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We propose an approximation of pair correlations for solving the equations of the kinetic
theory of long-wave (or large-scale) fluctuations in gaseous media. The basic ones are
the general nonlinear equations of the large-scale fluctuations theory at the kinetic stage
of system evolution, derived from the first principles of statistical mechanics. We show
that based on the equations of the long-wave fluctuations kinetics in the case of weak
interaction between particles, in the approximation of pair fluctuations it is possible to
reproduce the main results of the quasi-linear theory of plasma. Thus, the well-known
quasi-linear theory of plasma is provided with a first-principle justification.
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1. Introduction

Traditionally it is accepted that in general approaches for describing kinetic processes in gaseous media
can be mostly divided into two large subgroups (see, for example, [1]). The presence of one subgroup is
associated with the possibility of assuming the interaction between particles of the gaseous medium to
be small (while not applying such restrictions on the density of particles in the system). The existence
of the second-mentioned subgroup is caused by the possibility of assuming the density of particles to
be small and the interaction between them to be arbitrary, if only not so strong, that the bound states
of particles could arise.

In the first mentioned case, the basic kinetic equation with one-particle distribution function
f(x,p, t) by coordinates x and impulses p at time t is so-called Fokker–Planck equation:

∂f(x, t)

∂t
+

p

m

∂f(x, t)

∂x
−
∂U(x; f)

∂x

∂f(x, t)

∂p
= L(x; f), (1)

where m is the mass of a particle and the notation x ≡ (x,p) is introduced. The quantities U(x; f) and
L(x; f) in (1), which are called the self-consistent (or mean) field and the collision integral, respectively,
are determined by the formulas:

U(x; f) ≡

∫

d3x′V (x− x′)

∫

d3p′f(x′,p′, t), L(x; f) = −
∂

∂pi
Ji(x; f). (2)

It should be noted that the value V (x − x′) in expression (2) is the potential energy of the pair
interaction between particles located at the points x, x′. Let us also pay attention to the fact that
the collision integral L(x; f) in Fokker–Planck kinetic equation (1) has the form of divergence in the
momentum space. The explicit form of the functional Ji(x; f) in its simplest form is determined by
expression [1]:
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Ji(x; f) = C

∫

d3p′|p− p′|−3
(

(p− p′)2δik − (p− p′)i(p− p′)j
)

×

(

∂f(x)

∂pk
f(x′)−

∂f(x′)

∂p′k
f(x)

)
∣

∣

∣

∣

x′=x

, (3)

where

C =
m

8π

∫ ∞

0
dq q3V 2

q , Vq =

∫

d3xV (x)e−iqx.

As for the second subgroup of approaches for describing kinetic processes in gaseous media, it is
based on using Boltzmann kinetic equation for the one-particle distribution function f(x,p, t):

∂f(x1, t)

∂t
+

p1

m

∂f(x1, t)

∂x1
=

∫

d3p2

∫

dΩ|p2 − p1|σ(ϑ, |p2 − p1|)
{

f(x1,p
′
1, t)f(x1,p

′
2, t)

−f(x1,p1, t)f(x1,p2, t)} ≡ L(x1; f). (4)

As can be seen, there is no mean field in this equation, and the collision integral L(x1; f) has a more
complex structure than (2), (3). The main characteristic of the collision integral is the differential
cross section σ(ϑ, |p2 −p1|), where ϑ is the angle between vectors p2 −p1 and p′

2 −p′
1. Note that the

element of the solid angle dΩ, along which the integration in (4) is carried out, is also associated with
the same angle, see [1–3] for details.

However, we should remind that the kinetic equations (1), (4), that are used to describe the non-
equilibrium processes in various gaseous media were obtained, in fact, by neglecting the long-wave
fluctuations in the described systems. In other words, when the mentioned equations were derived,
we substantially used the assumption of rapid attenuation of correlations while increasing the distance
between the i-th and the j-th particles of the system, |xi−xj| & r0, where r0 is the characteristic radius
of interaction between particles. Meanwhile, when studying the dynamics of long-wave fluctuations, it is
necessary to deal with systems with a large, rising in time radius of correlations [4–9], so the assumption
of rapid decrease in correlations |xi − xj| & r0, which underlies [1–3], does not perform. Since the
impact of long-wave fluctuations on relaxation processes in such systems can be very significant, the
question arises as to the method of describing the kinetics and hydrodynamics of long-wave fluctuations.
In order to develop such a technique, the approaches used in [1–3] should be significantly modified.
This modification [8] is related to the following circumstances. Approaches [1–3] are based on the idea
of Bogolyubov about the hierarchy of system relaxation times. According to it, at the kinetic stage of
system evolution many-particle distribution functions fS(x1, . . . , xS ; t) depend on time t only through
the one-particle distribution function f(x, t) dependency on time (the so-called functional hypothesis):

fS(x1, . . . , xS ; t) −→
t≫τ0

fS(x1, . . . , xS ; f(x
′, t)), (5)

where τ0 is the so-called time of chaotization, with order of magnitude comparable with the time of one
collision [1]. However, this assumption (5) becomes unfair in the presence of long-wave fluctuations in
the system [8].

