
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 8, No. 1, 2023

THE NETWORK LOAD BALANCER IN DECENTRALIZED SYSTEMS
Nazarii Klymyshyn

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine

Author’s e-mail: klymyshyn.nazarii.mkisp.2022@lpnu.ua

https://doi.org/10.23939/acps2023.01.025

Submitted on 23.02.2023

© Klymyshyn N., 2023

Abstract: This article explores the implementation of
network load balancing in decentralized systems using
OpenWrt, Quality of Service (QoS), and traffic balancing
techniques. The increasing demand for high-quality net-
work services and the surge in network traffic requires the
adoption of more efficient load-balancing methods to main-
tain network performance. This paper discusses the use of
OpenWrt, an open-source firmware for network routers, to
configure and manage network traffic. The article also
covers the implementation of QoS and traffic balancing
techniques to optimize network performance and reduce
network congestion. The study employs iperf3 to evaluate
network performance and demonstrates the effectiveness of
the proposed network load-balancing approach. The index
terms include OpenWrt, QoS, balancing, traffic, and
iperf3.

Index Terms: OpenWrt; QoS; balancing; traffic; iperf3.

I. INTRODUCTION

Over the last decade, the needs and requirements of

Internet users for a reliable connection channel have

increased significantly, which would allow balancing

network traffic between several channels and maintain-

ning the Internet connection in case of failure of one or

more channels. Such requirements are explained by the

need to deploy various services or remote work in places

where there is no professional network infrastructure.

Deploying a secure Internet connectivity infrastructure

should be simple and accessible to the lay user [1].

The best way to meet user needs is to develop a

network traffic load balancing package for the OpenWrt

operating system, which is supported by many modern

network router manufacturers [2].

Most research on network traffic load balancing has

focused on the problem of software-defined networking

(SDN). Software-configured networks have a more

complex architecture and more network devices com-

pared to an end-user network, so most users cannot -

afford it [3].

Sometimes computer networks fail, making the In-

ternet or certain network segments unavailable from the

current node. As a rule, failures occur within a specific

provider, which leads to connection problems only for a

certain group of users served by that provider.

The computing power of computer networks must

increase as the amount of data transferred over the net-

work and the number of nodes on the network increase.

This goal can be achieved by replacing and improving

the hardware components of the network, but this met-

hod is expensive and requires additional resources. The

load balancing mechanism on the existing network node

reduces the response time and allows for the even use of

resources [4].

In Fig. 1 we see network traffic balancing architec-

ture in cloud computing.

Fig. 1. Network traffic balancing architecture

 in cloud computing

II. TRAFFIC BALANCING PURPOSES

The computing power of computer networks must

increase following the growth of the amount of data

transmitted over the network and the number of nodes in

the network. This goal can be achieved by replacing and

improving network hardware components, but this

method is expensive and a waste of resources. Load

Nazarii Klymyshyn

26

balancing on an existing network node reduces response

time and allows for even resource utilization.

1) Goals of traffic balancing

The goals of traffic balancing are [5]:

 Improvement of QoS service in the network,

and therefore the increase of efficiency and productivity

of the system. The goal of QoS is to provide users with

improved service by preventing excessive delays, reduc-

ing response times, and optimizing performance.

 Optimizing the use of resources. Correct bal-

ancing results in an even and economical use of re-

sources: bandwidth, memory usage, and processor time.

 Reduction of data transmission delays. Data

transmission delays are the time it takes for a router to

transmit a unit of data. Delays depend on the perfor-

mance of the node, the fullness of the data transmission

queue, and the size of the packet.

 Reduction of response time. Response time is

the time between receiving a request and sending a re-

sponse.

 Avoidance of narrow areas. To avoid bottle-

necks during data transmission, it is recommended to

evenly distribute the load on available channels.

 Increasing bandwidth. Throughput is the amo-

unt of correctly sent data over a certain period from the

source to the destination.

In Fig. 2 and Fig. 3 we see the difference between

cross-zone load balancing enabled and disabled states.

Fig. 2. Network traffic when cross-zone load

balancing is enabled

2) Traditional methods of balancing in SDN

A large number of different balancing algorithms

are used in SDN, each of which is designed to solve

certain problems and has its advantages and disad-

vantages [6].

