) =

∫

dΓN exp

[

−

∫

drβ(r; t) ε̂int(r)−

∫

dx a(x; t) n̂1(x)

]

is the partition function of the relevant distribution function. The Lagrange multipliers a(x; t) and
β(r; t) are from self-consistency conditions:

f1(x; t) = 〈n̂1(x)〉
t = 〈n̂1(x)〉

t
rel, 〈ε̂int(r)〉

t = 〈ε̂int(r)〉
t
rel, (4)

where 〈. . .〉trel =
∫

dΓN . . . ̺rel(x
N ; t).

The relevant distribution function (3) corresponds to the Gibbs entropy

S(t) = −
〈

ln ̺rel(x
N ; t)

〉t

rel
= Φ(t) +

∫

drβ(r; t)〈ε̂int(r)〉
t
rel +

∫

dx a(x; t)〈n̂1(x)〉
t
rel,

which, in combination with self-consistency conditions (4), can be considered as the entropy of the
non-equilibrium state:

S(t) = Φ(t) +

∫

drβ(r; t)〈ε̂int(r)〉
t +

∫

dx a(x; t)〈n̂1(x)〉
t,

and for which the Boltzmann theorem must hold:
dS(t)

dt
> 0.

As we can see, the change in entropy over time is described both by the Lagrange parameters β(r; t),
a(x; t) and by the parameters of the shortening description 〈n̂1(x)〉

t, 〈ε̂int(r)〉
t, and also depends on the

non-equilibrium partition function Φ(t) = lnZrel(t) taking into account the self-consistency conditions
for the Lagrangian parameters. From this point of view, in the general formulation of the problem of
statistical description, an important issue is the calculation of the partition function Zrel(t) both for
the calculation of non-equilibrium entropy and Lagrange multipliers. In work [51], one of the methods
of calculating Zrel(t) using the method of collective variables [47–49] was proposed. At the same time,
contributions from short-range and long-range interactions were separated between particles. This led
to the fact that short-range interactions (for example, the hard-sphere model) were described in the
coordinate-momentum space, and long-range ones in the space of collective variables of the particle
number density. Moreover, the short-acting component was considered the basic one, to which the
chain of BBGKI equations for non-equilibrium distribution functions corresponds, in particular, in the
case of the hard-sphere model [52].
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For clarification of the physical content of the parameters β(r; t), a(x; t) relevant we write the
distribution function (3) in another form [8,11]:

ρrel(x
N ; t) = exp

(

−Φ(t)−

∫

drβ(r; t)ε̂′(r)−

∫

dx a′(x; t)n̂1(x)

)

, (5)

where ε̂′(r) is the total energy density in the frame of reference, which moves together with the element
of the system with mass velocity v(r; t):

ε̂′(r) = ε̂(r)− p̂(r)v(r; t) +
1

2
v2(r; t)n̂(r).

Parameters β(r; t) and a′(x; t) in (5) are determined from the self-consistency conditions — equalities
of quasi-means 〈n̂1(x)〉

t
rel, 〈ε̂

′(r)〉trel is true by the mean 〈n̂1(x)〉
t, 〈ε̂′(r)〉t:

〈n̂1(x)〉
t = 〈n̂1(x)〉

t
rel, (6)

〈ε̂′(r)〉t = 〈ε̂′(r)〉trel, (7)

where the parameter a′(x; t) is related to the a(x; t) relation:

a′(x; t) = a(x; t) − β(r; t)

(

p2

2m
− p · v(r; t) +

m

2
v2(r; t)

)

= a(x; t) − β(r; t)
m

2

(

p−mv(r; t)
)2
.

If the self-consistency conditions (6) and (7) are performed by taking the variational derivatives of the
functional Massier–Planck

Φ(t) = ln

∫

dΓN exp

(

−

∫

drβ(r; t)ε̂′(r)−

∫

dx a′(x; t)n̂1(x)

)

,

according to the parameters β(r; t) and a′(x; t), we obtain non-equilibrium thermodynamic relations
taking into account the conditions of self-consistency:

δΦ(t)

δβ(r; t)
= −〈ε̂′(r)〉trel = −〈ε̂′(r)〉t, (8)

δΦ(t)

δa′(x; t)
= −〈n̂1(x)〉

t
rel = −〈n̂1(x)〉

t, (9)

this means that β(r; t) is conjugate to the average energy accompanying coordinate system, and a′(x; t)
is conjugate f1(x; t) is a non-equilibrium one-particle particle distribution function. According to (8)
and (9), the calculation of the partition function of the relevant distribution makes it possible to
calculate the exact parameters of a reduced description f1(x; t) and 〈ε̂′(r)〉t.

