
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 8, No. 1, 2023

PROPAGATOR-ORIENTED PROGRAMMING MODEL USING JAVA
Vladyslav Bilyk, Anatoliy Sachenko

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine
Authors’ e-mails: vladyslav.bilyk.mkisp.2022@lpnu.ua, as@wunu.edu.ua

https://doi.org/10.23939/acps2023.01.009

Submitted on 11.03.2023

© Bilyk V., Sachenko A., 2023

Abstract: The aim of this work is to explore and analyze an
unconventional style of programming based on a pro-
pagator-oriented model of computation. The paradigm of
propagation is characterized by networks of local, inde-
pendent, stateless machines interconnected with stateful
storage cells. This model allows for a highly modular design
and multidirectional computation, enabling the creation of
complex systems that can respond to changes and update
their state accordingly.

This work provides an overview of the propagator-ori-
ented programming model, its motivations, and its
advantages over other well-known alternative styles, using
unsophisticated examples written in the Java programming
language. We illustrate how propagator networks can be
used to build flexible and efficient systems and present a
basic framework for building such networks. The foun-
dational components of the propagation model are imple-
mented in Java as groundwork for the general-purpose
framework.

We demonstrate the power of propagator-oriented prog-
ramming through an example of a Pythagorean Theorem
implementation. The example shows how the model can be
used to build complex systems of an arbitrary number of
constraints and cells. We highlight the importance of infor-
mation propagation over limited linear computation and the
benefits of the multidirectional computation enabled by
propagator networks.

Index Terms: propagators; constraint programming;
multidirectional computation; Java.

I. INTRODUCTION
The field of computing has come a long way since

the invention of the first programmable computer. Ho-
wever, the linear computing model that is at the heart of
conventional computing is still limited in its ability to
handle certain classes of problems. In particular, the
imperative programming style that is typically used to
write computer programs can be difficult to apply to
problems that involve many interconnected variables. This
is where the propagator-oriented programming model
comes in.

Propagator-oriented programming is a computational
paradigm that is designed to handle complex problems
that can be presented as networks of independent nodes.
The model is based on the idea of propagators, which are
simple computational elements that can be used to
represent the dependencies between variables. The key
advantage of the propagator-oriented programming model

is that it can handle many variables that are interdependent
in a way of being both efficient and elegant.

Propagators lend themselves best to problems that
can be presented as networks of independent nodes, but
they are not limited to this kind of problem. The propa-
gator-oriented programming model can be generalized to
other kinds of problems, as long as they can be expressed
in terms of dependencies between variables. This makes it
a versatile tool for tackling a wide range of computational
problems [1].

In this article, we will explore the propagator-
oriented programming model in more detail. We will look
at the limitations of conventional computing models and
imperative programming styles and explain how pro-
pagators can be used to overcome these limitations. We
will also examine an example of applying the propagator-
oriented programming model and discuss the potential for
future research in this area.

Over the past few decades, there has been significant
research around constraint programming and logic
programming, which are closely related to the propagator
model of computation. These programming paradigms
have been used to solve a wide range of problems,
including scheduling, planning, and optimization.

• Constraint programming is a programming para-
digm that involves specifying a set of constraints that must
be satisfied by a set of variables. The goal is to find a solu-
tion that satisfies all the constraints. Constraint program-
ming has the advantage of being able to solve problems
that are difficult or impossible to solve with other pro-
gramming paradigms. However, it can be computationally
expensive and may struggle to handle problems with
many variables or constraints [1]. One particular Java
framework provides a platform for constraint program-
ming in the form of a library [3]. It offers a declarative
approach to problem-solving, allowing users to state the
set of constraints that must be satisfied in every solution.
The library uses a combination of constraint filtering algo-
rithms and search mechanisms to efficiently solve the
problem.

• Logic programming, on the other hand, involves
specifying a set of logical rules that describe the relation-
ships between different entities in a problem domain. The
goal is to derive logical consequences of these rules. Logic
programming has the advantage of being able to handle
complex problems with many interdependent variables.

Vladyslav Bilyk, Anatoliy Sachenko 10

However, it can be difficult to express certain kinds of
problems in a logical framework, and the search space can
be very large [4].