For example, in networks with intensive traffic, the

“Middlebox” algorithm is used, which helps reduce data

transmission delays and optimizes the use of bandwidth.

The essence of the algorithm is to use an additional con-

troller, which is a Clos network and is responsible for the

uniform distribution of traffic between other network

segments while supporting QoS technology. The disad-

vantage of this approach is the failure of the entire net-

work in case of failure of the controller.

Fig. 3. Network traffic when cross-zone load balancing is

disabled

In addition, in SDN networks, a topology with sev-

eral balancing controllers can be used. The multi-cont-

roller deployment algorithm balances the load between

several regionally distributed controllers. The number of

controllers for each region in this case depends on the

number of network equipment in specific regions. This

algorithm offers reduced data transmission delays and

efficient balancing, but its disadvantages are poor network

security and limited use of QoS technology.

Some algorithms use the migration of network

equipment from more loaded controllers to less loaded

ones, which is a rather time-consuming operation, but

often justified in conditions of significant asymmetric

network load. The “Flow Stealer” algorithm is a simple

balancing algorithm that listens for events that are

transmitted between different controllers and allows you

to temporarily take parts of data flows from more loaded

controllers to less loaded ones. This method responds

quickly to network events and minimizes the number of

network equipment migrations.

Some algorithms are based on the active use of

QoS metrics, which allows for dynamic balancing, opti-

mizing resources, and searching for the shortest routes.

Such algorithms include modifications of the dynamic

balancing algorithm.

Algorithms also use the idea of actively changing

traffic routes when there is a change in the network. A

novel load-balancing algorithm applies this idea while

increasing the bandwidth and reducing the number of

lost packets. This algorithm suggests rerouting if the

bandwidth is less than a certain threshold value. The

disadvantage of this approach is that frequent rerouting

can be a complex and/or time-consuming operation.

Cross-zone load balancing is a technique used in

distributed computing systems to balance the load across

The Network Load Balancer in Decentrilized Systems

27

multiple availability zones in a cloud infrastructure. An

availability zone is a separate physical location within a

cloud region that is designed to be isolated from failures

in other zones.

When a load balancer distributes traffic across in-

stances in multiple availability zones, it can be config-

ured to either distribute the traffic evenly across all

zones or prioritize one zone over others. In the case of

cross-zone load balancing, the traffic is distributed even-

ly across all availability zones.

This approach helps to ensure the high availability

and fault tolerance of an application by distributing traf-

fic across multiple zones. Traffic can be automatically

redirected to the healthy instances in other zones if one

zone experiences a failure. Cross-zone load balancing

can also improve the overall performance of an applica-

tion by reducing the latency of requests and improving

the responsiveness of the system.

Some cloud service providers like Amazon Web

Services (AWS) support cross-zone load balancing as

the default behavior for their load-balancing services. It

is important to note that while cross-zone load balancing

can help to improve the resilience and performance of an

application, it may also increase the cost of running the

application by requiring more resources to maintain the

availability of the application across multiple zones.

III. REVIEW OF RELATED WORKS

The article [7] discusses the use of reinforcement

learning (RL) techniques to optimize load balancing in

data center networks. Specifically, the authors propose a

new RL-based load-balancing algorithm that takes into

account the current network traffic load, network topolo-

gy, and available network resources to make intelligent

decisions about how to distribute network traffic across

the data center.

The proposed algorithm is evaluated through simu-

lations and experiments on a testbed, and the results

show that it outperforms traditional load-balancing algo-

rithms in terms of network throughput, network utiliza-

tion, and response time.

Overall, the article presents an interesting approach

to using RL techniques to optimize load balancing in

data center networks, which are becoming increasingly

complex and challenging to manage. The use of RL

techniques has the potential to improve network perfor-

mance and efficiency and may be of interest to profes-

sionals working in network engineering and data center

management.

In this paper [8] authors put forth a mechanism for

load-balancing routing in mesh wireless networks based

on SDN that takes into account QoT constraints. The

mechanism dynamically distributes traffic among net-

work paths to optimize network performance while en-

suring QoT requirements are met.