2. Smoothed many-particle distribution functions

In order to formulate a functional hypothesis modified for the presence of long fluctuations in the
system, we consider the smoothed S-particle distribution functions f̃S(x1, . . . , xS ; t), that arise from the
ordinary many-particle distribution functions fS(x1, . . . , xS ; t) due to the transition to the asymptotic
region |xi − xj | ≫ r0,

fS(x1, . . . , xS ; t) −→
|xi−xj |≫r0

f̃S(x1, . . . , xS ; t) ≡ PfS(x1, . . . , xS ; t) (6)

(P is the symbol for the smoothing operation). It is clear that due to such a limit transition, a
significant simplification must occur in the description of the system.

Let us go into more detail on the concept of the smoothing operation. Even if the initial many-
particle distribution functions were smooth (on the r0 scale) functions xi, i = 1, 2, . . . , S, as a result
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of the time evolution, they would acquire a complex irregular character at |xi − xj | . r0 (i, j =
1, 2, . . . , S), which reflects the irregular on the r0 scale properties of the potential energy of the S
particles interaction. The character of this irregularity can be illustrated by the example of the function

ϕ(r) (here, r plays the role of |xi − xj |), which has two spatial scales of change, ϕ(r) = ϕ
(

r
r0
, r
L

)

(r0

is the characteristic microscopic scale of change over small distances, L ≫ r0 is the characteristic
macroscopic scale of change over long distances). Then the smoothing operation of the function ϕ(r)
is defined by the expression:

ϕ̃(r) = Pϕ(r) ≡ ϕ
(

∞,
r

L

)

, P2 = P. (7)

It is clear that the smoothing operation satisfies the properties:

Pϕ1(r)ϕ2(r) = ϕ̃1(r)ϕ̃2(r), P {ϕ1(r) + ϕ2(r)} = ϕ̃1(r) + ϕ̃2(r), (8)

P
∂ϕ(r)

∂r
=
∂ϕ̃(r)

∂r
.

If ϕ(r) is a smooth function of r (i.e., a function that does not contain the small scale r0), then

ϕ̃(r) = ϕ(r), ϕ(r) ≡ ϕ(r/L) (9)

whence it follows that P2 = P. In particular, if ϕ(r) = c = const, then c̃ = c. If the function
ψ(r) ≡ ψ(r/r0) is a function that does not contain the scale L, i.e., ψ(r) = 0 for r > r0, then

Pψ(r) = 0. (10)

It follows that

Pψ(r)ϕ̃(r) = 0, P

∫

dr′ψ(r − r′)ϕ̃(r) =

∫

dr′ψ(r − r′)ϕ̃(r). (11)

In particular, since the many-particle correlation functions of the equilibrium systems g0S(x1, . . . , xS)
are concentrated at |xi − xj | . r0, then Pg0S(x1, . . . , xS) = 0. Formulas (6)–(11) fully determine the
operation of smoothing the small-scale fluctuations and specify a set of microscopic variables (namely,
the smoothed many-particle distribution functions f̃S(x1, . . . , xS ; t)) at the fluctuation-kinetic stage of
system evolution.

Therefore, according to Bogolyubov–Peletminskii reduced description method [1,2,8], it is assumed
that at times t ≫ τ0 (τ0 ∼ r0/ν is the time of chaotization, ν is the average velocity of the par-
ticle) the state of the system is completely described by the smoothed many-particle distribution
functions f̃S(x1, . . . , xS ; t) (see (6)). It means that the exact many-particle distribution functions
fS(x1, . . . , xS ; t) at t ≫ τ0 will depend on time and initial many-particle distribution functions only
through the smoothed many-particle distribution functions (the functional hypothesis, cf. (5)):

fS(x1, . . . , xS ; t) −→
t≫τ0

fS
(

x1, . . . , xS ; f̃1(t), f̃2(t), . . .
)

. (12)

Thus, although the exact distribution functions fS(x1, . . . , xS ; t) at times t . τ0 depend, generally
speaking, on the initial many-particle distribution functions fS′(x1, . . . , xS′ ; 0), this dependence is
simplified for times much greater than τ0 and is contained only in functions f̃1(t), f̃2(t), . . ., when the
functions fS become functionals. In this sense, functionals (12) are universal and do not depend on
the nature of the initial conditions for many-particle distribution functions (see [8]). We should note
that according to (6), functionals (12) must satisfy the following condition:

fS
(

x1, . . . , xS ; f̃1(t), f̃2(t), . . .
)

−→
|xi−xj |≫r0

PfS
(

x1, . . . , xS ; f̃1(t), f̃2(t), . . .
)

≡ f̃S(x1, . . . , xS ; t), (13)

The further task of constructing the kinetic theory of long-wave fluctuations consists in deriving
equations for smoothed distribution functions f̃S(x1, . . . , xS ; t). However, we will not describe here the
actual procedure for obtaining such equations, referring the reader for details to works [8, 9]. We will
present only the final result, namely the form of equations of fluctuation kinetics in two cases — for
systems with a weak interaction between particles and for systems with a low density of particles and
an arbitrary interaction between them (however, we assume that the bound states of particles are not
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formed during such an interaction). Note that the derivation of these equations significantly uses the
principle of spatial weakening correlations for smoothed many-particle distribution functions, written
as follows:

f̃S(x1, . . . , xS ; t) −→
|y−z|→∞

f̃S′(y1, . . . , yS′ ; t)f̃S′′(z1, . . . , zS′′ ; t), S′ + S′′ = S. (14)

Here relationship (14) should be understood so that the distance between the subgroup of S′ particles
characterized by the set of coordinates and momentum y1, . . . , yS′ and the subgroup of S′′ particles
characterized by the set of coordinates and momentum z1, . . . , zS′′ (x1, . . . , xS ≡ y1, . . . , yS′ , z1, . . . , zS′′)
goes to infinity (see [1–3,8]).