• Reactive programming is another programming
paradigm that is closely related to the propagator model of
computation. Reactive programming involves program-
ming with asynchronous data streams, where the program
reacts to changes in the data stream. Reactive program-
ming has the advantage of being able to handle real-time
data streams and can be used to build responsive user in-
terfaces. However, it can be difficult to reason about the
behaviour of a reactive program, and it can be difficult to
debug [5].

The propagator model of computation offers several
advantages over these existing paradigms. Firstly, propa-
gators are designed to handle many interdependent vari-
ables, making them ideal for problems that involve
complex networks of dependencies. Secondly, the
propagator model allows for the efficient propagation of
constraints, which can lead to faster problem-solving
times. Finally, the propagator model can be used to handle
real-time data streams, making it a useful tool for building
responsive user interfaces.

The propagator-oriented programming model has
been the subject of intense research and development over
the past few decades. One of the most notable contri-
butions to this field [6] represents a significant milestone
in the development of propagator networks.

The mentioned work provides a comprehensive and
rigorous treatment of the propagator model, which is
described as a general framework for reasoning about and
comprehending complex software systems. The authors
begin by introducing the basic concepts of propagator
networks and demonstrating their flexibility and expres-
siveness through a series of examples. They then delve
deeper into the theory of propagator networks, presenting
a formal definition of the model and its associated
algorithms.

One of its key contributions is the discussion of the
relationship between propagator networks and other
related programming paradigms, such as logic program-
ming and constraint satisfaction. It is argued that propa-
gator networks offer a more general and powerful frame-
work for reasoning about complex systems than these
other paradigms and provide several compelling examples
to support this claim.

The research makes the first step into the untrodden
territory that is the field of propagator-oriented program-
ming. It is a testament to the power and elegance of the
propagator model and has inspired a new generation of
researchers to explore the possibilities of this program-
ming style.

Although the work is undoubtedly fascinating and
innovative, a major critique of the authors’ approach is
that the Scheme programming language, in which they
designed and implemented the propagator-based model, is
not widely used in the design of real-world systems [7].

This fact limits the applicability of their work to practical
situations where performance and scalability are critical
considerations.

Scheme is a dialect of Lisp, a language that is mainly
used in academia and research settings [8]. While it has
some advantages, such as being easy to learn and having a
simple syntax, it is not a language that is widely used in
industry. Most software development is done using
languages such as Java, C++, Python, or JavaScript, which
have more extensive libraries, are better supported, and
are optimized for high performance and scalability [9].
Thus, while the propagator-based model framework
implementation produced by Radul and Sussman may
have theoretical value, it is unlikely to be adopted widely
in real-world systems.

Hence the focus of this work is to implement the
propagator-oriented model using Java, one of the most
widely used languages in the industry [10]. Java is a
popular language known for its robustness, portability,
and scalability. Implementing the propagator-oriented
model using Java would make it more accessible to a
wider audience, including practitioners who are familiar
with Java and are looking for innovative ways to solve
complex problems and model complex systems [11].

II. PROBLEM STATEMENT
In the world of software development, the comp-

lexity of software systems is a well-known fact. With the
increasing demands of modern software systems, the
complexity of these systems is expected to increase. It is
essential, therefore, that software systems are designed in
a way that allows them to be flexible and evolvable. This
means that software systems must be designed with the
ability to adapt to new requirements, incorporate new
technologies, and integrate with other systems.

Software systems are often developed in a rapidly
changing environment, where the customer needs, and
market demands can change rapidly. This requires
software systems to be designed with the ability to evolve
over time. A system that is designed to be flexible and
evolvable will be able to respond to changes quickly and
efficiently, while a rigid system will struggle to adapt and
may quickly become obsolete.

Maintaining existing software systems can be a
significant challenge in the world of software develop-
ment. As these systems age, they become increasingly
difficult to maintain, making flexibility a key requirement
for long-term functionality. Without flexibility, a rigid
system will require significant effort to keep it up-to-date
and functional, while a flexible and evolvable system can
be easily updated, enhanced, and maintained over time.

The problem statement that this paper addresses is
how to design software systems that are flexible and
evolvable. The propagator-oriented programming model
offers a solution by representing dependencies between
variables, allowing for the modeling of complex systems
in an efficient and elegant way. This approach enables
software systems to be updated and modified over time,
without the need for significant effort to rewrite the entire

Propagator-Oriented Programming Model Using Java 11

system. This paper explores how propagator-oriented
programming using Java can address the problem of
maintaining flexible and evolvable software systems.

