
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 8, No. 1, 2023

EMBEDDED SYSTEMS MULTIMEDIA FRAMEWORK
FOR MICROCONTROLLER DEVICES

Yaroslav Krainyk

Petro Mohyla Black Sea National University, 10, 68, Desantnykiv str., Mykolaiv, 54003, Ukraine
Author’s e-mail: yaroslav.krainyk@chmnu.edu.ua

https://doi.org/10.23939/acps2023.01.043

Submitted on 17.10.2022

© Krainyk Y., 2023

Abstract: The presented paper attempts to establish a
generalized approach to the development of embedded
systems multimedia applications. It is formalized in the
form of a framework that defines rules and recommenda-
tions for a developer on how to implement specific pieces of
software that work with multimedia data. The basis for the
development process is the division of the system’s func-
tionality into stages with the following development of each
stage. The framework also defines how touch sensor events
may be elaborated. The proposed framework has been
tested in a test scenario in an application with multiple
stages. The results proved that the solution is feasible for
multimedia applications (specifically, with graphics proc-
essing) and can be regarded as a generalized approach to
the development of embedded systems with multimedia
functionality.

Index Terms: embedded systems; framework; graphics;
multimedia; processing.

I. INTRODUCTION
Recently, we have observed a huge leap in the ca-

pabilities of microcontrollers and other embedded hard-
ware platforms. Previously, they supported a rather lim-
ited set of interfaces and had weak computational power.
It can primarily be explained by the fact that they were
oriented on maximizing the time of autonomous work.
However, the continuous development of the Internet
and formalization of the Internet-of-Things (IoT) and
Cyber-Physical Systems (CPS) changed the require-
ments for embedded devices [1]. Connection to the net-
work became a mandatory requirement for multiple
applications [2]. This requirement raised the bar of func-
tionality implemented and accelerated the development
of advanced designs. This was the main driver for the
appearance of multimedia interfaces and accelerators in
microcontrollers.

Contemporary microcontrollers that belong to the
performance line facilitate the peripheral set that in-
cludes modules for work with multimedia (graphics,
audio, and even video). For instance, microcontrollers
from the STM32 F4 series provide access to the graphi-
cal accelerator Direct Memory Access 2D (DMA2D)
and support the connection of the display via parallel
interface LCD-TFT Display Connection (LTDC). These
modules hugely extend possible use cases for the deve-
lopment of embedded applications. In terms of perform-

ance, those modules are not top-notch enablers for data
processing, however, they still can provide a decent level
of functionality.

However, this poses a challenge to multimedia ap-
plication development [3]. As the effective use of the
available hardware resources is significant, it is neces-
sary to realize the performance parameters of each mod-
ule in both individual and collaborative manner. On the
other hand, each scenario has its peculiarities from the
point of view of data organization. Some applications
may require active use of animation resources while
others may rely on the relatively simple user interface
with basic graphics. That fact implies differences in the
development process. Therefore, this paper attempts to
generalize the graphics management output process and
organization of the software.

II. RELATED WORK REVIEW
The appearance of the LTDC module as a com-

pound part of STM32 microcontrollers accelerated the
development of software solutions for graphical user
interfaces [4]. Some of them are supplied as open-source
and available for use with examples and others are deli-
vered on the terms of a paid license. They guarantee a
rich user experience with the support of familiar desktop
controls and information display. However, the main
idea of these frameworks is to provide ready-to-use
graphical components, e.g. buttons, text fields and labels,
lists, etc. On the other hand, work with custom animation
and graphical components has less support from these
libraries [5].

The presence of these components commenced
huge research of their capabilities and novel approaches
to the hardware and software organization in the CPS.
As embedded systems are tightly associated with the IoT
paradigm, they also served as a driver for the extension
of IoT solutions in the field of multimedia. The trend
that can be observed is that many research works consi-
der multimedia [3, 8] as an indispensable component for
the development of IoT systems. For instance, many of
the developments facilitate not only connectivity with an
exchange of small chunks of data but also the User Inter-
face implemented based on the display and touch sensor.
Moreover, conventional protocols of IoT such as MQTT
[6] and CoAP [7] are regarded as the source of multime-

Yaroslav Krainyk 44

dia data (even on the level of streaming). From the point
of view of the multimedia system organization, such
systems can be divided into two types [5]:

1) content demonstrating/interpreting systems.
2) content generating systems.
The first variant is supposed to serve as a receiver

of multimedia data from the other devices. Typically, the
data is generated by more powerful device and sent via
network. The device receives it and decodes into the
form that is suitable for representation in the form of the
image/video content and audio data. The latter option
works in a different way as the device is responsible not
only for demonstration of that multimedia sources but
also serves as a generator itself which implies much
more computational intensity from the core. The paper
deals with the second type of devices and develops the
processing pipeline for multimedia generation and output
on the screen. The peculiarities of the involved modules
are taken into account according to ensure their efficient
use.