3. General kinetic equations of the theory of long-wave fluctuations

So, the kinetic equations in the second order perturbation theory for the weak interaction between
particles are written in the form:

∂

∂t
f̃S(x1, . . . , xS ; t) +

S
∑

n=1

pn

m

∂

∂xn
f̃S(x1, . . . , xS ; t)

−
S
∑

n=1

∂

∂pn

∫

dxS+1
∂V (xn − xS+1)

∂xn
f̃S+1(x1, . . . , xS+1; t)

=

S
∑

n=1

∫

dx′n

∫

dx′S+1K(xn;x
′
n, x

′
S+1)f̃S+1(x1, . . . , x

′
n, . . . , xS , x

′
S+1; t), (15)

where the kernel K(x;x′, x′′) is defined by the expression:

K(x;x′, x′′) = Cδ(x′ − x′′)
∂

∂pi

(

∂

∂p′j
δ(x− x′)− δ(x− x′)

∂

∂p′′j

)

× |p− p′′|−3
{

(p− p′′)2δij − (p− p′′)i(p− p′′)j
}

, (16)

δ(x− x′) ≡ δ(x − x′)δ(p − p′),

and the constant C is given by the formula (3).
For systems with a low density of particles and an arbitrary interaction between them (if only the

bound states of particles are not formed during such an interaction), the equations of the long-wave
fluctuations kinetics can be given the following form:

∂

∂t
f̃S(x1, . . . , xS ; t) +

S
∑

n=1

pn

m

∂

∂xn
f̃S(x1, . . . , xS ; t)

=
S
∑

n=1

∫

dx′n

∫

dx′S+1K(xn;x
′
n, x

′
S+1)f̃S+1(x1, . . . , x

′
n, . . . , xS , x

′
S+1; t), (17)

where the kernel K(x1;x
′, x′′) in the zeroth approximation by the gradients of f̃S values is given by

the expression (see also (4)):

K(x1;x
′, x′′) = δ(x1 − x′)δ(x1 − x′′)

∫

d3p2

∫

dΩ|p2 − p1|σ(ϑ, |p2 − p1|)

×
{

δ(p′′ − p1)δ(p
′ − p2)− δ(p′ − p1)δ(p

′′ − p2)
}

. (18)

We should note that equations (15), (17) are non-closed equations. In fact, as we can see, we have
to deal with infinite chains of equations since the right-hand side of the equation for the function f̃S(t)
includes the function f̃S+1(t). If we want to write the equation for the function f̃S+1(t), then the
function f̃S+2(t) will enter its right-hand side, and so further. Thus, we obtain for smoothed many-
particle distribution functions an analogue of the famous Bogolyubov–Born–Green–Yvon–Kirkwood
(BBGYK) chain of equations, see, for example, [1, 2].
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Note that the kinetic equations of the theory of long-wave fluctuations (i.e., equations for smoothed
distribution functions) can also be written as a system of equations for the smoothed one-particle
distribution function f̃(x; t) and smoothed correlation functions g̃S(x1, . . . , xS ; t). To determine the
correlation functions g̃S(x1, . . . , xS ; t) of arbitrary order S, it is convenient to consider some generating
functionals [8]. Let us first consider the generating functional F (u; f̃) of smoothed many-particle
distribution functions f̃S(x1, . . . , xS ; t) defined by the formula:

F (u; f̃) = 1 +
∞
∑

S=1

1

S!

∫

dx1 . . .

∫

dxS u(x1) . . . u(xS)f̃S(x1, . . . , xS ; t). (19)

The many-particle distribution functions f̃S(x1, . . . , xS ; t) are found by functional differentiation of the
functional F (u; f̃ ) by the functional argument u(x):

f̃S(x1, . . . , xS ; t) =
δSF (u; f̃ )

δu(x1) . . . δu(xS)

∣

∣

∣

∣

∣

u=0

. (20)

We can formulate the principle of correlations spatial weakening (14) in the language of the generating
functional F (u; f̃). For this purpose, we choose as a functional argument u(x) the sum of two functions
uX(x) and uY(x), the first one is different from zero only for values of x close to X, and the second
one — for values of x close to Y. Then it follows from (14) that the principle of correlations spatial
weakening can be represented in the language of the generating functionals in the following form:

F (uX + uY; f̃) −→
|X−Y|→∞

F (uX; f̃)F (uY ; f̃). (21)

Let us now consider the functional G(u; g̃) related to the generating functional F (u; f̃ ) by the formula:

F (u; f̃) = expG(u; g̃). (22)

It is easy to see that according to (21)

G(uX + uY; g̃) −→
|X−Y|→∞

G(uX; g̃) +G(uY; g̃). (23)

It follows that the functions g̃S(x1, . . . , xS ; t), which can be found from the functional

G(u; g̃) =

∞
∑

S=1

1

S!