III. OBJECTIVES
The main objective of this work is to demonstrate the

effectiveness of using the propagator-oriented program-
ming model in Java to create more comprehensive and
adaptable software models. Specifically, the aim is to
reduce the time it takes to implement new features or
modify existing ones in a software system. The following
objectives are the central points of the study:

1. Explore the use of propagator-oriented pro-
gramming model for building software systems and
demonstrate its application using the Java programming
language, highlight how propagator-based models can be
effectively utilized to achieve higher efficiency and
flexibility in software development.

2. Evaluate the effectiveness of the propagator-
oriented programming model in terms of the time taken to
implement new software features and modifications. This
will be done by comparing the time taken to implement
features using the traditional programming approach with
that using the propagator-oriented programming model.

The study aims to reduce the average duration
required for the incorporation of novel functionality and
modification of existing components by a minimum of
20 %. Achieving these objectives will demonstrate the
efficacy of the propagator-oriented programming model in
creating more adaptable and comprehensive software
models. Consequently, software developers will become
familiar with a practical approach to software develop-
ment, capable of adapting and evolving with changing
requirements, while simultaneously reducing the effort
and time required for the implementation of new features.

IV. PROPAGATOR-ORIENTED MODEL
ARCHITECTURE

The propagator-oriented model is a computational
model that is designed to handle problems that involve
stateless autonomous cells. In this model, each cell is
responsible for computing a value based on the values of
its inputs and propagating its output to its dependent cells.

At a high level, the architecture of the propagator-
oriented model can be divided into two main components:
cells and propagators. Cells represent the stateless auto-
nomous computation units that can accumulate infor-
mation based on their inputs and their internal processing,
and propagators are responsible for propagating the output
of a cell to its dependent cells.

The propagator network is a key element of the
architecture. It consists of a set of propagators that are
responsible for propagating the outputs of cells through
the network. Each propagator is connected to the cells that
are involved in its computation. The propagator network
can be thought of as a directed acyclic graph (DAG),
where the nodes represent propagators, and the edges
represent the dependencies between propagators.

Constraints are optional in this architecture. Howe-
ver, they are likely to be present, as practically every
system is designed with some constraints in mind. Pro-
pagators are thus responsible for enforcing those cons-
traints. When a cell’s contents are modified, the associated
propagators are alerted and possibly proceed to update the
contents of dependent cells.

One of the distinctive features of the propagator-
oriented model is the ability of cells to accumulate infor-
mation based on their inputs and their internal processing
state. Unlike variables that store a single result of a
computation, cells can store and update intermediate re-
sults, which can be used to better understand and optimize
the computation process.

In contrast to conventional linear models of compu-
tation, the propagator-oriented model is inherently non-
linear and can handle problems that involve complex
networks of dependencies between cells. In this model,
the problem is typically represented as a network of sta-
teless autonomous cells, and the solution is found by pro-
pagating outputs through the network, as opposed to linear
models of computation, where the problem is represented
as a sequence of steps that are executed sequentially.

Consider a propagator network that models the
expression of the Pythagorean Theorem: а2 + b2 = c2.

Such a network can be represented as a directed
acyclic graph with six cells: three for the values of a, b, c
and another three for their squared values. Fig. 1 displays
the DAG. Cell “a” and cell “b” represent the input var-
iables, and cell c represents the output variable. Cell “a”
and cell “b” are connected to the respective inputs of
propagators modeling the square operation. The outputs of
the intermediate results, a2 and b2, are connected to the
propagator modeling the add operation, which takes two
input cells and produces an output cell that represents their
sum. Finally, the output of the add propagator is con-
nected to the input of sqrt propagator that takes a square
root of its input and stores the output in cell c, rep-
resenting the hypotenuse length.