The double buffering technique is regarded as an
indispensable part of any graphics processing application
regardless of the platform. It mitigates many undesirable
problems that may appear on the display in the form of
artifacts, unstable output images, etc. Hence, it is highly
recommended to incorporate this technique into the
framework to avoid possible problems with the output
image. The proposed framework presumes that all opera-
tions with graphics are executed in the double buffer
mode.

The graphics accelerators in modern microcontrol-
lers typically perform a limited set of operations. The
basis for all of them is a copy of one memory region to
another which is the core of the Direct Memory Access
(DMA) module. The module is enriched with the possi-
bility to work with different pixel formats and further
conversion, blending, smoothing, and blurring operations
in comparison with general-purpose modules. These
operations are suitable for two-dimensional raster proc-
essing. More complex pipelines with three-dimensional
processing are too complex for the current revision of
devices and are not available. Thus, the framework is
oriented on the work with two-dimensional raster images
to generate the output.

Many graphics frameworks for desktop applica-
tions and 3D engines have the notion of the stage as their
fundamental basis. For instance, the JavaFX framework
[9] uses a stage class that serves as a platform for other
output. It works both with conventional user interface
elements, e. g. buttons, list boxes, tables, etc. as well as
with pure graphical components that are to be rendered
by the engine. This approach was incorporated in the
presented paper as the stage is also the basic entity for
the whole rendering process organization. As the work is
performed on a lower level in comparison to the JavaFX
situation, the difference in the stage approach is signifi-
cant.

In the work [10], the author established a network-
based multimedia solution. The purpose of the node

module was to receive data and transfer it to the corre-
sponding output interfaces. No additional processing of
the incoming stream was required. In contrast to the
network-based approach, this paper attempts to conduct
the system organization for the device that serves as a
content generator and not a retranslator of the content.
This demands a completely different architecture for
software management which is the aim of the presented
paper.

The framework [11] is a prominent example of
ready-to-use graphical frameworks for embedded sys-
tems that procures graphical components and additional
structures that can drastically facilitate the development
process of the graphics application or some of its ele-
ments. It is advantageous of this software part that it
includes solutions that are typical for the modern user
interface. However, it is deficient in the intense anima-
tion scenarios that can be applied for development.

As it can be observed from the review, there is a
steady trend in the development of multimedia-enabled
systems. However, such systems can be regarded as rea-
sonably complicated and resource-consuming. This is al-
so valid for the software development process. Hence,
the gap in the development strategies for multimedia
applications is based on the embedded systems plat-
forms. The proposed solution in this paper can be con-
sidered as a framework that is designed to generalize the
development process.

III. OBJECTIVES OF THE PAPER
The framework presented in this paper sets the goal

to organize the development of the multimedia functions
of the embedded system according to the standard work-
flow. The framework may serve as a base for the deve-
lopment of complex applications that actively use mul-
timedia resources in their work. From the developers’
point of view, the framework should assist in reducing
overall development time as all graphical elements can
be realized similarly.

The contribution of this paper is in the following.
The framework for the development of multimedia ap-
plications has been established in terms of hardware and
software organization. The framework defines software
architecture for individual components and provides
recommendations on the implementation of typical sce-
narios.

IV. MULTIMEDIA FRAMEWORK DESCRIPTION
Firstly, let us provide an overview of the multime-

dia embedded system organization from the point of
view of hardware components. The embedded system
has the requirements to store graphical information in the
energy-independent memory. The first option is the
internal programmable Flash memory. However, this is
not the best option because it limits the extensibility of
the device. Flash memory facilitates up to 2 megabytes
for high-performance microcontrollers. While this capac-
ity may be enough for systems that utilize small bitmaps,
usage of multiple full-screen bitmaps will result in a lack