∫

dx1 . . .

∫

dxSu(x1) . . . u(xS)g̃S(x1, . . . , xS ; t) (24)

by its S-fold functional differentiation

g̃S(x1, . . . , xS ; t) =
δSG(u; g̃)

δu(x1) . . . δu(xS)

∣

∣

∣

∣

u=0

, (25)

satisfy the relationship

g̃S(x1, . . . , xS′ , yS′+1, . . . , yS ; t) −→
|X−Y|→∞

0. (26)

Therefore, the functional G(u; g̃) is the generating functional of smoothed correlation functions
g̃S(x1, . . . , xS ; t). From (22), (25) it is clear that

f̃1(x) = g̃1(x),

f̃2(x1, x2) = f̃1(x1)f̃1(x2) + g̃2(x1, x2),

f̃3(x1, x2, x3) = f̃1(x1)f̃1(x2)f̃1(x3) (27)

+ f̃1(x1)g̃2(x2, x3) + f̃1(x2)g̃2(x1, x3) + f̃1(x3)g̃2(x1, x2) + g̃(x1, x2, x3),

. . . .

Note that we can also write the system of equations of the fluctuation kinetics in terms of the above
functional (24). For example, in the case of low density and an arbitrary interaction between particles
(without the possibility of formation of bound states of particles), the chain of equations (17) can be
written in the form:
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∂G(u; g̃)

∂t
+

∫

dxu(x)
p

m

∂

∂x

δG(u; g̃)

δu(x)

=

∫

dx

∫

dx′
∫

dx′′ u(x)K(x;x′, x′′)

{

δ2G(u; g̃)

δu(x′)δu(x′′)
+
δG(u; g̃)

δu(x′)

δG(u; g̃)

δu(x′′)

}

, (28)

where the kernel K(x;x′, x′′) is defined by the expression (18). The kinetic equations of the long-wave
fluctuations in the second order perturbation theory for the weak interaction between particles (15)
acquire in terms of the functional (24) a form similar to (28), although somewhat more cumbersome:

∂G(u; g̃)

∂t
+

∫

dxu(x)
p

m

∂

∂x

δG(u; g̃)

δu(x)

−

∫

dx

∫

dx′ u(x)
p

m

∂V (x− x′)

∂x

∂

∂p

{

δ2G(u; g̃)

δu(x)δu(x′)
+
δG(u; g̃)

δu(x)

δG(u; g̃)

δu(x′)

}

=

∫

dx

∫

dx′
∫

dx′′ u(x)K(x;x′, x′′)

{

δ2G(u; g̃)

δu(x′)δu(x′′)
+
δG(u; g̃)

δu(x′)

δG(u; g̃)

δu(x′′)

}

, (29)

where the kernel K(x;x′, x′′) is defined by the expression (16). We emphasize that in both considered
cases, the general equations of the long-wave fluctuations kinetics (28), (29) are totally equivalent to the
corresponding equations (15) and (17). However, taking into account the explicit form of the functional
G(u; g̃) (see (24)–(27)), it is easy to conclude that kinetic equations of the long-wave fluctuations (28),
(29) are the system of evolution equations for the one-particle distribution function and all correlation
functions of any order. And are significantly nonlinear in contrast to infinite chains of equations (15),
(17) for many-particle distribution functions. We should also note that in more general cases, the
equations of the long-wave fluctuations kinetics have a much more complicated form than (28), (29),
due to the specific form of the collision integrals in (15), (17) (see [8, 9] for details).

Let us also notice that the obtained equations (28), (29) allow solution g̃S = 0, S > 2, g̃1(t) ≡
f̃(t) 6= 0. At the same time, equations (28), (29) turn into (4), (1), respectively. However, such a
solution corresponds to the very specific initial conditions g̃S(t = 0) = 0, S > 2.

In addition, the stationary solutions of equations (28), (29) corresponding to the state of statistical
equilibrium have the form

g̃S = 0, S > 2, f1 = f0, (30)

where f0 is the equilibrium one-particle distribution function (e.g., the Maxwell function or the Boltz-
mann function). The situation (30) is related to the fact that long-wave fluctuations are absent in the
state of statistical equilibrium. The short-wave fluctuations in the equilibrium state are determined by
the functionals fS(x1, . . . , xS ; f), in which the Maxwell distribution f0 should be substituted instead
of the functional argument f(x). At the same time, the many-particle distribution functions obtained
in this way coincide with the Gibbs many-particle distribution functions [2].

As for the above-mentioned possibility of existing of more complex cases, here we can point to at
least more complex systems. Indeed, the long-wave fluctuations can significantly affect both the kinetic
and hydrodynamic stages of evolution in such complex systems as dissipative or active media [10]. They
can play an important role, for example, in the processes of propagation and multiplicity of neutrons
in environments, at least of the type of nuclear reactors, where neutron multiplicity processes take
place [11]. In this work, we will focus on illustrating the role of the long-wave fluctuations kinetics in
plasma. We will show that the processes of the so-called quasi-linear relaxation in plasma are directly
related to the evolution of long-wave fluctuations at its kinetic stage.