Next, we write the entropy of the system, taking into account (5) in the form:

S(t) = Φ(t) +

∫

drβ(r; t)〈ε̂′(r)〉t +

∫

dx a′(x; t)〈n̂1(x)〉
t. (10)

Hence, varying the entropy (10) by the mean values 〈ε̂′(r)〉t and 〈n̂1(x)〉
t at fixed corresponding values

medium, we will find non-equilibrium thermodynamic relations:

δS(t)

δ〈ε̂′(r)〉t
= β(r; t),

δS(t)

δ〈n̂1(x)〉t
= a′(x; t),

from which we get that the function β(r; t) is an analogue of the inverse local temperature. The
Lagrangian parameter a(x; t) can be determined from the self-consistency condition (4) by defining it
by the relation [3, 4, 8, 11]

exp
(

− a(x; t)
)

=
f1(x, t)

u(r; t)
, (11)

where the function u(r; t) satisfies the equation:

u(r; t) =

∫

drN

(N − 1)!
exp

(

−Φ(t)− UN (r, rN−1; t)
)

N
∏

l=2

n(rl, t)

u(rl; t)
,
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in which

UN (rN ; t) = UN (r1, . . . , rN ; t) =
1

2

N
∑

l,j=1

Φ(|rlj |)β(rj ; t).

Next, using (11) and the relevant distribution in the form:

ρrel(x
N ; t) = exp

(

−Φ(t)− UN (rN ; t)
)

N
∏

l=1

exp(−a(xl; t)),

for ρrel(x
N ; t) we get

ρrel(x
N ; t) = exp

(

−Φ(t)− UN (rN ; t)
)

N
∏

l=1

f1(xl, t)

u(rl; t)
. (12)

If u(r; t) is found, then from (12), one can obtain an explicit expression for of the relevant distri-
bution function through the non-equilibrium one-particle function distribution. In (12) the function
UN (rN ; t) is explicit, and u(rl; t) is implicit depend on hydrodynamic parameters n(r, t), β(r; t) (or
〈ε̂′(r)〉t). Therefore, the Lagrangian parameter can be defined as

a(x; t) = − ln
f1(x, t)

u(r; t)
. (13)

The expression for non-equilibrium entropy (12), taking into account (13), can be given as

S(t) = Φ(t) +

∫

drβ(r; t)〈ε̂int(r)〉
t −

∫

dx f1(x; t) ln
f1(x; t)

u(r; t)
. (14)

Moreover, if we neglect contributions of potential energy ε̂int(r), which is true for rare gases, then
expression (14) for the non-equilibrium entropy of the agreed description of kinetics and hydrodynamics
is transformed into the Boltzmann entropy (u = e).

We will use the corresponding self-consistency condition to determine the Lagrangian parameter
β(r; t). We will perform the following actions:

∂

∂t
〈ε̂int(r)〉

t =
∂

∂t
〈ε̂int(r)〉

t
rel =

∂

∂t
β(r; t)

∂

∂β(r; t)
〈ε̂int(r)〉

t
rel = Kεε(r, r; t)

∂

∂t
β(r; t),

where

Kεε(r, r; t) = 〈ε̂int(r)ε̂int(r)〉
t
rel −

(

〈ε̂int(r)〉
t
rel

)2
=

∂2

∂β(r; t)2
lnZrel(t)

is a dispersion of the random value of the interaction energy density between the particles of the system.
From the obtained equation, we determine ∂

∂tβ(r; t), after which we integrate the obtained expression
over time within (−∞÷ t). As a result, we get the following:

β(r; t) =

∫ t

−∞

K−1
εε (r, r; t′)

∂

∂t′
〈ε̂int(r)〉

t′dt′ + β(r;−∞), (15)

where β(r;−∞) is the local inverse temperature at t = −∞ (past). Calculation of the variance
Kεε(r, r; t) requires the calculation of the partition function Zrel(t) [51].

It is important to note that in previous works [8, 11, 53–55], there were no problems calculating
Φ(t) = lnZrel(t) in non-equilibrium entropy since we studied in detail weak non-equilibrium transport
processes, in particular the spectrum of collective excitations, time correlation functions for simple liq-
uid and dense plasma. In the case of weakly non-equilibrium processes, only the partition function of
the equilibrium distribution contributes to the non-equilibrium entropy, and the evolution in time is de-
scribed by non-equilibrium fluctuations of the parameters of a reduced description 〈δn̂(x)〉t, 〈δε̂int(r)〉

t

relative to their equilibrium average values 〈n̂(x)〉0, 〈ε̂int(r)〉0, where δn̂(x) = n̂(x) − 〈n̂(x)〉0 =

f0(p)〈n̂(r)〉0, δε̂int(r) = ε̂int(r)−〈ε̂int(r)〉0, f0(p) = (β/2πm)3/2 exp{−βp2/2m} is the Maxwell distribu-
tion, 〈. . .〉0 =