Embedded Systems Multimedia Framework for Microcontroller Devices 45

of internal memory and may even cause problems with
compilation. Hence, the solution is to use external mem-
ory to store blocks of multimedia data. The two main
options for external memory to guarantee the necessary
amount of memory are:

3) SD-memory card.
4) Quad Serial Peripheral Interface (QSPI) Flash

memory.
While the two mentioned types of memories share

in common the characteristic of data retention during a
period when the system is not working (no power sup-
ply), the main difference between them is in the data
provided for the system work. Apparently, the initial
data for the SD-card case is written in advance as it can
be used as an external drive for almost every device. The
QSPI memory can be programmed with the necessary
data during the flash process. Hence, all the files should
be converted into a corresponding format that is suitable
for the compilation and generation of a binary program-
ming file. The retrieval of the data from those two types
of memories is also different. For the QSPI, all the data
is encoded in binary format. On the other hand, an SD-
card can store conventional files with image, video, and
sound data. However, that entails software processing of
the files. Specifically, libraries to work with compressed
image and video formats are compulsory to work with
the data. As for the update procedure, it can be executed
during the runtime providing that this functionality is
implemented on the system level.

The system under consideration should also facili-
tate at least a display with a touchscreen sensor of any
type. The display’s resolution is dictated by the sup-
ported formats of the microcontroller output system.
Typically, extremely large resolutions are not supported,
however, it is possible to find devices that can control up
to 640 by 480 pixels and even displays with resolutions
of more than 1000 pixels in width and around 700 pixels
in height. The resolution also depends on the target ap-
plication as some devices can be effectively controlled
using small resolutions while building complex graphics
and displaying multiple control elements is a prerequisite
of larger displays. The desirable feature associated with
the display is the presence of a touch sensor that can
easily substitute buttons and other controls. The touch
sensor allows the developer to implement all controls on
the display. That is the trend in the development of mod-
ern systems.

Another hardware component for the multimedia
embedded system is an external Random-Access Mem-
ory (RAM). Usually, Single Data-rate RAM (SDRAM)
is utilized to store multimedia data during the runtime of
the application. The reason to have this type of memory
is that the overall volume of internal RAM even for
advanced microcontrollers is not enough to store multi-
ple graphical and sound elements. This value may ex-
ceed dozens or even hundreds of megabytes. Hence, to
extend the available memory range, external SDRAM is
connected to the controller. In the typical case, it is used

to organize a double buffer, load textures, sprites, and
other graphics primitives.

Finally, the touch sensor component from the
hardware point of view is represented by a thin transpar-
ent film. It has a digital interface to inform the control
device about its state. In general, this type of sensor can
generate an external interrupt signal when the touch
event is detected and has a dedicated digital interface
that sends information about the touch to the microcon-
troller. This way the controller can acquire necessary
information about the sensor and orchestrate the reaction
to the event from the point of view of graphics change,
sound effects, etc.

The general scheme of architectural hardware com-
ponents is demonstrated in Fig. 1.

Fig. 1. General scheme of hardware elements connection
in the system under investigation

The microcontroller is responsible for the initializa-
tion of the whole set of connected peripherals. After the
initial configuration of the memory and controllers, they
work on their own without additional interruption from
the main module. At the same time, the core is responsi-
ble for the management of data flow during the next
periods of the device’s work. That is the part when the
devised framework is activated.

First, the devised framework assumes the division
of all application graphics into stages. A single stage
unites graphical components, animations, and coopera-
tion between them. The transition between different
stages is controlled by the stage manager that switches
them according to the application logic.

It is assumed that the individual stage is repre-
sented by a set of resources associated with it.

Each stage is presumed to execute the following
sequence of activities:

1) initialization of the resources associated with a
stage;

2) assignment of the function pointers values de-
fined in the stage’s files;

3) execution of the main processing loop;

Microcontroller

External
memory

Display

SDRAM (ex-
ternal ele-

ment)

Touch screen
sensor

Other sensors

Yaroslav Krainyk 46

4) release of the allocated resources when the stage
receives a command to change.