4. Equation of dynamics of pair kinetic fluctuations

To solve the problem announced at the end of the previous section, we will use the equation of the
long-wave fluctuations kinetics in the approximation of weak interaction between particles, see (29).
To derive the equations of the quasi-linear approximation in plasma, we will be interested in the
evolution of kinetic fluctuations in a fully ionized plasma, provided that particle collisions in plasma
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are neglected [12, 13]. The last circumstance immediately imposes a certain restriction on the time
interval of the quasi-linear approximation existence:

τ0 ≪ t≪ τr, (31)

where τr is the characteristic time of relaxation determined by the collision integral (see above). The
time τ0 that limits this interval from below is found from the requirement of applying the obtained
equations (15) or (29) of the long-wave fluctuations kinetics in the approximation of weak interaction
to the description of the fluctuation-kinetic stage of evolution in a collisionless plasma. Indeed, the
slow change in time of the smoothed many-particle distribution functions f̃S(x1, . . . , xS ; t), that sat-
isfy equation (15), in relation to the plasma fluctuating media should indicate the smallness of the
characteristic periods of plasma oscillations in comparison to the characteristic time t of the function
change f̃S(x1, . . . , xS ; t), ωcht ≫ 1, where ωch is the characteristic frequency of plasma oscillations. In
a one-component (electron) plasma, the fluctuation processes we intend to study in the future, from
the entire spectrum of characteristic frequencies of plasma oscillations (see, e.g., [14] for details) only
the plasma frequency remains (it is called the Langmuir frequency) ωLe:

ωLe =

(

2πe2n

m

)1/2

, (32)

where e is the elementary charge (the absolute value of the electron charge), m is the electron mass
and n =

∫

d3pf1(p) is the electron density in an equilibrium plasma. We recall that when studying
processes in a one-component fully ionized plasma, one naturally assumes the presence of an ion
component that is much more inert compared to the electronic one, its role in this approximation is
reduced to ensuring the condition of quasi-neutrality (see, e.g., [12, 13]). According to the above, the
time interval in which the collisionless approximation should be valid is given by the relationship:

ω−1
Le ≪ t≪ τr. (33)

Note that conditions under which the quasi-linear approximation may be valid are explained in detail
in [13].

As it turns out, to derive the basic equations of the quasi-linear theory of plasma, it is enough
to take into account the presence of only pair correlations. Equations of the long-wave fluctuations
kinetics taking into account only the pair correlation functions g̃(x1, x2; t) ≡ g(x1, x2; t), according to
(15) or (29), can be written in the form:

ḟ(x, t) =

(

−
p

m

∂

∂x
+
∂U(x)

∂x

∂

∂p

)

f(x, t) +
∂

∂p

∫

dx′
∂V (x− x′)

∂x
g(x, x′; t),

ġ(x1, x2; t) =

(

−
p1

m

∂

∂x1
+
∂U(x1)

∂x1

∂

∂p1

)

g(x1, x2; t) +

(

−
p2

m

∂

∂x2
+
∂U(x2)

∂x2

∂

∂p2

)

g(x1, x2; t) (34)

+
∂f(x1, t)

∂p1

∂

∂x1

∫

dx′′V (x1 − x′′)g(x′′, x2; t) +
∂f(x2, t)

∂p2

∂

∂x2

∫

dx′′g(x1, x
′′; t)V (x′′ − x2),

where V (x− x′) is the potential energy of Coulomb interaction between the plasma electrons located
at the points x and x′:

V (x− x′) =
e2

|x− x′|
, (35)

and the value U(x) is given by the expression:

U(x) =

∫

dx′ V (x− x′)f(x′). (36)

Please note that in equations (34) and further we omit the subscripts “1” in the one-particle distribution
function f(x, t) and “2” in the pair correlation function g(x, x′; t). In addition, here and hereafter we
omit the “tilde” sign above both of them, which was previously used to indicate the smoothness of these
functions in the sense explained above, see (6)–(14). Finally, let us emphasize that the equations (34)
are nonlinear ones.
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The characteristic size r0 of the spatial localization of small-scale fluctuations, which plays an
important role in determining the smoothing operation (see Section 2), is given by the Debye screening
radius rD:

r0 ∼ rD =

(

κT

4πe2n

)1/2

, (37)

where T is the temperature of plasma electronic component and κ is the Boltzmann constant.
Equation (34) taking into account formulas (35)–(37) is a closed system of equations describing the

evolution of a one-component collisionless plasma during the times determined by the relation (33). In
the spatially homogeneous case, f(x, t) ≡ f(p, t) the first of the equations (34) can be written in the
form:

ḟ(p, t) = −
∂

∂pi
Ii(p), (38)

where the electron flux density in the momentum space Ii(p) is given by the expression:

Ii(p) =
i

(2π)3

∫

d3k kiV−k

∫

d3p gk(p,p; t), (39)

values Vk, gk(p,p; t) are the Fourier transforms of a potential energy V (x − x′) and pair correlation
function g(x, x′; t), respectively:

Vk =

∫

dx exp(−ikx)V (x) =
4πe2

k2
, gk(p,p; t) =

∫

dx exp(−ikx)g(x,p,p; t), (40)

moreover, due to the fact that g(x, x′; t) = g(x′, x; t) (see (25)), for the value gk the ratio is valid:

g∗k(p,p; t) = g−k(p,p; t). (41)

Note that in formulas (39), (41) we took into account that in the spatially homogeneous case the
pair correlation function g(x, x′; t) depends only on the difference in coordinates x, x′: g(x, x′; t) ≡
g(x− x′,p,p′; t).