∫

dΓN . . . ρ0(x
N ) and ρ0(x

N ) = Z−1e−β(H−µN) is the grand canonical Gibbs distribution
of system particles, β = 1/kBT , T is the equilibrium temperature value, Z =

∫

dΓNe−β(H−µN) is grand
partition function, µ is the equilibrium value of the chemical potential (see Appendix 1).
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Therefore, for a consistent description of kinetic and hydrodynamic processes in dense gases and
liquids, an important issue is the calculation of the partition function Zrel(t) (taking into account the
self-consistency conditions for the Lagrangian parameters β(r; t), a(x; t)), which is included in the
expression for the non-equilibrium entropy of the system, and also makes it possible to calculate the
parameters of a reduced description 〈ε̂′(r)〉t and 〈n̂1(x)〉

t according to nonequilibrium thermodynamic
relations (8) and (9).

To obtain a clear form of the non-equilibrium distribution function according to (2), it is necessary
to perform the action of Liouville and Kawasaki–Gunton operators on the function ̺rel(x

N ; t). The
Kawasaki–Gunton projection operator according to (3) has the following structure:

Pq(t)̺
′ = ̺rel(x

N ; t)

∫

dΓN̺′ +

∫

dx
∂̺rel(x

N ; t)

∂〈n̂1(x)〉t

[
∫

dΓN n̂1(x)̺
′ − 〈n̂1(x)〉

t

∫

dΓN ̺′
]

+

∫

dr
∂̺rel(x

N ; t)

∂〈ε̂int(r)〉t

[
∫

dΓN ε̂int(r)̺
′ − 〈ε̂int(r)〉

t

∫

dΓN ̺′
]

.

First, we will reveal the action of the Liouville operator on the relevant distribution function (3).
As a result, we get the following:

iLN̺rel(x
N ; t) = −

∫

dx a(x; t) ˙̂n1(x)̺rel(x
N ; t)−

∫

drβ(r; t) ˙̂εint(r)̺rel(x
N ; t),

where ˙̂n1(x) = iLN n̂1(x), ˙̂εint(r) = iLN ε̂int(r). By substituting this expression into (2), we find the
non-equilibrium distribution function in the form:

̺(xN ; t) = ̺rel(x
N ; t) +

∫

dr

∫ t

−∞

dt′ eε(t
′−t)Trel(t, t

′)(1 − Prel(t
′)) ˙̂εint(r)̺rel(x

N ; t)β(r; t′)

+

∫

dx

∫ t

−∞

dt′ eε(t
′−t)Trel(t, t

′)(1− Prel(t
′)) ˙̂n1(x)̺rel(x

N ; t′)a(x; t′). (16)

Let us write the expression for (16) in a more explicit form, revealing the action of operators (1−Prel(t
′))

and iLN on ρrel(x
N ; t′):

(1− Prel(t))iLNρrel(x
N ; t) = −

∫

drβ(r; t)((1 − Prel(t))iLN ε̂int(r))ρrel(x
N ; t)

−

∫

dx b(x; t)((1 − Prel(t))iLN n̂1(x))ρrel(x
N ; t),

or

(1− Prel(t))iLNρrel(x
N ; t) = −

(
∫

drβ(r; t)(1 − P (t))iLN ε̂int(r)

+

∫

dx b(x; t)(1 − P (t))iLN n̂1(x)

)

ρrel(x
N ; t), (17)

where P (t) is the generalized Mori projection operator acting on dynamic variables A(r) and has the
following structure:

P (t)A(r) = 〈A(r)〉trel +

∫

dr′
δ〈A(r)〉trel
δ〈ε̂int(r′)〉t

(ε̂int(r
′)− 〈ε̂int(r

′)〉t) +

∫

dx
δ〈A(r)〉trel
δ〈n̂1(x)〉t

(n̂1(x)− 〈n̂1(x)〉
t).

The projection operator P (t) has the following properties:

P (t)n̂1(x) = n̂1(x), P (t)ε̂int(r) = ε̂int(r),

P (t)P (t′) = P (t), P (t)(1 − P (t)) = 0.

Now, taking into account (17), we write the expression for ρ(xN ; t) (16) as

ρ(xN ; t) = ρrel(x
N ; t) +

∫

dr

∫ t

−∞

eε(t
′−t)β(r; t′)T (t, t′)I intε (r; t′)ρrel(x

N ; t′)dt′

+

∫

dx

∫ t

−∞

eε(t
′−t)a(x; t′)T (t, t′)In(x; t

′)ρrel(x
N ; t′)dt′, (18)

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 272–287 (2023)



Unification of kinetic and hydrodynamic approaches in the theory of dense gases and liquids . . . 279

where

I intε (r; t′) = (1− P (t′))iLN ε̂int(r), In(x; t
′) = (1− P (t′))iLN n̂1(x)

are generalized flows that describe dissipative processes in the system. To analyze the structure of
generalized flows, it is necessary to calculate iLN ε̂int(r) and iLN n̂1(x) taking into account that the
complete the particle interaction potential is divided into short-range and long-range contributions (1).
So, we get

iLN ε̂int(r) = iLN ε̂shint(r) + iLN ε̂longint (r)