In this network, the intermediate results a2 and b2 are
explicitly named and stored in dedicated cells. By storing
the intermediate results, the network can be more easily
understood and modified, as it separates the computation
into smaller, more manageable units. Additionally, the
intermediate result can be reused in other computations,
which can lead to improved performance and reduced
computational complexity. Although, in some cases, these
memory requirements can be significant, and if the
system's memory bandwidth is not sufficient, it could
impact system performance. However, as the cost of
memory continues to decrease and the availability of high-
bandwidth memory increases, the impact of storing
intermediate results on system performance is likely to
become less significant over time.

In addition to the benefits for system design and
performance, storing intermediate results in separate cells
can also assist with the debugging process. In a propagator
network, a change to one input cell can propagate through
the network and affect multiple output cells. By storing

Vladyslav Bilyk, Anatoliy Sachenko 12

intermediate results in separate cells, it becomes easier to
identify which cells are affected by a particular change, as
the intermediate results act as a checkpoint for the
computation. This can help developers isolate and debug
issues more efficiently, as they can focus on the cells that
are affected by the change and ignore cells that are not
directly related to the issue. Additionally, intermediate
results can be inspected and monitored during runtime,
providing valuable insight into the computation, and
helping to identify any issues or anomalies in the system.

Fig. 1. Expression of the Pythagorean
Theorem with propagators

Things get more interesting when we enable the
bidirectional flow of information. At first glance, it may
seem that the primary benefit of using cells to combine
partial information is just a matter of cleaner aesthetics.
After all, a problem such as the building example can be
easily simulated in an expression language by adding an
explicit computational step between the squaring of the
inputs and the summation of the intermediate results.
Although this approach produces a less incremental com-
putation, as it must wait for all means of measurement to
produce results before committing to the output, it can still
work.

However, the real advantage of using cells lies in the
ability to construct systems with a much broader range of
potential information flows. By allowing cells to
accumulate and combine information from multiple sour-
ces, we can enable multidirectional computation, where
the results of one computation can feed into another, and
vice versa. For example, the Pythagorean Theorem can
benefit from multidirectional computation, as the com-
putation of the length of the hypotenuse can feed into the
computation of the length of one of the sides, and vice
versa.

The Pythagorean Theorem network enhanced with
bidirectional computation is presented in Fig. 2. It can be

seen that primary input and output cells, as well as the
cells storing the intermediate results, now propagate
information in both directions. The network can now be
used to compute the length of one of the sides once the
cells for the hypothenuse and the other side know their
values. The same can be said about the summation step,
which now involves not only the add propagator but also
the subtract propagator, inverting the information flow.

Fig. 2. Bidirectional information flow in the Pythagorean
Theorem expression with propagators

V. SIMULATING THE EXAMPLE IN JAVA
Fig. 3 presents a Java class modeling the cell

concept. It represents the foundational abstraction in the
propagator-oriented programming model. A cell rep-
resents a node in the propagator network which accu-
mulates information. The class has a generic type T that
represents the type of information that the cell will store.
The cell is also named and knows about propagators that
need to be alerted whenever its value changes.

The value field stores the current value of the cell,
and it is initialized as null, which has a special meaning in
the propagator model. Null values indicate that a cell
knows nothing about its value and thus should be treated
carefully. The hasValue() method is designed for this
purpose.

The setValue() method is used to change the
contents of the cell. If the new value is different from the
current value, then this new information must be
propagated through the network. The method sets the new
value and calls the propagate() method of each of the
associated propagators, alerting the propagators that the
value of one of its inputs has changed and that it needs to
recompute its output.

The addPropagators() method is used to add
propagators to the cell. The propagators list stores all the
propagators that depend on the cell’s value. Whenever the
value of the cell changes, all connected propagators will
be alerted.

Propagator-Oriented Programming Model Using Java 13

class Cell<T> {
 public final String name;
 private T value;
 private List<Propagator> propagators;

 public Cell(String name) {
 this.name = name;
 this.propagators = new ArrayList<>();
 }

 public T getValue() { return this.value; }
 public boolean hasValue() { return this.value != null; }

 public void setValue(T value) {
 if (!value.equals(this.value)) {
 this.value = value;
 propagators.forEach(Propagator::propagate);
 }
 }

 public void addPropagators(Propagator... propagators) {
 this.propagators.addAll(Arrays.asList(propagators));
 }
}

Fig. 3. Java class representing a cell
in the propagator network

The Propagator class in the propagator-oriented
programming model, displayed in Fig. 4, is an abstract
class that provides the foundation for all propagators in
the system. This class serves as a blueprint for specific
propagator implementations. The Propagator class conta-
ins two important fields – inputs and outputs – that
represent respective cells connected to the propagator.