The Fourier component gk(p,p
′; t) in accordance with (34) satisfies the equation:

ġk(p1,p2; t) = −i
k

m
(p1 − p2)gk(p1,p2; t)

+ ik
∂f(p1, t)

∂p1
Vk

∫

dp′ gk(p
′,p2; t)− ik

∂f(p2, t)

∂p2
V−k

∫

dp′ g−k(p
′,p1; t). (42)

5. Solving equations of dynamics of pair kinetic fluctuations and equation of the quasi-
linear plasma theory

Equations (41), (42) in combination with (38), (39) should be the starting point when deriving the
main equations of the quasi-linear theory of plasma. The next task is to find solutions of equation (42).
Following the method of variables separation, we will look for a solution of this equation in the form:

gk(p1,p2; t) = gk(p1, t) g−k(p2, t), (43)

while, according to (41), the functions gk(p, t) and g−k(p, t) are related to each other by the relation-
ship:

g∗k(p, t) = g−k(p, t). (44)

From (42) follows the equation of motion for the value gk(p, t):

ġk(p, t) = −i
kp

m
gk(p, t) + ik

∂f(p, t)

∂p
Φk(t), (45)

where the following notation is introduced:

Φk(t) ≡ Vk

∫

dp gk(p, t) (46)

(value 1
eΦk(t) can be given the meaning of the Fourier transform of the fluctuating field potential,

see [12]).
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Since we assume that in the state of the system under consideration, the distribution function
f(p, t) in the time interval (33) changes slowly over time, we will look for the solution of equation (45)
in the form of a decomposition of the function gk(p, t) into the Fourier integral by time

gk(p, t) =

∫ +∞

−∞
dω exp(−iωt) gk(p, ω), (47)

considering in the main approximation that the function f(p, t) in (45) does not depend on time at
all, f(p, t) ≈ f(p). In this approximation, we obtain the following equation for the Fourier transform
gk(p, ω) from (45):

−i
(

ω − k
p

m

)

gk(p, ω) = ik
∂f(p)

∂p
Φk(ω), (48)

where

Φk(ω) =
1

2π

∫ ∞

−∞
dt exp(iωt)Φk(t). (49)

The solution of (48) is:

gk(p, ω) = A(k,p) δ
(

ω − k
p

m

)

−
1

ω − k
p
m + i0

k
∂f(p)

∂p
Φk(ω), (50)

where A(k,p) are the arbitrary functions, being subject to a natural restriction related to the fact that
the functions g(x − x′,p,p′; t) found according to formulas (40), (43), (47), (50) must satisfy all the
properties of pair correlation functions. It follows from (44) that functions A(k,p) must satisfy the
relationships:

A∗(k,p) = A(−k,p). (51)

Further, the entire admissible set of such functions will be denoted by Aµ(k,p), where µ is some
symbolic discrete or continuous parameter and functions A(k,p) ≡ Aµ(k,p) can depend on it (see
below, (65)).

The obtained formula (50) taking into account (46), (49) allows us to find the value Φk(ω) in terms
of Aµ(k,p):

Φµ,k(ω) = Aµ(k, ω)ε
−1(k, ω), (52)

where the notation is introduced:

Aµ(k, ω) ≡ Vk

∫

dpAµ(k,p) δ
(

ω − k
p

m

)

, A∗
µ(k, ω) = Aµ(−k,−ω). (53)

Further substituting (52) into (50), we obtain the following expression for the value gk(p, ω):

gµ,k(p, ω) = Aµ(k,p) δ
(

ω − k
p

m

)

−
Aµ(k, ω)

ε(k, ω)
(

ω − k
p
m + i0

)k
∂f(p)

∂p
Φµ,k(ω). (54)

Value ε(k, ω) in (52), (54) is the complex permittivity of a plasma:

ε(k, ω) = ε∗(−k,−ω) = ε1(k, ω) + iε2(k, ω) = 1 + Vkk

∫

dp

ω − k
p
m + i0

∂f(p)

∂p
. (55)

Since we study the long-wave fluctuations in a fully ionized plasma, it is natural to assume that
k rD ≪ 1 (considerations about the conditions of application of such an approximation in the quasi-
linear theory of plasma are set out in detail in [13]). Within the approximation k rD ≪ 1 the real
ε1(k, ω) and imaginary ε2(k, ω) parts of the complex permittivity of the plasma can be represented as
(see also [12–14]):

ε1(k, ω) ≈ 1−
ω2
Le

ω2
, ε2(k, ω) ≈ −πVk

∫

dp δ
(

ωLe − k
p

m

)

k
∂f(p)

∂p
. (56)

When deriving expressions (56), one should use the representation (see, e.g., [1]):

(z + i0)−1 = P
1

z
− iπδ(z),

where the symbol P means that during the further integration (see (55)) the principal value of the
integral is taken.
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The values Φµ,k(t), gµ,k(p, t) can be found from (52), (47), (54) using the theory of residues, so the
question arises of finding the zeros of function ε(k, ω), see (55), (56). As usual (see, e.g, [12, 14]), we
will find the zeros of function ε(k, ω) from the equation