The authors demonstrate the effectiveness of the

proposed mechanism by comparing it with existing rout-

ing algorithms. Results show improvements in network

throughput, packet delivery ratio, and end-to-end delay,

with the mechanism meeting QoT requirements.

The article discusses practical applications of the

proposed mechanism, such as in smart city networks and

IoT applications. It offers a promising solution to en-

hance network performance while considering QoT

constraints in modern communication systems.

In summary, the article presents a novel approach

to load-balancing routing in mesh wireless networks that

consider QoT constraints, with simulation results

demonstrating improved performance compared to exist-

ing algorithms. The proposed mechanism has practical

applications in various fields and offers potential bene-

fits for network performance, flexibility, and scalability.

The article [9] discusses the use of software-

defined networking (SDN) technology to improve load

balancing on campus networks (CNs). CNs are local area

networks (LANs) that are typically used in educational

institutions, government organizations, and corporate

campuses.

The authors propose a new load-balancing architec-

ture that utilizes SDN technology to dynamically allo-

cate network resources based on the current network

traffic load. The proposed architecture consists of three

layers: the user access layer, the network aggregation

layer, and the core layer, each of which is responsible for

different aspects of load balancing.

The proposed architecture is evaluated through test-

ing, and the results show that it outperforms other load-

balancing techniques in terms of network throughput,

delay, and packet loss rate, particularly under high traffic

loads.

The article presents an interesting approach to im-

proving load balancing on CNs using SDN technology,

which can help to optimize network performance and

improve the user experience. Professionals working in

network engineering and IT infrastructure, particularly

those responsible for managing campus networks may

pay attention to this paper.

The article [10] discusses the use of software-

defined networking (SDN) technology to implement

dynamic load balancing in data center networks (DCNs).

DCNs are critical for delivering high-performance com-

puting and storage services, and load balancing is an

important technique for optimizing the use of network

resources and ensuring network reliability.

The authors propose a new dynamic load-balancing

algorithm that utilizes SDN technology to monitor net-

work traffic and allocate network resources in real time.

The proposed algorithm considers factors such as net-

work topology, available bandwidth, and network con-

gestion levels to make intelligent decisions about how to

distribute network traffic across the DCN.

The proposed algorithm is evaluated through simu-

lations, and the results show that it outperforms tradi-

tional load-balancing techniques in terms of network

throughput, network utilization, and response time, par-

ticularly under high traffic loads.

Nazarii Klymyshyn

28

The development of a software system [11] for mo-

tion detection and tracking. The system is designed to

identify and track different types of motion and objects

in real-time video streams. The work proposes advanced

algorithms for testing and processing investigation re-

sults, which allows it to differentiate between various

types of motion and objects.

IV. OBJECTIVES

The main objective of this article is to present a

new network load-balancing algorithm that can outper-

form existing algorithms. The algorithm is aimed at

achieving better network performance, by distributing

traffic more efficiently across multiple servers in a net-

work.

To achieve this objective, we will firstly conduct a

thorough review of existing network load-balancing

algorithms and identify their limitations. Based on this

analysis, we will propose a new algorithm that can ad-

dress these limitations and provide better performance.

We will then compare the performance of the new

algorithm with existing algorithms using a series of tests.

These tests will be conducted under various traffic loads,

network topologies, and configurations to ensure the

robustness and reliability of the new algorithm.

To verify the effectiveness of the new algorithm,

we will evaluate the performance of the network load

balancer by measuring various network parameters such

as average values, maximum values, minimum values,

and mean square deviations. Bandwidth should increase

by at least 30 percent. This metric will help us to gain a

comprehensive understanding of the performance of the

new algorithm and its ability to handle different types of

network traffic.

Overall, the objectives of this article are to present

a new and innovative network load-balancing algorithm

that can provide superior network performance and to

verify its effectiveness through rigorous testing and

evaluation.

V. REQUIREMENTS TO PERFORM

MEASUREMENTS

1) Requirements for the experiment environment

To ensure the high-quality conduct of the experi-

ment, it is necessary to define a list of requirements for

the environment in which the experiment will be con-

ducted, which relate to the next topics.

 The device on which balancing will be carried

out;

 Involved communication channels;

 Connected devices of end users participating in

data transmission;

 Additional bandwidth measuring device on the

balancing device.