The constructor of the Propagator class takes two
lists of Cell objects as arguments – the inputs and the
outputs of the propagator. Additionally, the constructor
adds the propagator instance being constructed to the list
of propagators of each input Cell object. This ensures that
whenever the contents of the input cells change, the
propagator will be alerted.

The propagate() method of the Propagator class is an
abstract method that must be implemented by each
specific propagator. This method is called when any of the
input Cell objects of the propagator change their value.
When called, this method is expected to update the values
of the output cells, ensuring that the propagator network
remains consistent with the new input values.

abstract class Propagator {
 protected List<Cell> inputs;
 protected List<Cell> outputs;

 Propagator(List<Cell> inputs, List<Cell> outputs) {
 this.inputs = new ArrayList(inputs);
 this.outputs = new ArrayList (outputs);
 inputs.forEach(cell -> cell.addPropagators(this));
 }

 protected abstract void propagate();
}

Fig. 4. Java class representing a propagator

A specific propagator implementation is shown in
Fig. 5. In particular, the addition operation is modeled.
Every propagator implementation should declare a static
register() method that configures the input and output cells
by calling the internal constructor. There is no need for the
programmer to interact with Propagator instances directly
since they will be alerted whenever the contents of their
associated cells change. The method propagate() is the
core of any propagator, as it defines the actual compu-
tation steps. The Adder propagator, for example, first
makes sure that both its inputs have values, and only then
computes and sets the value of the output cell. Many pro-
pagators shall follow this style, as, typically, a compu-
tation makes sense only once all its inputs are provided
with values.

class Adder extends Propagator {
 Cell<Long> in1; Cell<Long> in2;
 Cell<Long> out;

 public static void register(
 Cell<Long> in1, Cell<Long> in2, Cell<Long> out) {
 new Adder(List.of(in1, in2), List.of(out));
 }

 Adder(List<Cell<?>> inputs, List<Cell<?>> outputs) {
 super(inputs, outputs);
 this.in1 = (Cell<Long>)inputs.get(0);
 this.in2 = (Cell<Long>)inputs.get(1);
 this.out = (Cell<Long>)outputs.get(0);
 }

 protected void propagate() {
 if (in1.hasValue() && in2.hasValue())
 out.setValue(in1.getValue() + in2.getValue());
 }
}

Fig. 5. Propagator for the addition operation

To express multidirectional computation using ato-
mic propagators, we need to decompose the computation
into a series of smaller, directional computations. Each
directional computation is represented by a specific pro-
pagator that connects input and output cells. These pro-
pagators are then combined in a network to form a larger,
multidirectional computation.

To illustrate this approach, it is worth considering
the summation operation involving two inputs and one
output. This computation can be expressed as a form of
multidirectional computation by decomposing it into three
directional computations: the addition operation and two
subtraction operations. The propagators required to exp-
ress this are as follows:

1. Subtractor Propagator: This propagator takes two
inputs and produces an output that is the result of
subtracting the first input from the second.

2. Adder Propagator: This propagator takes two in-
puts and produces an output that is the result of adding the
two inputs.

By expressing the summation operation in terms of 3
separate directions of information flow using propagators,
summation can be modeled as a form of multidirectional

Vladyslav Bilyk, Anatoliy Sachenko 14

computation. Fig. 6 illustrates the blueprint of this compu-
tation. The method sum() takes two cells representing
inputs to be added and their result is stored in the third
output cell. However, unlike simple addition, it also con-
nects the output cell to both input cells using the Sub-
tractor propagator. This way, whenever the output cell’s
contents change, the input cells are adjusted accordingly.

public static void sum(
 Cell<Long> in1, Cell<Long> in2, Cell<Long> out) {
 Adder.register(in1, in2, out);
 Subtractor.register(out, in1, in2);
 Subtractor.register(out, in2, in1);
}

Fig. 6. Bidirectional propagation via summation of two values

Fig. 7 illustrates the expression of the Pythagorean
Theorem through a network of propagators. The Pythago-
rean class declares three fields of type Cell<Long> rep-
resenting the input values a, b, and c of the theorem. It
also declares another three fields of the same type repre-
senting the intermediate results a2, b2, and c2, respectively.