ε(k, ω0 − iγk) = 0, |ω0| ≫ |γk|, (57)

where ω0 is the frequency of free oscillations in a plasma and γk is the decrement (increment) of
oscillations. For such fluctuations to exist in general, the strict inequality in (57) must be satisfied.
And for this, an assumption is necessary about the smallness of the imaginary part of the permittivity
ε2(k, ω) compared to its real part ε1(k, ω). If this assumption holds true, the frequency ω0 and
decrement (increment) γk are determined by the expressions:

ε1(k, ω0) = 0, γk ≈ ε2(k, ω0)

{

∂ε1(k, ω)

∂ω

}−1

ω=ω0

, (58)

from where, taking into account (56), we obtain:

ω
(1.2)
0 = ±ωLe, γ

(1)
k = γ

(2)
k ≡ γk = γ−k, (59)

γk =
1

2
ωLeε2 = −

1

2
ωLeπVk

∫

dp δ
(

ωLe − k
p

m

)

k
∂f(p)

∂p
.

It follows from the last formula (59) that the value γk can be called, with equal reason, both an
increment and a decrement, depending on the sign of the derivative ∂f

∂ε .
According to formulas (52), (54), (59) the result of calculating the integrals

Φµ,k(t) =

∫ ∞

−∞
dω exp(−iωt)Φµ,k(ω), gµ,k(p, t) =

∫ ∞

−∞
dω exp(−iωt) gµ,k(p, ω)

can be represented as:

Φµ,k(t) ≈
1

2

{

Φ−
µ,k(t) + Φ+

µ,k(t)
}

, (60)

gµ,k(p, t) ≈ exp
(

−ik
p

m
t
)

{

Aµ(k,p) + 2πi
Aµ(k,kp/m)

ε(k,kp/m)
k
∂f(p)

∂p

}

+
1

2

{

Φ−
µ,k(t)

1

ωLe + k
p
m − i0

+ Φ+
µ,k(t)

1

ωLe − k
p
m − i0

}

k
∂f(p)

∂p
,

where the functions Φ±
µ,k(t) are defined by the expression

Φ±
µ,k(t) = ∓2πiωLeAµ(k,±ωLe) exp(−γkt∓ iωLet); (61)

and, as a result of (44), (53) these functions are related to each other by the relationship:
{

Φ+
µ,k(t)

}∗
= Φ−

µ,−k
(t). (62)

When deriving formulas (60) the smallness of the value γk compared to ωLe is taken into account,
therefore, in (60) the sign of approximate equality is used.

We should note that introducing values Φ±
µ,k(t) into consideration is not only convenient but also

caused by the fact that in the quasi-particle approach of studying oscillations in plasma the operators
of plasmons creation and annihilation can be introduced by formulas similar to formulas (61). For this
reason, the value

Jk(t) =
∑

µ

Φ+
µ,k(t)Φ

−
µ,−k

(t) =
∑

µ

∣

∣

∣
Φ+
µ,k(t)

∣

∣

∣

2
(63)

with accuracy up to numerical factors, which are insignificant due to the relative arbitrariness of the
functions Aµ(k,p) (and, therefore, the functions Aµ(k, ω), see (53)) coincides with the distribution by
wave vectors k of the intensity of oscillations in plasma (see, e.g., [12, 13]).

Now let us return to the formulas (60), (61). According to (43), the most general form of solution
of (42) is given by the expression:

gk(p1,p2; t) =
∑

µ

gµ,k(p1, t) gµ,−k(p2, t). (64)
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This formula explains the very meaning of introducing the index µ in functions Aµ(k,p). Namely, at
t = 0, there should be enough functions Aµ(k,p) to construct an arbitrary initial correlation function

gk(p1,p2; 0) =
∑

µ

gµ,k(p1, 0) gµ,−k(p2, 0) (65)

with their help. Expression (64), taking into account formulas (60), can be given the meaning of the
value gk(p1,p2; t) expansion by the so-called Van Kampen modes (see [13] for details). Using (64),
as well as formulas (39), (46), we can represent the flux density in the momentum space Ii(p, t) in
equation (38) as:

Ii(p, t) =
i

(2π)3

∫

dk ki
∑

µ

gµ,k(p, t)Φµ,−k(t), (66)

where the values gµ,k(p, t), Φµ,k(t) are determined by formulas (60), (61).
Next, let us make an important remark. According to (33), expressions (60), (61) contain rapidly

oscillating terms, causing the appearance of the same terms (64), (66). On the other hand, as already
mentioned, the possibility of applying the equations of the long-wave fluctuations kinetics in the quasi-
linear plasma theory requires a slow change over time of the smoothed distribution functions, see (33)
(this, by the way, made it possible to find a solution of equations (42) in the form (47), (60)). It
is obvious that appearance of the rapidly oscillating terms is related to the choice of the method of
solving equations (42), (45). Therefore, in further calculations, when finding the explicit form of values
gk(p1,p2; t), Ii(p, t) taking (60), (61) into account, we must keep only those terms that do not contain
rapidly oscillating factors of the type exp(±iωLet). This somewhat artificial technique is equivalent to
averaging the expression for the “collision integral” over the characteristic periods of plasma oscillations,
which are small compared to the characteristic times of change of the one-particle distribution function,
see [12]. Excluding rapid oscillations from the consideration allows us to abandon the assumption of
invariance in time of the one-particle distribution function (remember that such an approximation was
used in our calculations, starting with (48)). And this means that all the physical values that describe
the state of the studied system change slowly over time, and the characteristic scales of change of these
values over time are of the order of the characteristic time of change of the one-particle distribution
function f(p, t).