= −
∂

∂r
· ĵshint(r) +

1

2V 2

∑

q,k

ν(k) eiqr
(

− i(q+ k) · p̂q+kρ̂−k + ik · ρ̂q+kp̂−k + iq · p̂q

)

,

where

p̂q =

N
∑

j=1

pje
−iq·rj

is the Fourier component of the microscopic momentum density of the system particles,

ĵshint(r) =
1

2

N
∑

j,l=1

pj

m
Φsh(|rlj |)δ(r − rj) +

1

2

N
∑

j,l=1

pj + pl

m
· Fsh

jl (|rjl|)rjlδ(r − rj)

is the vector of the microscopic energy flow density of short-range particle interactions,

Fsh
jl (rjl) = −

∂

∂|rjl|
Φsh(|rjl|)

1

|rjl|
rjl

is a short-acting microscopic force between the j-th and l-th particles of the system. It can be seen
from this that the generalized flow Iintε (r; t′) contains short-range and long-range contributions of the
potential part of the particle interaction energy flow density:

I intε (r; t′) = Ishε (r; t′) + I longε (r; t′),

where

Ishε (r; t′) = −
∂

∂r
(1− P (t′))̂jshint(r),

I longε (r; t′) = (1− P (t′))
1

2V 2

∑

q,k

ν(k) eiqr
(

− i(q+ k) · p̂q+kρ̂−k + ik · ρ̂q+kp̂−k + iq · p̂q

)

.

Moreover, the long-range contribution is related to the product of modes p̂q+kρ̂−k, ρ̂q+kp̂−k, which
will obviously be reflected in the structure of generalized transfer kernels. Similar calculations for

iLN n̂1(x) = −
1

m

∂

∂r
j(p, r) +

∂

∂p
F(p, r),

where

j(p, r) =
N
∑

j=1

pjδ(r− rj)δ(p − pj)

is the microscopic particle momentum density in the space of coordinates and momentum,

F(p, r) =

N
∑

j=1

Fjδ(r− rj)δ(p− pj)

is the microscopic density of forces acting on particles in the space of coordinates and momentum,

Fj(rj) =

N
∑

l=1

∂

∂rj
Φ(|rjl|) =

N
∑

l=1

∂

∂rj
Φsh(|rjl|) +

N
∑

l=1

∂

∂rj
Φlong(|rjl|)

indicate that the generalized flux In(x; t
′) is related to the momentum and force densities in the space

of coordinates and momentum:

In(x; t
′) = −

∂

∂r
Ij(x; t) +

∂

∂p
IF (x; t), (19)
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where

Ij(x; t
′) = (1− P (t′)) j(p, r);

there is a difference between the microscopic momentum density in the space coordinates and momen-
tum and its projection onto the space of selected parameters of a reduced description n̂1(x), ε̂int(r),

IF (x; t
′) = (1− P (t′))F(p, r),

is a difference between the microscopic force density in the space of momentum and coordinates and
its projection onto the space of selected parameters of a reduced description n̂1(x), ε̂int(r). The
generalized flux framework (19) will generate the transport kernels (generalized transport coefficients)
in the corresponding transport equations, which will be considered in the next section.

3. Generalized transport equations of the agreed description of kinetic and hydrody-
namic processes

Using the solution of the Liouville equation (18), we obtain system of coupled equations for non-
equilibrium one-particle distribution functions 〈n̂1(x)〉

t and of the average interaction energy density
〈ε̂int(r)〉

t. For this, it is necessary to calculate the following:

∂

∂t
〈n̂1(x)〉

t =
∂

∂t
f1(x; t) = 〈iLN n̂1(x)〉

t, (20)

∂

∂t
〈ε̂int(r)〉

t =
∂

∂t
εint(r; t) = 〈iLN ε̂int(r)〉

t. (21)

Using the identities:

〈(1− P (t))iLN n̂1(x)〉
t = 〈iLN n̂1(x)〉

t − 〈iLN n̂1(x)〉
t
rel,

〈(1− P (t))iLN ε̂int(r)〉
t = 〈iLN ε̂int(r)〉

t − 〈iLN ε̂int(r)〉
t
rel,

in which, on the left-hand sides, we will perform the averaging on the non-equilibrium basis by the
distribution function (18) for the system of equations (20), (21). We find

[

∂

∂t
+

p

m
·
∂

∂r

]

−

∫

dx′
∂

∂r
Φ(|r− r′|) ·

[

∂

∂p
−

∂

∂p′

]

g2(r, r
′; t)f1(x; t)f1(x

′; t)