2) Requirements for the device on which network

traffic is balanced

The routing device can be any physical device that

supports the OpenWrt version 21.02 operating system.

This category includes both devices directly intended for

routing network traffic and general-purpose devices such

as Raspberry Pi:

 The use of a virtual machine (for example

QEMU, VirtualBox, etc.) is not allowed, as it may dis-

tort the test results.

 A device must have more than one physical port

to establish a connection. It is acceptable to use both

Ethernet ports and USB ports in any combination.

 The device must have the physical ability to

work as a Wi-Fi access point or have sufficient physical

ports available to connect all clients and connection

channels.

3) Requirements for physical communication chan-

nels

To conduct experiments, it is necessary to use at

least two physical communication channels with the

same characteristics (the same bandwidth and delays).

The need for symmetry of communication channels du-

ring the experiment exists due to the possibility of dif-

ferent characteristics distorting the results of the experi-

ment:

 It is allowed to use any type of physical com-

munication channel if they have the same characteristics.

 It is recommended to use two physical commu-

nication channels of the same type for experiments. A

combination of Ethernet cables and USB hubs is allowed

if the bandwidth of the USB hub is not lower than the

bandwidth of the Ethernet cable.

 USB hubs must be compatible with the Open-

Wrt operating system version 21.02.

 The total bandwidth of the Wi-Fi network must

be higher than the bandwidth of each of the physical

channels of the connection.

4) Requirements for end-user devices

 It is necessary to use at least one end-user de-

vice for experiments, at least two are recommended:

 Ability to connect via Wi-Fi or through a

physical connection if permitted by the experiment.

 Ability to use the preferred bandwidth meas-

urement tool on the end user's device. It is recommended

to use the iperf3 tool.

 It is necessary to make sure that during the

experiment the device does not carry out significant

operations with the network (uploading or downloading

a large amount of data not related to the experiment) to

avoid distorted results.

5) Requirements for an additional bandwidth

measuring device on the balancing device

 The device can be a routing device or a general-

purpose device.

 The device must support the same number of

physical communication channels that will be tested

under experimental conditions.

 The user should be able to use the desired

bandwidth measurement tool.

 The bandwidth of the physical communication

channels should not be lower than the bandwidth of the

The Network Load Balancer in Decentrilized Systems

29

physical communication channels of the balancing de-

vice, or it is necessary to make sure in advance that the

device is capable of supporting the bandwidth corre-

sponding to the experimental conditions.

 The processor specifications of the device must

not be lower than the processor specifications of the

balancing device, or it is necessary to ensure in advance

that the device is capable of supporting the bandwidth

corresponding to the experimental conditions.

VI. DESIGNING THE ARCHITECTURE

OF THE COMPONENT

When designing the software component, the mod-

ular architecture of the OpenWrt operating system was

analyzed and it was determined that the software com-

ponent for load balancing should be designed as an inde-

pendent module of the operating system, which is con-

tained in the user space and defines dependencies on

other independent modules of the system:

Netfilter, iptables, ip route, teach, network mana-

ger.

UML notation was used to design the diagrams of

the software component, which allows you to construct

diagrams to display the structure, behavior, and object

component of the system. A UML use case diagram is

provided in Fig. 4.

Fig. 4. Use case diagram

1) Use case diagram

To describe the use cases of the software compo-

nent, it was chosen to define possible user actions using

the UML language, namely to build a UML case dia-

gram.

 The user can interact with the presented system

by changing the configuration file and enabling or disa-

bling the software component using the command line.

 Users can enable the software component for

balancing using the command line, while it is necessary

to specify the logical network interfaces on which net-

work traffic will be balanced, as well as specify the pri-

orities of the selected interfaces using the configuration

file;

 Users can enable the failover software compo-

nent using the command line, while the user must speci-

fy the primary and backup logical network interfaces

using a configuration file;

 Users can disable the component for balancing

and failover.

2) Deployment diagram

The UML deployment diagram is designed to un-

derstand the membership and relationship between all

the involved modules (packages) of the system. A UML

deployment diagram is provided in Fig. 5.

