
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 8, No. 1, 2023

IMPLEMENTATION OF THE WEATHER STATION SOFTWARE
ON A MICROPROCESSOR PLATFORM USING .NET TECHNOLOGY

Bohdan Marii, Tetyana Pavych, Yaroslav Paramud

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine

MedBridge Inc, 1633 Westlake Ave, Seattle, WA, 98109, USA

Authors’ e-mails: marii.bohdan1@gmail.com, tpavych98@gmail.com, yaroslav.s.paramud@lpnu.ua

https://doi.org/10.23939/acps2023.01.057

Submitted on 23.02.2022

© Marii B., Pavych T., Paramud Y., 2023

Abstract: The article presents an implementation of the
weather station software on a microprocessor platform using
.NET technology. The system consists of a hardware module
that collects weather data, a microprocessor platform that
processes data, and a software application that visualizes and
stores data. The software system is designed using the .NET
platform, which provides an environment for software de-
velopment. The system uses a web interface that allows users
to access the weather from anywhere with a web browser.
The test results of the system demonstrate collecting, proces-
sing, and presenting the weather in real time. By comparing
readings from AccuWeather with data collected by Arduino
sensors, we ensure the accuracy of measurements. Accu-
Weather Europe is a source of weather data that can be used
to validate weather information collected by Arduino sen-
sors. In the developed systems, neural networks for weather
forecasting are also used. The neural networks learn patterns
and relationships in historical weather data to predict future
weather conditions

Index Terms: weather station; software system; micropro-
cessor platform; .NET technology; web interface.

I. INTRODUCTION

Weather monitoring and analysis are critical in vari-
ous industries, such as agriculture, aviation, and meteoro-
logy, where decision-making requires accurate weather
data. One of the solutions is the software system, which
consists of a hardware module that collects weather data, a
microprocessor platform that processes data, and a soft-
ware application that visualizes and stores data.

The use of a network of wireless weather stations to
forecast weather in developing countries involves the
creation of a network of inexpensive battery-powered
meteorological stations in key places throughout the re-
gion. These meteorological stations can collect data on
temperature, humidity, wind speed, and other meteorolog-
ical parameters, which are then transmitted on a wireless
connection to the central database [1].

The introduction of a weather station for real weath-
er in the room involves adjusting the system that can accu-
rately measure and display different weather conditions in
the room, such as temperature, humidity, air pressure, and
perhaps even air quality [2].

The assessment of the quality of work of an automat-

ic meteorological station based on a fuzzy AHP is to use a

combination of fuzzy logic and analytical hierarchical

process (AHP) to evaluate the performance of automatic

weather stations.

To begin with, a set of criteria and subsections is es-

tablished to evaluate the quality of the meteorological

station, such as data accuracy, sensor accuracy, and fre-

quency of service [3].

The Arduino board is equipped with a Wi-Fi module

the ESP8266, which allows the board to connect to a Wi-Fi

network and access the internet. This enables the board to

perform a wide range of tasks, such as sending data to a

server, retrieving data from online sources, or interfacing

with other IoT (Internet of Things) devices.

To ensure the security of authentication and data

transmission in wireless access points (AP), two main

protocols are currently available – WEP and WPA [4]. In

recent years, WPA has become the more widely adopted

protocol due to its stronger security features and improved

resistance to attacks compared to WEP. So, WPA was

used in a developed system.

In summary, Wi-Fi can be a powerful tool for ena-

bling an Arduino board to connect to the internet or a local

network, allowing it to access online resources, communi-

cate with other devices, and perform a wide range of IoT-

related tasks.

The hardware module of the software system in-

cludes sensors that collect various weather data, such as

temperature, humidity, pressure, speed, and direction of

wind [5]. The microprocessor platform is responsible for

processing the data collected by sensors and converting

them into a readable format for the program. The software

uses data to create graphs, diagrams, and other visualiza-

tions that provide a clear and short idea of weather condi-

tions. Fig. 1 shows a brief overview of developed system

interactions. The figure represents a complex sensor net-

work that can be used for environmental monitoring and

data collection, with the ability to store and transmit data

wirelessly for further analysis or visualization. The

AM2320 digital temperature and humidity sensor, BMP280

barometric pressure and altitude sensor, ML8511 UV sen-

sor, and GP2Y1010F45 optical dust sensor use the

ESP8266 Wi-Fi module for wireless communication, and

an SD card module is added for data storage.