=

∫

dr′
∫ t

−∞

dt′ eε(t
′−t)φint

nε (x, r
′; t, t′)β(r′; t′) +

∫

dx′
∫ t

−∞

dt′ eε(t
′−t)φnn(x, x

′; t, t′)a(x′; t′), (22)

∂

∂t
〈ε̂int(r)〉

t = −
1

2

∂

∂r

(

p(r; t)

m
W sh(r; t) +

1

2

p(r; t)

m
Fsh(r; t)

+
1

2
n(r; t)

∫

dr′Fsh(|r− r′|)(r − r′)g2(r, r
′; t)

p(r′; t)

m

)

+
1

2V 2

∑

q,k

ν(k) eiqr
(

−i(q+ k) · 〈p̂q+kρ̂−k〉
t
rel + ik · 〈ρ̂q+kp̂−k〉

t
rel + iq · 〈p̂q〉

t
rel

)

+

∫

dr′
∫ t

−∞

dt′ eε(t
′−t)φint

εε (r, r
′; t, t′)β(r′; t′) +

∫

dx′
∫ t

−∞

dt′ eε(t
′−t)φint

εn (r, x
′; t, t′)a(x′; t′), (23)

where

g2(r, r
′|n, β; t) =

1

n(r; t)n(r′; t)

∫

dΓN (x) n̂(r) n̂(r′) ρrel(x
N ; t) (24)

is a time-dependent even coordinate distribution function. It takes into account both short-range
and long-range interactions between the particles of the system and is calculated through the relevant
distribution function, or through the partition function of the relevant distribution:

g2(r, r
′|n, β; t) =

1

n(r, t), n(r′, t)

(
∫

dp

∫

dp′ δ

δa(p, r, t)

δ

δa(p′, r′, t)
lnZrel(t)
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+

∫

dp
δ

δa(p, r, t)
lnZrel(t)

∫

dp′ δ

δa(p′, r′, t)
lnZrel(t)

)

According to these definitions, g2(r, r
′|n, β; t) is a function of non-equilibrium mean values of particle

number densities n(r; t) and the inverse temperature β(r; t). In (24) n̂(r′) =
∑N

j=1 δ(r − rj) is the
microscopic density of the number of particles. The equation (23) includes

W sh(r; t) =

∫

dr′ Φsh(|r− r′|) g2(r, r
′; t)n(r′; t)

is a non-equilibrium mean field of short-range interactions, and

Fsh(r; t) =

∫

dr′ Fsh(|r− r′|)(r− r′) g2(r, r
′; t)n(r′; t)

is a non-equilibrium average strength of short-range interactions between system particles. For their
calculation, an even coordinate distribution function is required (24), which takes into account both
short-range and long-range interactions between system particles. The generalized transport equa-
tions (22), (23) also contain generalized transport kernels

φαγ(t, t
′) = 〈Iα(t)Trel(t, t

′)Iγ(t
′)〉t

′

rel, α, γ = {n, ε},

that describe non-Markov processes and are non-equilibrium correlation functions. They are built on
generalized flows. In particular, the transfer kernel φnn(x, x

′; t, t′) can be expressed in the form

φnn(x, x
′; t, t′) = −

∂

∂r
·Djj(x, x

′; t, t′) ·
∂

∂r′
+

∂

∂r
·DjF (x, x

′; t, t′) ·
∂

∂p′

+
∂

∂p
·DFj(x, x

′; t, t′) ·
∂

∂r′
−

∂

∂p
·DFF (x, x

′; t, t′) ·
∂

∂p′
, (25)

where

Djj(x, x
′; t, t′) = 〈Ij(x; t)Trel(t, t

′)Ij(x
′; t′)〉t

′

rel

is the generalized diffusion coefficient in the space of coordinates and momentum,

DFF (x, x
′; t, t′) = 〈IF (x; t)Trel(t, t

′)IF (x
′; t′)〉t

′

rel

is the generalized coefficient of friction in the space of coordinates and momentum,

DjF (x, x
′; t, t′) = 〈Ij(x; t)Trel(t, t

′)IF (x
′; t′)〉t

′

rel

is a cross-generalized coefficient “momentum–force” in the space of coordinates and momentum. More-
over, it should be noted that the generalized diffusion coefficients Djj(r,p, r

′,p′; t, t′) and friction
DFF (r,p, r

′,p′; t, t′) describe the corresponding non-Markov processes in the space of momentums,
coordinates and time. The values of the p and p′ momentums of the particles in the non-equilibrium
state can differ greatly in magnitude. In particular, in the case of multicomponent systems, for ex-
ample, dust plasma, the components of which differ significantly in terms of energy and, therefore, in
the values of momentums. The transfer kernel φint

εε (r, r
′; t, t′), built on generalized interaction energy

flows, can be expressed as

φint
εε (r, r

′; t, t′) = 〈Ishε (r; t)Trel(t, t
′)Ishε (r′; t′)〉t

′

rel + 〈Ishε (r; t)Trel(t, t
′)I longε (r′; t′)〉t

′

rel

+ 〈I longε (r; t)Trel(t, t
′)Ishε (r′; t′)〉t

′

rel + 〈I longε (r; t)Trel(t, t
′)I longε (r′; t′)〉t

′

rel

with selected contributions from short-range and long-range interactions of system particles (see Ap-
pendix 2).