Fig. 5. Deployment diagram

The following components are located in the user

space of the OpenWrt operating system:

 LuCI package for the interaction of the software

component being designed with the user graphical inter-

face.

 Package for balancing network traffic, which

contains two lower-level modules and also interacts with

the standard conntrack and iptables packages.

Nazarii Klymyshyn

30

 Monitoring module – used to monitor logical

network interfaces, their activity, and network interface

events.

 Planning module – used to create specific rules

based on received information about active network

interfaces and configuration (interfaces to be used, their

priorities, and metrics) specified by the user.

The kernel space contains the standard netfilter

module, which acts as a firewall in the OpenWrt operat-

ing system and is used by the iptables and conntrack

packages from the user space.

3) Sequence diagram

A UML sequence diagram is built to capture the

sequence of actions a system takes to reach a desired

state and the interactions between system components. A

sequence diagram is presented in Fig. 6.

Fig. 6. Sequence diagram

The diagram shows the following system modules:

 LuCI – a user-space package for user interac-

tion with a network traffic balancing package;

 user space – all packages participating in net-

work traffic balancing and belonging to the user space

(except LuCI);

 netfilter module – a firewall contained in the

kernel space.

The sequence of system actions is as follows:

 the user initiates the activation of the software

component for balancing using the LuCi package;

 LuCI package sends the initialization request to

the user space, namely to the load balancing package;

 load balancing package returns the current sta-

tus of the LuCi package and starts its work;

 LuCI package displays the status to the user;

 load balancing package sends a request about

current connections to netfilter;

 netfilter returns the result of the request to the

load-balancing component;

 load balancing package processes the received

results and, if necessary, sends a request to change fire-

wall rules or routes to the netfilter module;

 the netfilter module executes a request and re-

turns the result to the load-balancing package;

 the last four steps are repeated at intervals as

long as the network load balancing component remains

enabled;

 the user sends a request to disable the network

load balancing component using the LuCI graphical user

interface;

 the LuCi package sends a request to the network

traffic balancing component;

 the network traffic balancing package releases

captured resources and performs deinitialization, and

returns the result;

 LuCI package displays the status to the user.

VII. DETAILS OF THE SOFTWARE

IMPLEMENTATION

The source of information about updating the state

of the logical network interface is the network manager

component of the OpenWrt operating system.

To simplify interaction with the network manager

component, the “hotplugd” service was used, as it is

convenient to use in bash scripts: “hotplugd” allows you

to “subscribe” to an event and call a certain command or

script when this event occurs.

The load balancing component primarily works

with the iptables mangle table. This table allows you to

modify and track packet headers for various purposes.

In this case, packets belonging to a particular con-

nection are marked with a mangle table so that they can

be assigned to a particular network interface, and re-

sponses to these packets are not confused and sent cor-

rectly to the recipient.

For load balancing to work correctly, you need to

create a sufficient number of rules: some of them will

apply to the specific configuration of the user, and some

of them will be general rules that ensure smooth routing

when applying a non-trivial configuration of physical

connections.

Each of the balancing mechanisms selected in sec-

tion 2 must have its own rule or set of rules.

The Network Load Balancer in Decentrilized Systems

31

VIII. EXPERIMENTAL RESULTS AND ANALYSIS

1) Research environment

Following the conditions for the environment of the

experiment, the proper devices for the study were con-

figured.

The device under test is a device on the Raspberry

Pi 3B+ platform that supports the OpenWrt operating

system (18, 19) and a software component for network

load balancing.

iperf3 client – two devices connected to the device

under test using a Wi-Fi network. The devices include

the iperf3 package to act as a client during testing.

iperf3 server – is a device connected to the device

under test using two Ethernet cables, one of which is

connected to the device under test using a USB adapter.

Connections from the tested device to the iperf3

server are symmetrical, each with a maximum bandwidth

of 72 Mbit/s. A schematic representation of the de-

scribed setting is shown in Fig. 7.

Fig. 7. Research environment

2) Obtained results

During the research, each of the developed balan-

cing mechanisms was tested. Each engine was tested

with iperf3 15 times at 30-second intervals. Given that

the given tool displays the results every second, the total

number of point results is 450 for each considered mec-

hanism.