During the initialization stage, all necessary re-
sources are loaded into the RAM (either the internal RAM
of the controller or the external SDRAM). The resources
are allocated sequentially. This stage may cause some
delay in the execution especially when compressed data
formats are involved. When the new stage is called, it may
erase/rewrite the resources of the previous instance. The
reuse scenario is also possible, however, for this purpose
both stages need to share the same resource map up to
some extent. In this case, only deficient resources can be
loaded. If we consider that each resource consumes L
bytes of the SDRAM space, the start address for the i -th
stage resource is calculated according to the equation

1 1i i iaddr addr L− −= + . (1)
Hence, each resource’s address is calculated itera-

tively concerning the value of the previous resource loca-
tion and its length in bytes. For image data that is stored in
full resolution with a conventional RGB scheme, the value
of L will be calculated as

3iL width height= ⋅ ⋅ . (2)
Each stage should define a minimal set of functions

that are used to describe its behavior. That also relates to
initialization. Hence, the set of functions can be general-
ized and regarded as a required attribute of the stage. In
the proposed work, it is assumed that the function pointer
mechanism is exploited to ensure the dynamic behavior of
the system when an active stage changes. That is the
mechanism that is available in the C programming lan-
guage. In the case of C++ implementation, more advanced
object-oriented techniques can be applied. The stage man-
ager assigns dedicated pointers to the specific addresses
which are associated with a particular stage instance. The
list of compulsory functions for the stage to implement
contains the following elements:

1) initialization;
2) foreground rendering;
3) background rendering;
4) touch sensor processing.
Those functions should be defined and accessible to

the stage manager.
Stage rendering. The stage rendering process also

follows the idea of unification so it can be used for all
stage instances that will be implemented in the applica-
tion. As the final image can be represented as a combina-
tion of background and foreground images. At first, the
background is copied to the buffer memory region. Then,
the foreground image is copied into the same memory
region. Both operations presume to undergo chroma key
filtering to remove specific pixels from the output.

The rendering process in this case implies that image
data from the buffer represented by the pair of address and
length),(ii Laddr is copied to the address in the layer
buffer according to the value of coordinates),(ii yx . As
the DMA2D mechanism is activated to manage copy
process, information about the width and height of the

image should be stored. It is necessary because DMA2D
skips memory elements that will not be overlapped by the
current image according to the width and height parame-
ters.

The efficiency of such a procedure should be quite
high because DMA2D is a module that was designed for
the execution of operations over graphical elements. The
processor just sends information about the necessary ac-
tivities that are expected from the module and then waits
for their finalization. As soon as the operation is over, the
next instruction can be sent to the pipeline. Some opera-
tions can be further optimized, but in a general way, this is
the prominent solution to ensure a decent performance
level during the graphics rendering process and unload the
computational core from time-consuming operations with
data arrays.

Stage manager. The stage manager part is responsi-
ble for transitions between different stages. That level of
abstraction allows separating each stage and removes
unnecessary connections between them. Therefore, only
the instance of the stage manager should be aware of how
the transition can be performed, what sequence is possi-
ble, and so on. From the implementation point of view, the
stage manager may be implemented either as an instance
of a separate structure/class (for C/C++ correspondingly)
or encapsulate the logic in the function. Moreover, assum-
ing more sophisticated scenarios, it may be divided into
multiple functions. It depends on the application domain
of the system. The stage manager instance conducts the
assignments of the function pointers to specific addresses.
This is the main workaround to assure the dynamic behav-
ior of the system. A typical example of stage management
is depicted in the state diagram in Fig. 2.

initia
l

S1
Show s1

stage

S2
Show s2

stage

SN
Show sN

stage

S11
Show s11

stage

S12
Show s12

stage

…

Fig. 2. Example of the state diagram for stage transition
implementation

Generally speaking, two-way transitions are possible
between the stages on different levels. However, it is also
possible to implement logic that can handle transitions

Embedded Systems Multimedia Framework for Microcontroller Devices 47

between states on the same level of stages. The diversity
of the stage graphs that is possible to implement using the
proposed technique is quite large. However, it is necessary
to remember that every stage causes increase in the foot-
print of the output binary file. Thus, generalization may be
applied to the states to decrease the output in the extreme
case. Other techniques are also possible. For instance,
declarative stage generation according the description in
the configuration file may reduce the footprint of the bi-
nary executable significantly.

The relationship between the stage manager and sta-
ges can be depicted using the following diagram (Fig. 3).

Stage manager
+switchStage
+callInit
+callBackDraw
+callForeDraw

Stage
+Init
+backgroundDraw
+foregroundDraw

Stage1
+Init
+backgroundDraw
+foregroundDraw

StageN
+Init
+backgroundDraw
+foregroundDraw

Fig. 3. Representation of the connection between the stage
and stage manager in the form of a class diagram

According to the diagram, the stage is represented as
an interface that all derived classes should implement.
Stage manager instance has a reference to the specific
stage. The calls to the stage-related functions contain the
call of the functions implemented in the stage.