Now, taking into account the defined Lagrange parameters (13), (15) and the expression for the
transfer kernel (25) for the non-equilibrium one-particle distribution function, we obtain a kinetic
equation in the form

[

∂

∂t
+

p

m
·
∂

∂r

]

f1(x; t)−

∫

dx′
∂

∂r
Φ(|r− r′|) ·

[

∂

∂p
−

∂

∂p′

]

g2(r, r
′; t)f1(x; t)f1(x

′; t)

=

∫

dr′
∫ t

−∞

eε(t
′−t)φint

nε (x, r
′; t, t′)

(
∫ t′

−∞

K−1
εε (r′, r′; t′′)

∂

∂t′′
〈ε̂int(r

′)〉t
′′

+ β(r′,−∞)

)

dt′′ dt′
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+

∫

dx′
∫ t

−∞

dt′ eε(t
′−t)

(

∂

∂r
Djj(x, x

′; t, t′) ·
∂

∂r′

−
∂

∂r
DjF (x, x

′; t, t′) ·
∂

∂p′
−

∂

∂p
DFj(x, x

′; t, t′) ·
∂

∂r′
+

∂

∂p
DFF (x, x

′; t, t′) ·
∂

∂p′

)

ln
f1(x

′; t′)

u(r′; t′)
, (26)

∂

∂t
〈ε̂int(r)〉

t = −
1

2

∂

∂r

(

p(r; t)

m
W sh(r; t) +

1

2

p(r; t)

m
Fsh(r; t)

+
1

2
n(r; t)

∫

dr′ Fsh(|r− r′|)(r− r′)g2(r, r
′; t)

p(r′; t)

m

)

+
1

2V 2

∑

q,k

ν(k) eiqr
(

− i(q+ k) · 〈p̂q+kρ̂−k〉
t
rel + ik · 〈ρ̂q+kp̂−k〉

t
rel + iq · 〈p̂q〉

t
rel

)

+

∫

dr′
∫ t

−∞

eε(t
′−t) φint

εε (r, r
′; t, t′)

(
∫ t′

−∞

K−1
εε (r′, r′; t′′)

∂

∂t′′
〈ε̂int(r

′)〉t
′′

+ β(r′,−∞)

)

dt′′ dt′

−

∫

dx′
∫ t

−∞

dt′ eε(t
′−t)φint

εn (r, x
′; t, t′) ln

f1(x
′; t′)

u(r′; t′)
. (27)

4. Conclusion

The resulting system of non-Markovian transport equations (26)–(27) provides a consistent description
of kinetic and hydrodynamic processes in classical liquids and dense gases far from equilibrium. This
system of equations is closed according to the basic parameters of a reduced description.

The kinetic equation (26) contains the contribution of the generalized mean-field, in which the
coordinate quasi-equilibrium distribution function g2(r, r

′; t) can be calculated through the partition
function Zrel(t) [51]. The transfer kernel φint

nε (x, r
′; t, t′), variance Kεε(r

′, r′; t′′) and generalized diffusion
coefficients Djj(x, x

′; t, t′), friction DFF (x, x
′; t, t′) and transverse transfer coefficients DjF (x, x

′; t, t′)
DFj(x, x

′; t, t′) are calculated through the relevant distribution ρrel(x
N ; t). The potential energy trans-

fer equation (27) includes the nonequilibrium mean field of short-range interactions W sh(r; t), the
nonequilibrium mean force of short-range interactions Fsh(|r−r′|), which are calculated via g2(r, r

′; t).
In addition, the temporal correlation functions 〈p̂q+kρ̂−k〉

t
rel, 〈ρ̂q+kp̂−k〉

t
rel and 〈p̂q〉

t
rel can be expressed

in terms of the partition function of the relevant distribution

̺rel(x
N ; t) = exp

[

− Φ(t)−

∫

drβ(r; t)ε̂int(r)−

∫

drλ(r; t)A(r) −

∫

dx a(x; t) n̂1(x)

]

in the case A(r) = p̂(r). The calculation of such a partition function can be carried out by the method
of collective variables [51]. In this case, the collective variables will be the Fourier components of the
particle number density ρq and the momentum pq. Such calculations require separate consideration
in subsequent works. It is obvious that time correlation functions, transfer kernels, and the partition
function Zrel(t) cannot be calculated exactly. However, certain approximations of the RPA type (Gaus-
sian approximation) for Zrel(t), as well as higher approximations by cumulative averages [51], can be
implemented.