For demonstration, the most important metrics of

each iteration were collected: the average, minimum, and

maximum throughput of the sender and the number of

retries when sending data. The results of testing the

balancing mechanism based on the selection of multiple

packages are shown in Fig. 8.

The results of testing the mechanism for limiting

the number of connections per unit of time are plotted in

Fig. 9.

The results of testing the balancing mechanism us-

ing the probability of entering the channel are provided

in graphs in Fig. 10.

Fig. 8. Test results of the balancing mechanism based

on the selection of multiple packages, device #1

Fig. 9. Test results of the mechanism for limiting

 the number of connections per unit of time, device No. 1

Fig. 10. The results of testing

the balancing mechanism using the probability

of getting into the connection channel, device No. 1

3) Evaluation of the reliability of the obtained re-

sults

To properly assess the reliability of the obtained results,

it was decided to calculate the following values: average va-

Nazarii Klymyshyn

32

lue, maximum value, minimum value, mean square devi-

ation, and the representativeness error of the arithmetic mean.

Table 1 shows the results of testing the first mecha-

nism based on multiple package selections on device No. 1.

Table 1

Results of testing the balancing mechanism based

on multiple package selection on device No. 1

No.

(i)
,

mbit/s

,

mbit/s

,

mbit/s

retries

amount

1 31.5 52.4 45.4 0

2 31.4 59.8 45.7 0

3 37.0 55.2 47.2 0

4 41.9 52.7 47.4 0

5 31.5 53.6 45.3 0

6 31.5 52.4 44.1 0

7 31.5 57.3 45.8 0

8 31.5 57.2 44.7 0

9 36.5 56.9 46.3 0

10 30.2 52.4 43.7 0

11 23.5 57.3 46.9 0

12 36.0 56.7 47.3 0

13 34.9 53.7 45.7 0

14 31.5 53.6 46.1 0

15 31.3 55.2 45.3 0

Table 2 presents the results of testing the second
mechanism for limiting the number of connections per
unit of time on device No. 1.

Table 2

The results of testing the mechanism for limiting

the number of connections per unit of time on device

No. 1

No.

(i)
,

mbit/s

,

mbit/s

,

mbit/s

retries

amount

1 29.2 52.4 38.7 0

2 30.4 41.9 39.0 0

3 30.2 47.1 38.0 0

4 31.4 54.1 39.4 0

5 27.1 60.1 39.5 0

6 21.0 47.4 35.4 0

7 27.6 52.4 38.7 0

8 29.7 41.9 38.5 0

9 30.2 52.4 38.4 0

10 26.6 48.5 36.8 0

11 27.6 42.0 38.2 0

12 27.1 44.8 37.7 0

13 21.0 45.7 36.5 0

14 31.3 48.9 38.4 0

15 28.1 46.9 37.7 0

Table 3 presents the results of testing the third bal-
ancing mechanism using the probability of getting into
the connection channel on device No. 1.

Measurements used for further calculations are
provided in the Tables. Here are only provided results of
testing from device No. 1.

4) Arithmetic mean value

Arithmetic averages are calculated with the formula:

. (1)

Table 3

The results of testing the balancing mechanism using

the probability of getting into the connection channel

on device No. 1

No.

(i)
,

mbit/s

,

mbit/s

,

mbit/s

retries

amount

1 21.0 83.9 56.6 0

2 41.9 62.9 54.7 0

3 31.5 52.4 50.4 0

4 31.5 83.9 62.0 0

5 31.5 94.4 64.4 0

6 52.4 83.9 65.0 0

7 41.9 83.9 58.2 0

8 41.9 94.4 61.4 0

9 41.9 94.4 59.8 0

10 31.5 73.4 54.4 0

11 41.9 62.9 54.3 0

12 41.9 83.9 58.1 0

13 31.5 62.9 52.6 0

14 41.9 94.4 60.0 0

15 52.4 83.9 58.9 0

Using (1), where n is the number of tests (n=15 in

our case), i is the sequence number of the particular

iteration of the test, y is the sequence number of the

tested mechanism, is the average bandwidth from

the i iteration of y test.

The results of testing the balancing mechanism

based on the selection of multiple packages:

 .