Touch sensor processing. There are multiple options
for touch sensor processing that can be integrated within
the framework. Let us distinguish the following methods:

1) interrupt-based with timer;
2) timer polling;
3) reaction in the loop.
Basically, any of them can be used depending on the

complexity of the stage generated. However, to ensure the
desired performance, the first two options are recom-
mended to avoid stealing processor cycles from rendering
tasks. The third option is also possible but it may lead to a
mix-up of the code responsible for the basic functionality
which is highly undesirable. In order to ensure the correct
responses to touch events, there is a delay and disabling of
the interrupt in the interrupt handler. The disabling of the
interrupt guarantees that the interrupt will not be executing
multiple times as a result of the pressing event which is
highly probable in case of conventional pipeline. After the
certain period of time, the interrupt is enabled once again.
This way, the performance of the system can be regulated
as well as reactivity. By decreasing the delay, more touch
events can be sensed in one second. The event of enabling

back the external interrupt from the touch sensor is per-
formed in the timer update interrupt handler where the
interrupt from the sensor is enabled and reverse action is
applied to the timer update interrupt. Hence, there is a
mutual dependency between the external interrupt and the
interrupt from timer as they turn itself off and enable the
opposite callback.

The possible scenario is occurrence of the multiple
touch events. Contemporary sensors support such func-
tionality and operate in similar way as with one touch. The
data about multiple touch events is acquired and sent.
However, from the point of view of the processing mod-
ule, the situation does not change as a single interrupt
occurs with all information about touches. Therefore, only
logic augmentation is required in the interrupt handler but
the presence of this functionality should not affect the
performance in general.

The pipeline of graphics processing is supposed to
be executed in the loop like any other embedded applica-
tion. The visualization of the graphics processing pipeline
is shown in Fig. 4.

Is switch
requested

Start

Draw current
stage

Assign pointers
to the functions

Make initial
stage current one

Process touch
event

Finish

Is finish
requested

No

No

Yes

Yes

foreach (item:itemset) {
draw(item, x, y,
width, height);

}

Fig. 4. The algorithm for graphics processing proposed
by the framework

During the rendering stage, each graphical object is
copied into the corresponding buffer with regard to the
values),,,(heightwidthyx . Then, the buffers are copied
completely into the area of the background or foreground.

To demonstrate the organization of the project, the
diagram shown in Fig. 5 was created. Each stage is repre-
sented by a pair of source and header files. Adding a new
stage assumes that two new files will be added to the
project. The technique used to make the main file aware of
the entities in other files is the use of an extern modifier
for object declaration. Hence, the declaration appears in
two files and the compiler translates it into a single in-
struction. The functionality that is responsible for touch
sensor processing resides in the main.c file.

Yaroslav Krainyk 48

S1.h S2.h SN.h

S1.c S2.c SN.c

main.c extern
s1_stage
s1inst

s1_stage
s1inst

Fig. 5. The diagram of file organization according
to the proposed framework

The arrows in Fig. 5 demonstrate the relation of in-
clusion between files. The side note elements show how
stage elements are defined in the source code.

V. RESULTS AND DISCUSSIONS
The proposed approach was tested on the STM32

platform. The testbed was represented by the STM32F7
Disco development board which comprises all the neces-
sary elements for work with multimedia data. It has a
ready-to-use display with a touch sensor, audio interface,
and Ethernet connectivity. All the connections between a
microcontroller and peripheral devices are prepared and
demand no additional manipulations. The particular inter-
est for this work is in the LCD that has a resolution of 480
by 272 pixels and supports 24-bit color depth and an alpha
component. The touch sensor is selected specifically for
this display with the corresponding resolution. The board
also facilitates the SDRAM element installed. The size of
the internal flash memory is 1 Mbyte.

For the test purpose, based on the devised solution,
the microcontroller was implemented in the STM32Cube
IDE using the C programming language. Hardware Ab-
stract Library (HAL) of STM32 and Board Support Pack-
age (BSP) for this specific board was used during the
development process. Hence, the framework tries to fol-
low practices introduced by HAL. To demonstrate the
feasibility of the framework, the application contains
multiple stages (6 stages; 1 main stage, and 5 comple-
mented stages) that include different graphical objects and
show different communication scenarios on the stage. The
graphical resources were stored on the SD-card and
grouped through a directory structure. Each stage had its
dedicated directory on the SD-card.