Appendix 1

Indeed, in the case of weakly nonequilibrium processes, the relevant distribution ρrel(x
N ; t) can be

obtained in the form [8,11, 53–55] (by excluding the Lagrangian parameters using the conditions self-
concordance):

ρ0rel(x
N ; t) = ρ0(x

N )

(

1 +

∫

dx

∫

dx′ 〈δn̂(x′)〉tΦ−1
nn(x

′, x) n̂(x)

+

∫

dr

∫

dr′ 〈δĥint(r
′)〉tΦ−1

hh (r
′, r) ĥint(r

′)

)

,
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where the Φ−1
nn(x

′, x) function is inverted to the equilibrium correlation function Φnn(x
′, x) =

〈n̂(x)n̂(x′)〉0 and is found using the relation:
∫

dx′′ Φ−1
nn(x, x

′′)Φnn(x
′′, x′) = δ(x − x′).

As a result of excluding the parameter β(r; t), using self-consistency conditions, fluctuations of the
potential part of the generalized enthalpy δĥint(r

′) = ĥint(r
′) − 〈ĥint(r

′)〉0, which has the following
structure:

ĥint(r) = ε̂int(r)−

∫

dx

∫

dx′ 〈ε̂int(r)n̂(x
′)〉0Φ

−1
nn(x

′, x)n̂(x),

and the dynamic variables ĥint(r
′) and n̂(x) are orthogonal in the sense of the means 〈ĥint(r

′)n̂(x)〉0 = 0.

Appendix 2

In particular, the contributions of short-range interactions give
〈

Ishε (r; t)Trel(t, t
′)Ishε (r′; t′)

〉t′

rel
=

∂

∂r

〈

(1− P (t))̂jshint(r)Trel(t, t
′)(1 − P (t′))̂jshint(r

′)
〉t′

rel
·
∂

∂r′
,

where 〈(1 − P (t))̂jshint(r)Trel(t, t
′)(1 − P (t′))̂jshint(r

′)〉t
′

rel is part of the generalized thermal conductivity
coefficient with the contribution of short-range interactions. However, it is important to note that
there is no complete separation of interactions since the projection operator P (t) and the evolution
operator Trel(t, t

′) include both short-range and long-range interactions between particles. The averaged
correlations between the flows of short-range interactions and the flows of long-range interactions
according to the relevant distribution have the following structure:

〈

Ishε (r; t)Trel(t, t
′)I longε (r′; t′)

〉t′

rel
=

1

2V 2

∑

q′,k′

ν(k′) eiq
′·r′

×

(

∂

∂r

〈

(1− P (t))̂jshint(r)Trel(t, t
′)(1− P (t′))p̂q′+k′ ρ̂−k′

〉t′

rel
· i(q′ + k′)

−
∂

∂r

〈

(1− P (t))̂jshint(r)Trel(t, t
′)(1− P (t′))ρ̂q′+k′ p̂−k′

〉t′

rel
· ik′

−
∂

∂r

〈

(1− P (t))̂jshint(r)Trel(t, t
′)(1− P (t′))p̂q′

〉t′

rel
· iq′

)

.

Exciting is the averaged correlations between the flows of long-range interactions at different mo-
ments according to the relevant distribution, which have the following structure:

〈

I longε (r; t)Trel(t, t
′)I longε (r′; t′)

〉t′

rel
=

1

4V 4

∑

q,k

∑

q′,k′

ν(k)ν(k′) eiq·reiq
′·r′

(

− (q+ k) ·
〈

(1− P (t))p̂q+kρ̂−kTrel(t, t
′)(1 − P (t′))p̂q′+k′ ρ̂−k′

〉t′

rel
· (q′ + k′)

+ (q+ k) ·
〈

(1− P (t))p̂q+kρ̂−kTrel(t, t
′)(1 − P (t′))ρ̂q′+k′ p̂−k′

〉t′

rel
· k′

+ (q+ k) ·
〈

(1− P (t))p̂q+kρ̂−kTrel(t, t
′)(1 − P (t′))p̂q′

〉t′

rel
· q′

+ k ·
〈

(1− P (t))ρ̂q+kp̂−kTrel(t, t
′)(1− P (t′))p̂q′+k′ ρ̂−k′

〉t′

rel
· (q′ + k′)

− k ·
〈

(1− P (t))ρ̂q+kp̂−kTrel(t, t
′)(1− P (t′))ρ̂q′+k′p̂−k′

〉t′

rel
· k′

− k ·
〈

(1− P (t))ρ̂q+kp̂−kTrel(t, t
′)(1− P (t′))p̂q′

〉t′

rel
· q′

+ q ·
〈

(1− P (t))p̂qTrel(t, t
′)(1 − P (t′))p̂q′+k′ ρ̂−k′

〉t′

rel
· (q′ + k′)