class Pythagorean {
 Cell<Long> a; Cell<Long> b; Cell<Long> c;
 Cell<Long> a2 = new Cell("a^2");
 Cell<Long> b2 = new Cell("b^2");
 Cell<Long> c2 = new Cell("c^2");

 public static void register(
 Cell<Long> a, Cell<Long> b, Cell<Long> c) {
 new Pythagorean(List.of(a, b), List.of(c));
 }

 Pythagorean(List<Cell> inputs, List<Cell> outputs) {
 this.a = (Cell<Long>)inputs.get(0);
 this.b = (Cell<Long>)inputs.get(1);
 this.c = (Cell<Long>)outputs.get(0);
 quadratic(a, a2);
 quadratic(b, b2);
 sum(a2, b2, c2);
 quadratic(c, c2);
 }
}

Fig. 7. Expression of the Pythagorean Theorem using
a network of propagators

The Pythagorean class has a static method named
register that takes three cells, representing the input values
of the Pythagorean Theorem, which instantiates the net-
work by calling the constructor of the class. The const-
ructor takes two lists of cells, representing the input and
output cells of the theorem, respectively. It first extracts
the input and output cells from the lists and assigns them
to the corresponding instance variables. It then applies the
quadratic propagator network to the input values “a” and
“b”, which similarly to the summation operation is a
multidirectional operation. That is, it computes the power
of 2 of its input cell’s value and stores the result in the
output cell. And it is also capable of performing the
inverse operation, taking the square root of the output, and
storing the result in the input cell. The summation

propagator network is then applied to a2 and b2, which sets
the value of c2 to their sum. Finally, the quadratic network
is applied to c, which sets its value to the square root of c2.

Reflecting on the previously described Pythagorean
class, two examples of its usage are presented. The first
example, in Fig. 8, is quite straightforward; it expresses
the computation of the hypothenuse length knowing the
lengths of the other two sides of the triangle. The
Pythagorean class instance is created, and values of “a”
and “b” are then set to 3 and 4 respectively, which triggers
the computation of c according to the Pythagorean Theo-
rem. Since the value of c was previously unknown, it is
computed and stored in its cell, and then outputted by the
println statement. The answer produced by the network, as
expected, is 5.

The second example, Fig. 9, is more interesting
because it shows how the Pythagorean computation can be
expressed in a multidirectional manner using a network of
propagators. Here, c is set to 5 and b is set to 4, which
should trigger the computation of a. The computation
starts by calculating b2, which is 16, and then subtracting
that from c2 which is 25. This gives us 9, which is stored
in a2. Finally, we take the square root of 9 to get a, which
is 3. The fact that changing the value of the output cell c
can trigger the computation of one of the inputs shows that
the computation is in fact multidirectional.

The advantage of the propagator model is that it
allows us to specify computations in terms of constraints
rather than a linear sequence of steps. This makes it easier
to specify complex computations involving many inter-
dependent variables, and to update the computation
efficiently when the values of the variables change. In the
case of the Pythagorean Theorem, the propagator model
allows us to specify the computation in terms of constraints
on the values of a, b, and c, rather than in terms of a
formula that computes c from “a” and “b”. This makes it
easier to reason about the computation, and to update the
values of a, b, and c in any order, without having to
explicitly compute the value of c each time the values of
“a” and “b” change.

Cell<Long> a = new Cell("a");
Cell<Long> b = new Cell("b");
Cell<Long> c = new Cell("c");
Pythagorean.register(a, b, c);
a.setValue(3L);
b.setValue(4L);
System.out.println("c = " + c.getValue());

Fig. 8. Calculating the hypotenuse length

Cell<Long> a = new Cell("a");
Cell<Long> b = new Cell("b");
Cell<Long> c = new Cell("c");
Pythagorean.register(a, b, c);
c.setValue(5L);
b.setValue(4L);
System.out.println("a = " + a.getValue());

Fig. 9. Calculating the length of one of the sides

Propagator-Oriented Programming Model Using Java 15

The Pythagorean Theorem example is just a simple
illustration of how propagator networks can be used to
express and solve a system of constraints. In more
complex systems, there may be many interdependent vari-
ables, each with its own set of constraints. As the number
of variables and constraints grow, traditional approaches
to solving such systems become increasingly cumber-
some, error-prone, and time-consuming.