Taking into account the above remarks, the basic evolution equations of the studied state of the
system acquire a rather simple form. For the convenience of presenting the material, let us write the
equation of motion for the one-particle distribution function once again (see (38)):

∂

∂t
f(p, t) = −

∂

∂pi
Ii(p, t), (67)

where the electron flux density in the momentum space Ii(p) according to (63), (66) can now be
represented in the form:

Ii(p, t) = −Dij(p, t)
∂f(p, t)

∂pj
. (68)

The diffusion coefficient in the momentum space Dij(p) is determined by the expression:

Dij(p, t) =
1

16π2

∫

dk ki kj δ
(

ωLe − k
p

m

)

Jk(t), (69)

where the value Jk(t), which is proportional to the distribution by wave number of the intensity of
oscillations, according to (63), (61), is given by the formula:

Jk(t) = 4π2ω2
Le exp

(

− 2γk(t)t
)

∑

µ

|Aµ(k, ωLe)|
2 .

It is easy to see that, taking into account the smallness of the increment (decrement) γk determined by
the formula (59) and the slowness of its change over time, we can assume that the value Jk(t) satisfies
the equation:

∂

∂t
Jk(t) = −2γk(t)Jk(t). (70)
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Taking into account formulas (59), (68), (69) the closed system of equations (67), (70), describing
the coupled relaxation of particles and relaxation of plasma oscillations, is usually called the equations
of the quasi-linear plasma theory or the equations of the quasi-linear approximation. They were
published for the first time in English-language literature in [15]. Later, a large number of works
appeared both with the justification of the quasi-linear approximation and with the analysis of the
conditions of its applicability and observation in the experiment, (see [13, 15–18]).

We should note that, despite the rather ancient history of problems related to the quasi-linear
theory, it has not lost its relevance until now, see at least [19–22].

6. Conclusions

So, in this paper, we show how the main results of the so-called quasi-linear plasma theory can be
reproduced within the framework of the first principles of classical (non-quantum) statistical mechanics.
The demonstrated results become possible thanks to the kinetic equations of the long-wave fluctuations,
the derivation of which is based on the fundamental first-principle approach of statistical mechanics,
namely, the method of reduced description of irreversible processes.

We should note that, despite the rather ancient history of problems related to the quasi-linear
theory, it has not lost its relevance until now, see at least [19–22]. The traditional directions for
development of the quasi-linear theory remain its generalization to the spatially heterogeneous en-
vironments, the description within its framework of the possible instabilities development, etcetera.
But it is possible to point to seemingly completely unexpected examples of environments where one
should expect the realization of quasi-linear relaxation regimes. Indeed, as can be concluded from the
material presented in this paper, there are two necessary conditions for the realization of quasi-linear
relaxation. Namely, the existence of the fluctuation-kinetic stage of evolution (and the presence of
derived equations of the long-wave fluctuations kinetics) is necessary. In addition, one should be sure
of the existence at this stage of the system evolution of time-stable oscillations with high characteristic
frequencies (or short periods). As we have seen, it is the largest of the system characteristic periods of
oscillation that should determine the time interval for the existence of the collisionless approximation
and, therefore, of the quasi-linear regime. For the case considered in this article, the characteristic
period was associated with the frequencies of Langmuir plasma oscillations (see (31)).

The specified two main conditions for the quasi-linear regime existence can be implemented, in
particular, in systems in which the long-wave fluctuations can significantly affect both the kinetic
and hydrodynamic stages of evolution. We mean the previously mentioned complex systems such as
dissipative or active media [10], as well as media where neutrons propagate and multiply, such as
nuclear reactors [11]. Systems with possible quasi-linear regimes are not limited to the given examples;
there may be others. But for each specific system, constructing a quasi-linear approximation is a task
of considerable complexity, even in the presence of such a promising approach to the construction of
the irreversible processes theory, which is the method of reduced description of the latter.
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Нелiнiйна динамiка кiнетичних флуктуацiй та квазiлiнiйна
релаксацiя в плазмi

СлюсаренкоЮ.В.1,2, Рижа I.А.2, КiрдiнА. I1
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Запропоновано наближення парних кореляцiй для розв’язку рiвнянь кiнетичної тео-
рiї довгохвильових (або крупномасштабних) флуктуацiй у газоподiбних середовищах.
Базовими є загальнi нелiнiйнi рiвняння теорiї крупномасштабних флуктуацiй на кiне-
тичному етапi еволюцiї системи, виведенi iз перших принципiв статистичної механiки.
Показано, що виходячи з рiвнянь кiнетики довгохвильових флуктуацiй у разi слабкої
взаємодiї мiж частинками, у наближеннi парних флуктуацiй можна вiдтворити ос-
новнi результати квазiлiнiйної теорiї плазми. Тим самим вiдомiй квазiлiнiйнiй теорiї
плазми надається першопринципове обґрунтування.
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кореляцiй; квазiлiнiйна релаксацiя в плазмi.
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