− q ·
〈

(1− P (t))p̂qTrel(t, t
′)(1 − P (t′))ρ̂q′+k′ p̂−k′

〉t′

rel
· k′

− q ·
〈

(1− P (t))p̂qTrel(t, t
′)(1− P (t′))p̂q′

〉t′

rel
· q′

)

.
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First of all, the last application:
〈

(1− P (t))p̂qTrel(t, t
′)(1− P (t′))p̂q′

〉t′

rel
= D(q,q′; t, t′)

is the generalized diffusion coefficient in the space of wave vectors and time. Other temporal correlation
functions 〈

(1− P (t))p̂q+kρ̂−kTrel(t, t
′)(1− P (t′))p̂(q′+k′)ρ̂

′
−k

〉t′

rel
,

〈

(1− P (t))p̂q+kρ̂−kTrel(t, t
′)(1− P (t′))ρ̂(q′+k′)p̂

′
−k

〉t′

rel
,

〈

(1− P (t))ρ̂(q+k)p̂−kTrel(t, t
′)(1 − P (t′))ρ̂(q′+k′)p̂

′
−k

〉t′

rel

are higher-order functions of the dynamic variables ρ(q+k) and p̂−k. For them, a similar approximation
can be applied as in the theory of interacting modes

≈
〈

ρ̂(q+k)Trel(t, t
′)ρ̂(q′+k′)

〉t′

rel
D(k,k′; t, t′),

where
〈

ρ̂(q+k)Trel(t, t
′)ρ̂(q′+k′)

〉t′

rel
= Fρρ((q + k), (q′ + k′); t, t′)

can be defined as a non-equilibrium scattering function associated with a non-equilibrium dynamic
structural factor of a system far from equilibrium. Time correlation functions

〈

(1− P (t))p̂q+kρ̂−kTrel(t, t
′)(1− P (t′))p̂−q

〉t′

rel

is of the third order in the dynamic variables ρ(q+k) and p̂−k. For them, the following approximation
through the generalized diffusion coefficient can be applied

≈ D(q+ k,q′ + k′; t, t′)〈ρ̂−k〉
t′

rel.

The applied approximations include the generalized diffusion coefficient D(q,q′; t, t′), which describes
non-Markov collective diffusion processes. Taking into account the approximation data for the long-
range part of the energy transfer core 〈I longε (r; t)Trel(t, t

′)I longε (r′; t′)〉t
′

rel, we get
〈

I longε (r; t)Trel(t, t
′)I longε (r′; t′)

〉t′

rel
=

1

4V 4

∑

q,k

∑

q′,k′

ν(k)ν(k′) eiq·r eiq
′·r′

×
(

− (q+ k) ·D(q+ k,q′ + k′; t, t′) · (q′ + k′)F (k,k′; t, t′)

+ (q+ k) ·D(q+ k,k′; t, t′) · k′F (k,q′ + k′; t, t′)

+ k ·D(k,q′ + k′; t, t′) · (q′ + k′)F (q+ k,k′; t, t′)

− k ·D(k,k′; t, t′) · k′F (q+ k,q′ + k′; t, t′)

+ (q+ k) ·D(q+ k,q′; t, t′) · q′〈ρ̂−k〉
t′

rel

− k ·D(k,q′; t, t′) · q′〈ρ̂q+k〉
t′

rel + qD(q,q′ + k′; t, t′) · (q′ + k′)〈ρ̂−k′〉t
′

rel

− q ·D(q,q′ + k′; t, t′) · k′〈ρ̂q′+k′〉t
′

rel − q ·D(q,q′; t, t′) · q′
)

.
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Об’єднання кiнетичного та гiдродинамiчного пiдходiв у теорiї
густих газiв i рiдин, далеких вiд рiвноваги

Токарчук М. В.1,2

1Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, 79011, Львiв, Україна
2Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Отримано систему немаркiвських рiвнянь переносу для нерiвноважної одночастинко-
вої функцiї розподiлу частинок i нерiвноважного середнього значення густини потен-
цiальної енергiї взаємодiї частинок системи, далеких вiд стану рiвноваги. Отримано
вирази для ентропiї, статистичної суми нерiвноважного стану системи, а також нерiв-
новажнi термодинамiчнi спiввiдношення. Детально розкрито узагальнену структуру
ядер переносу з видiленням короткодiючих i далекодiючих вкладiв взаємодiй мiж
частинками. Встановлено зв’язок ядер переносу iз узагальненими коефiцiєнтами ди-
фузiї, тертя в просторi координат та iмпульсiв i потенцiальною частиною коефiцiєнта
теплопровiдностi.

Ключовi слова: немарковськi рiвняння; метод нерiвноважного статистичного

оператора; ентропiя; статистична сума нерiвноважного стану; ядра переносу.
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