In propagator-oriented programming, the goal is to
express the constraints as propagators, which can then be
composed into a network. Each propagator represents a
single constraint or a computation, and the propagators
interact with one another to collectively enforce the
system’s constraints. By propagating information in a
multidirectional way through the network, propagators can
update their inputs and outputs in response to changes in
other parts of the network. This allows for complex,
interdependent systems of constraints to be modeled and
solved in a flexible, modular way.

The key advantage of this approach is that it
emphasizes information propagation rather than limited
linear computation. Instead of explicitly solving for each
variable in a step-by-step fashion, propagator networks
use constraints to implicitly enforce the relationships
between variables, allowing them to update and propagate
information in a more flexible and adaptive manner. This
allows propagator networks to efficiently handle complex
systems with many variables and constraints, and to
provide a more elegant, maintainable, and scalable solu-
tion than traditional approaches.

VI. EVALUATION
To compare the effectiveness of the propagator-

oriented programming model with a conventional object-
oriented approach in a real-world scenario, an experiment
was conducted on the development of a software tool that
performs calculations, organizes and manipulates data,
and presents information in a tabular format, with an
interface resembling that of a spreadsheet. The experiment
involved two teams of software engineers from the in-
dustry, with approximately equal levels of skill and expe-
rience in Java programming. All members had a minimum
of five years of experience in software development, with
expertise in software design, development, and testing.
One team employed a conventional object-oriented
approach to software development, while the other team
was introduced to the propagator-oriented model and had
a week prior to the beginning of the experiment to get
familiar with the model. The experimental development
process comprised an incorporation of five distinct user
stories that encompassed various functional requirements.
Three of the user stories mandated the incorporation of
new functionality, while the remaining two required the
modification of significant segments of pre-existing code.

The team that used the conventional object-oriented
approach implemented the fundamental version of the
application within 9 days. Incorporating each novel
feature mandated an additional timeframe ranging from

two to six days for successful implementation. However,
incorporating breaking changes led to a marked decrease
in the development pace, requiring complete attention of
all team members, and leading to a supplementary 13 days
of development time. In summary, the entire development
process lasted for a total of 24 days.

On the other hand, the team that adopted the
propagator-oriented model developed a basic version of
the application within a period of 10 days. Incorporating
new features demanded a timeframe ranging from one to
four days for successful implementation. Moreover, the
incorporation of breaking changes did not pose significant
challenges, as the system exhibited notable flexibility and
adapted seamlessly to such modifications. Consequently,
the entire development process was completed within a
timeframe of 20 days.

The comparative evaluation of both approaches
adopted for the development of the application indicates a
noteworthy reduction of 17 % in total development time,
and 30 % in duration required for implementation of new
features and modification of existing ones to meet user
requirements.

As is characteristic of any software system, new
feature requests from users are likely to occur as the
system evolves over time. Based on the experiment
conducted, it is evident that the propagator-oriented model
represents a more efficient approach towards maintenance
and evolution of software. Therefore, it is reasonable to
expect that the difference in development time between
both approaches will increase as the system grows in
complexity, and more changes are necessary. The propa-
gator-oriented programming model will thus become
progressively more valuable as the system expands and
develops, offering a more inclusive and adaptable frame-
work for software development.

VII. CONCLUSION
In conclusion, the propagator-oriented programming

model presents a nontraditional approach to solving
complex problems by building systems that can handle an
arbitrary number of constraints and cells, and support the
flow of information in more than one way. Unlike the
conventional linear computation style, the model empha-
sizes the importance of information propagation and the
interdependence of variables, allowing for more flexible
and comprehensible systems.

Through the Pythagorean Theorem example and its
generalization, it can be observed how this model can be
applied to various real-world problems, ranging from
building systems that solve engineering problems to
designing systems that lend themselves better to informal
reasoning. The model offers a framework for building
reactive, logic, and constraint programming systems that
can adapt and update in response to changes.

The outcomes of the experiment demonstrate a 30 %
decrease in the duration required to implement novel
functionality and modify existing features to meet user
requirements.