Using the same formula for the results of the mec-

hanism of limiting connections per unit of time:

 .

Using the same formula for the results of the prob-

ability of getting into the connection channel:

 .

5) Maximum value

The maximum value can be retrieved for each

mechanism from the respective table.

For the mechanism based on the selection of multi-

ple packages: .

For the mechanism of limiting connections per unit

of time: .

For the mechanism of the probability of getting into

the connection channel: .

6) Minimum value

In the same way, the minimum value can be re-

trieved for each mechanism from the respective table.

For the balancing mechanism based on the selec-

tion of multiple packages:

 .

For the mechanism of limiting connections per unit

of time:

 .

The Network Load Balancer in Decentrilized Systems

33

For the mechanism using the probability of getting

into the connection channel:

 .

7) Mean square deviation

The mean square deviations (SD) are calculated ac-

cording to the formula:

. (2)

Using (2), where n is the number of tests (n=15 in

our case), i is the sequence number of the particular test,

y is the sequence number of the tested mechanism,

is the average bandwidth from the i iteration of y test,

and is the arithmetic mean of .

The results of testing the balancing mechanism

based on the selection of multiple packages:

 .

Using the same formula for the results of the mec-

hanism of limiting connections per unit of time:

 .

Using the same formula for the results of the prob-

ability of getting into the connection channel:

 .

8) Arithmetic mean representativeness error

The representativeness errors of the arithmetic

mean are calculated according to the formula:

. (3)

Using (3), where y is a sequence number of the

tested mechanism, is the mean square deviation of the

y mechanism (calculated in the previous topic) and n is

the number of tests (n=15 in our case). The results of

testing the balancing mechanism based on the selection

of multiple packages:

 .

The results of the mechanism of limiting connec-

tions per unit of time:

 .

The results of the mechanism using the probability

of getting into the connection channel:

 .

9) Final results

Table 4 presents the final results.

The resulting bandwidth (in percentage terms) is

calculated with the next formula:

. (5)

Using (5), where 72 is the original bandwidth, y is

a sequence number of tested mechanism, is

the average bandwidth of device No. 1 with mechanism

y, is the average bandwidth of device No. 2

with mechanism y.

Resulting bandwidth of the first mechanism:

 .

Table 4

Final results.

y

Average band-

width of 1st device,

,

Mbit/s

Average Band-

width of 2nd

device,

vice,

,

Mbit/s

Total Band-

width,

,

Mbit/s

1 45.8 31.7 77.5

2 38 28.8 66.8

3 58 44.6 102.6

This shows that growth is equal to 7.6 % (initial

bandwidth is equal to 100 %, the new one is 107.6 %, so

it is bigger at 7.6 %).

Resulting bandwidth of the second mechanism:

 .

This shows that this mechanism provided no

growth.

Resulting bandwidth of the third mechanism:

 .

This shows that growth is equal to 42.5 % (initial

bandwidth is equal to 100 %, the new one is 142.5 %, so

it is bigger at 42.5 %). This algorithm also outperforms

results (40 % bandwidth growth) from the analog tech-

nology proposed by other authors [6].

IX. CONCLUSION

The mechanism, based on the selection of multiple

packages grew the total bandwidth by 7.6 % compared to

using a single connection channel, which is an improve-

ment in throughput but not significant.

The mechanism of limiting the number of connec-

tions is the only one of the considered methods that

demonstrated lower bandwidth measurement results than

when using a single communication channel.

The balancing mechanism using the probability of

hitting the connection channel showed the best results in

the study – the total bandwidth has grown by 42.5 %.

This algorithm also showed better results (40 % band-

width growth) than the analog technology proposed by

other authors.

In this research, the environment was considered,

namely: the devices used in the research process and the

connections between them.

The results of measuring the bandwidth and the

number of data transmission repetitions in the network

were obtained.

An assessment of the reliability of the data was car-

ried out – average values, maximum values, minimum

values, mean square deviations, and errors of representa-

tiveness of the arithmetic mean.

The analysis of the obtained results was carried

out – the balancing mechanism using the probability of

getting into the connection channel is recommended for

Nazarii Klymyshyn

34

solving the problem of network traffic balancing in small

networks.