Additionally, the testbed was equipped with a 6-axis
sensor MPU6050. It comprises an accelerator and gyro-
scope so the reaction to the movement can be imple-
mented by acquiring measurements from this sensor to
calculate the orientation of the board.

The size of the developed firmware after the compi-
lation with compiler optimization at level O3 was
237 kbytes. That led to the consumption of 23.7 % of the
flash memory of the microcontroller. The addition of the
debugging information alongside with downgrading of the

optimization level will result in a higher level of program
memory use.

Finally, the processor utilization was put into the test
scenario. For this purpose, the code was complemented
with an additional timer to measure an execution cycle

cycleT . The value of the timer was captured before and
after the cycle execution and the difference between two
values was calculated with regard to possible overflow.
Then, the measurement was repeated for each individual
call inside the loop. Since all operations can be divided
into two categories:

1) operations require processor execution;
2) operations require only initiation from the proc-

essor.
Obviously, the second category is associated with

DMA transactions. Let us denote the overall cycle time of
execution as the sum of all actions from the both categories:

∑∑ +=
j

jDMA
i

iproccycle TTT ,, . (3)

Therefore, the potential usage of the processor can
be assessed as a ratio:

cycle

i
iproc

T

T
LOAD

∑
=

,

. (4)

The idea of evaluating processor load in this way is
in the fact that during a DMA transaction processor can
execute other tasks. By applying blocking DMA call, we
can measure the time that processor waits for the end of
operation. This time can be reassigned to other tasks in
case of non-blocking scenarios. According to the per-
formed tests, the value of the LOAD was in the range of
[0.124–0.318].

The devised application had one stage controller that
controls the stage switching process. The application had
one main stage and several subordinate stages. The transi-
tion from the main stage can be executed to any stage of
the lower level. Backward transition is also possible.
Hence, the only way to access another stage of the lower
level is to move back to the main stage and then one can
invoke a transition. Thus, the organization of stage transi-
tion corresponds to the basic scenario with only two levels
of stage hierarchy. The main stage contained multiple
custom-drawn buttons to transit to the lower level stage.
The other stages comprised a single button that initiated a
return to the main one.

The application utilizes background and foreground
layers to organize graphics representation. The back-
ground typically is a static image prepared during the
loading of the file. The foreground layer contains graphi-
cal images, sprites, and text elements that are designed to
communicate with each other.

As for the other aspects of the hardware platform
work, other processes (which are not associated with mul-
timedia directly, however, play a supportive role for the
device, e. g. controlling battery state and signaling about
it, updating multimedia data from the network resources
as a part of update procedure, etc.) can exist there. Such
activities may also consume resources even if they are

Embedded Systems Multimedia Framework for Microcontroller Devices 49

organized using DMA transactions. However, as the proc-
essor is not involved during the most part of the DMA
transfer and just maintains the start and finish of the trans-
fer, that should not impose significant plummet in the
computational core performance. Those other background
processes can take place alongside with the graphics proc-
essing pipeline. However, if the tasks are computationally
intensive, that may entail some aggravation in the framer-
ate as the processing core is involved in the interrupt han-
dling, Thus, the recommendation is to reside maximum
supportive operations in the DMA and avoid computa-
tional tasks assigned to the assisting functionality.

The other point of concern is usage of the proposed
framework in the context of the Real-Time Operating
System (RTOS) in comparison with bare metal applica-
tions. The OS provides additional services to ensure main-
tainability of the application. While the initial intent is
designed and tested as a bare metal system, it still can be
integrated into the solution with RTOS. For this purpose,
the task for the graphics context management should be
created. Typically, RTOS supports conventional interrupt
processing, hence, the amount of changes to the sources
code should be conceivable and may be practically trans-
ferred to the OS environment. The precaution for the
RTOS usage is the correct configuration of timers that
measure intervals for the system. Incorrect configuration
may lead to a notable degrade in the number of frames
displayed in one second which is the main metric for the
system. Usage of the framework on the systems with more
than one computational core is possible, however, it re-
quires additional level of abstraction since thread safe
access to the resources is not guaranteed in the current
implementation of the framework. Such level of abstrac-
tion should utilize synchronization primitives as mutex to
establish proper control over the system resources.