Vladyslav Bilyk, Anatoliy Sachenko 16

REFERENCES
[1] A. Kulkarni, M. Lang, A. Lumsdaine (2011). GoDEL: A

Multidirectional Dataflow Execution Model for Large-
Scale Computing. First Workshop on Data-Flow
Execution Models for Extreme Scale Computing. Pp. 10–
18 [Online]. DOI: https://doi.org/10.1109/DFM.2011.12

[2] Belaid, M.-B., Bessiere, C., Lazaar, N. (2019). Constraint
Programming for Association Rules. Proceedings of the
2019 SIAM International Conference on Data Mining.
Society for Industrial and Applied Mathematics [Online].
Pp. 112–125. DOI: https://doi.org/10.1137/1.978161
1975673.15

[3] Prud’homme C., Fages J. (2022). Choco-solver: A Java
library for constraint programming. Journal of Open
Source Software. Pp. 1–5 [Online]. Available:
https://joss.theoj.org/papers/10.21105/joss.04708.pdf
(Accessed 02/21/2023)

[4] Baumgartner, P. (2021). The Fusemate Logic
Programming System (System Description). ArXiv.
Pp. 85–107 [Online]. DOI: https://doi.org/10.48550/
ARXIV. 2103.01395

[5] Perez, I., Goodloe, A. E. (2020). Fault-tolerant functional
reactive programming (extended version), Journal of
Functional Programming. Cambridge University Press
(CUP). Pp. 57–72 [Online]. DOI: https://doi.org/10.1017/
s0956796820000118

[6] Radul A., Sussman G. J. (2009). The art of the propagator.
Proceedings of the 2009 international lisp conference.
Pp. 15–31 [Online]. DOI: https://dspace.mit.edu/
handle/1721.1/44215

[7] Radul A. (2009). Propagation Networks: A Flexible and
Expressive Substrate for Computation. Computer Science
and Artificial Intelligence Laboratory Technical Report.
Massachusetts Institute of Technology. Pp. 75–98 [Online].
DOI: https://dspace.mit.edu/handle/1721.1/49525

[8] Lilis, Y., Savidis, A., (2019). A Survey of Metapro-
gramming Languages, ACM Computing Surveys, 52(6).
Pp. 1–39 [Online]. DOI: https://doi.org/ 10.1145/3354584

[9] Bissyandé, T.F. et al., (2013). Popularity, Interoperability,
and Impact of Programming Languages in 100,000 Open
Source Projects, Computer Software and Applications
Conference. Pp. 303–312 [Online]. DOI: https://doi.org/
10.1109/compsac.2013.55

[10] Taboada, G.L. et al. (2013). Java in the High Performance
Computing arena: Research, practice and experience.
Science of Computer Programming, 78(5). Pp. 425–444.
[Online]. DOI: https://doi.org/10.1016/j.scico.2011.06.002

[11] Marii, B., Zholubak, I. (2022). Features of Development
and Analysis of REST Systems. Advances in Cyber-
Physical Systems, Vol. 7, No. 2. Pp. 121–129. DOI:
https://doi.org/10.23939/acps2022.02.121

Vladyslav Bilyk earned his
Bachelor’s Degree in Systems Ana-
lysis at the Ukrainian Catholic Univer-
sity. Currently he is earning a Master’s
Degree in Systems Programming at
Lviv Polytechnic National University.
He is interested in the programming
language theory, software engineering
and functional programming.

From 2022 and to the present he
has been a software engineer at Fiel-
den Management Services.

Anatoliy Sachenko is a Pro-
fessor of Department for Information
Computer Systems and Control, West
Ukrainian National University and
Professor of Department for Infor-
matics and Teleinformatics, Kazimierz
Pulaski University of Technology and
Humanities in Radom, Poland. He
earned his PhD Degree in Electrical
Engineering at Lviv Physics and
Mechanics Institute, Ukrainian Natio-

nal Academy of Science, 1978 and his Doctor of Technical Sci-
ences Degree in Electrical and Computer Engineering at Lenin-
grad Electrotechnic Institute, 1988. Research areas: Computa-
tional Intelligence, Distributed Measuring Systems, Intelligent
Cyber Security, Wireless Sensor Networks, IT Project Manage-
ment.