From further research perspectives, it is possible to

consider the use of QoS measures together with balancing

mechanisms of multiple communication channels to guar-

antee bandwidth for sensitive services and applications.

REFERENCES

[1] Liu X., Qian C., Hatcher W. G., Xu H., Liao W., Yu W.

(2019). “Secure Internet of Things (IoT)-Based Smart-

World Critical Infrastructures: Survey, Case Study and

Research Opportunitie”, in IEEE Access, Vol. 8,

pp. 11825–11832. DOI:

10.1109/ACCESS.2019.2920763.

[2] Damasceno J., Dantas J., Araujo J. (2022). “Network Edge

Router Performance Evaluation: An OpenWrt-Based Ap-

proach”, 2022 17th Iberian Conference on Information Sys-

tems and Technologies (CISTI), Madrid, Spain, pp. 170–

173. DOI: 10.23919/CISTI54924.2022.9820027.

[3] Kafetzis D., Vassilaras S., Vardoulias G., Koutsopoulos I.

(2022). “Software-Defined Networking Meets Software-

Defined Radio in Mobile ad hoc Networks: State of the Art

and Future Directions”, in IEEE Access, Vol. 10, pp. 2305–

2312. DOI: 10.1109/ACCESS.2022.3144072.

[4] Zhang P., Xie K., Kou C., Huang X., Wang A., Sun Q.

(2019). “A Practical Traffic Control Scheme With Load Bal-

ancing Based on PCE Architecture”, in IEEE Access, Vol. 7,

pp. 1935–1942. DOI: 10.1109/ACCESS. 2019.2902610.

[5] Lemeshko O., Yevdokymenko M., Shapoval M. (2021).

“Routing Model with Load Balancing on the Traffic En-

gineering Principles based on Information Security

Risks”, 2021 IEEE 8th International Conference on

Problems of Infocommunications, Science and Technolo-

gy (PIC S&T), Kharkiv, Ukraine, pp. 114–126. DOI:

10.1109/PICST54195.2021.9772193.

[6] Torres R., Fortes S., Baena E., Barco R. (2021). “Social-

Aware Load Balancing System for Crowds in Cellular

Networks”, in IEEE Access, Vol. 9, pp. 183–194. DOI:

10.1109/ACCESS.2021.3100459.

[7] Lim J., Yoo J., Won-Ki H. J. (2021). “Reinforcement

Learning based Load Balancing for Data Center Net-

works”, IEEE 7th International Conference on Network

Softwarization (NetSoft), Tokyo, Japan, pp. 14–29. DOI:

10.1109/NetSoft51509.2021.94925662.

[8] Binh L. H., Duong T. (2021). “Load balancing routing

under constraints of quality of transmission in mesh wire-

less network based on software defined networking”, in

Journal of Communications and Networks, Vol. 23, is-

sue 1, pp. 483–494, DOI: 10.23919/JCN.2021.000004.

[9] Karnani S., Shakya H. K. (2021). “Leveraging SDN for

Load Balancing on Campus Network (CN)”, 13th Inter-

national Conference on Computational Intelligence and

Communication Networks (CICN), Lima, Peru, pp. 324–

338. DOI: 10.1109/CICN51697.2021.9574640.

[10] Pang S., Chen X., Zeng D. (2021). “Research on Dynam-

ic Load Balancing of Data Center Network Based on

SDN Architecture”, GLOBECOM 2020 – 2020 IEEE

Global Communications Conference, Taipei, Taiwan,

pp. 324–338. DOI: 10.1109/GLOBECOM42002.

2020.9348059.

[11] Tsiunyk B., Muliarevych O. (2022). “Autonomous Face

Detection System from Real-time Video Streaming for

Ensuring the Intelligence Security System”, Advances in

Cyber-Physical Systems, vol. 7, no. 2, pp. 156–162. DOI:

https://doi.org/10.23939/acps2022.02.156.

Klymyshyn Nazarii received

his B.S. degree in Computer Engi-

neering at Lviv Polytechnic Nation-

al University, Ukraine, in 2022. He

has professional experience working

in IT since 2021 and currently work-

ing as a C/C++ software engineer in

GloballLogic (Lviv, Ukraine).