VI. CONCLUSIONS
The paper presented the framework for software de-

velopment for multimedia embedded applications. The
framework is based on the division of the application into
multiple stages and the stage is the key notion for the
devised solution. The solution allows the developer to
unify the development process by following specific rules
during the process. All functionality can be implemented
similarly. The framework is suitable for animation organi-
zation, interface implementation, and other scenarios for
the user interface. The feasibility of the proposed ap-
proach was tested on the application with 6 stages. The
footprint of the whole binary file had a size of 237 kbytes.

All stages were implemented similarly according to the
declared interface for the stage. That should assist in the
reducing development time for such applications.

REFERENCES
[1] A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, M. Maasberg,

and K.-K. R. Choo, “Multimedia big data computing and In-
ternet of Things applications: A taxonomy and process
model”, Journal of Network and Computer Applications,
Vol. 124. Elsevier BV, pp. 169–195, Dec. 2018. DOI:
10.1016/j.jnca.2018.09.014.

[2] P. Hupalo and A. Melnyk, “Acquisition and Processing of
Data in CPS for Remote Monitoring of the Human func-
tional State”, Advances in Cyber-Physical Systems, Vol. 6,
No. 1. Lviv Polytechnic National University, pp. 14–20, Jan.
23, 2021. DOI: 10.23939/acps2021.01.014.

[3] F. Al-Turjman, A. Radwan, S. Mumtaz, and J. Rodriguez,
“Mobile traffic modelling for wireless multimedia sensor
networks in IoT”, Computer Communications, Vol. 112. El-
sevier BV, pp. 109–115, Nov. 2017. DOI: 10.1016/j.com-
com.2017.08.017.

[4] D. Ibrahim, “ARM Cortex microcontroller development
boards”, Arm-Based Microcontroller Multitasking Projects.
Elsevier, pp. 33–45, 2021. DOI: 10.1016/b978-0-12-
821227-1.00003-7.

[5] Y. Krainyk, “Regression Model of Frame Rate Processing
Performance for Embedded Systems Devices”, in Applica-
tions of Machine Learning. Algorithms for Intelligent Sys-
tems, P. Johri, J. Verma, and S. Paul, Eds. Springer, Singa-
pore, 2020, pp. 257–265. DOI: 10.1007/978-981-15-3357-
0_17.

[6] R. Herrero, “MQTT-Sn, CoAP, and RTP in wireless IOT
real-time communications,” Multimedia Systems, Vol. 26,
No. 6, pp. 643–654, 2020. DOI: 10.1007/s00530-020-
00674-5.

[7] W. U. Rahman, Y.-S. Choi and K. Chung, “Performance
Evaluation of Video Streaming Application Over CoAP in
IoT”, in IEEE Access, Vol. 7, pp. 39852–39861, 2019. DOI:
10.1109/ACCESS.2019.2907157.

[8] A. Karaagac, E. Dalipi, P. Crombez, E. De Poorter, and J.
Hoebeke, “Light-weight streaming protocol for the Internet
of Multimedia Things: Voice streaming over NB-IoT”, Per-
vasive and Mobile Computing, Vol. 59. Elsevier BV,
p. 101044, Oct. 2019. DOI: 10.1016/j.pmcj.2019.101044.

[9] Oracle, “Class Stage”, https://docs.oracle.com/.
https://docs.oracle.com/javase/8/javafx/api/javafx/stage/Stag
e.html (accessed Oct. 17, 2022).

[10] Y. Krainyk, “Information technology of university class
internet-of-things-module”, in CEUR Workshop Proceed-
ings, 2019, Vol. 2516, pp. 58–68. url: http://ceur-
ws.org/Vol-2516/paper4.pdf

[11] uGFX, “uGFX – lightweight embedded GUI library”.
https://ugfx.io/ (accessed Oct. 20, 2022).

Yaroslav M. Krainyk is an
associate professor, Ph. D. in compu-
ter systems and components at Com-
puter Engineering Department at Petro
Mohyla Black Sea National Uni-
versity (Mykolaiv, Ukraine). He recei-
ved a B. Sc. degree in Computer Engi-
neering in 2011.

In 2013, he received a M.Sc. degree in Systems and Meth-
ods of Decision Making. In 2016, he was awarded a Doctor of
Philosophy degree. His research interests include embedded sys-
tems, Internet-of-Things, FPGA, image processing.