Bohdan Marii, Tetyana Pavych, Yaroslav Paramud 58

AM320

(temperature/

humidity

Sensor)

BM2800

(pressure

Sensor)

ML8511

(ultraviolet

Sensor)

GP2Y1010F

45

(Optical Dust

Sensor)

ESP8266

(Wi-Fi module)

SD Card

Module

Fig. 1. Block diagram of a system

The .net Framework [6], used in the development of

software applications, provides several advantages. First-

ly, it allows you to quickly develop a program by reducing

the time and cost of development. Secondly, it provides a

safe environment for the program, ensuring the integrity

of the data. Finally, this makes it easy to integrate other

software and systems, improving the overall functionality

of the system [7].

To summarize, the software system on a micropro-

cessor platform using .NET and a web interface provides a

solution for monitoring and weather analysis. The sys-

tem’s software is designed using the .NET platform and

includes various design templates that increase the func-

tionality of the system and fitness for maintenance. The

potential application of the system includes rural house-

holds, aviation, meteorology, and other industries that rely

on accurate real-time weather data.

II. OVERVIEW OF KNOWN METHODS

AND TOOLS FOR SOLVING PROBLEMS

Weather systems on microprocessor platforms can

be developed and implemented through various program-

ming languages and tools. A microprocessor-based

weather station software system is designed to collect data

from various weather sensors, process the data, and dis-

play it in a user-friendly format. The system is typically

composed of hardware components such as sensors, a

microcontroller, and software components such as data

acquisition, processing, and display software. There are

several solutions available for developing a microproces-

sor-based weather station software system, including:

 Arduino: Arduino is an open-source platform that

offers a variety of microcontrollers suitable for weather

station applications. It provides a range of libraries and code

examples that simplify the development process [8].

 Raspberry Pi: Raspberry Pi is another popular

open-source platform for developing microprocessor-based

systems. It offers a powerful microcontroller and a range of

peripheral interfaces, making it suitable for more complex

weather station applications.

 LabVIEW: LabVIEW is a graphical programming

environment developed by National Instruments. It pro-

vides an intuitive interface for developing data acquisition

and processing software, making it suitable for less expe-

rienced programmers.

 MATLAB: MATLAB is a high-level program-

ming language and development environment used for data

analysis, visualization, and algorithm development. It offers

a range of tools and libraries for processing weather data,

making it suitable for more complex applications.

Overall, the choice of solution for a microprocessor-

based weather station software system depends on factors

such as the complexity of the application, the level of

programming experience, and the availability of hardware

components. Each solution offers its advantages and dis-

advantages, and the best choice will depend on the specif-

ic requirements of the application.

Here is an overview of some known methods and

tools for solving meteorological systems on microproces-

sor platforms using network technologies:

.NET Micro Framework: .NET Micro Framework is

an open code platform to create built-in programs using

.Net Framework. It provides a set of APIs to develop

applications for microcontrollers with limited resources,

such as small amounts of RAM and flash memory.

Visual Studio: Microsoft Visual Studio is an inte-

grated development environment (IDE) that can be used to

develop programs using .Net Micro Framework. It pro-

vides a set of tools for the design, development, and ad-

justment of programs for microcontroller devices.

C#: C# is a programming language developed by a

Microsoft corporation that is widely used to create pro-

grams using .net Framework. It is a simple, modern, and

typically safe language that provides a high level of ab-

straction for the development of complex programs.

MQT: MESGE QUEUING Telemetry Transport is a

light message exchange protocol that is widely used to

create IOT programs. It provides a way to exchange mes-

sages between devices, including microprocessor plat-

forms.

Azure Hub: Azure Hub is a cloud platform to control

and connect IOT devices.

C/C++: C and C++ are popular programming lan-

guages for developing embedded systems. They offer a

range of libraries and tools for low-level programming

and are often used in conjunction with microcontrollers.

They are suitable for more complex weather station appli-

cations that require real-time data processing and control.

Wireless Communication: Wireless communication

protocols such as Wi-Fi, Bluetooth, and Zigbee can be

used to transmit data from the weather station to a cen-

tral server or display device. This eliminates the need for

physical connections and enables remote monitoring and

control of the weather station [9].

Cloud Services: Cloud services such as AWS IoT,

Microsoft Azure, and Google Cloud Platform provide a

Implementation of the Weather Station Software on a Microprocessor Platform Using .NET Technology 59

range of tools and services for developing and deploying

IoT applications. They can be used to store, process, and

analyze weather data in real-time, and provide a scalable

and flexible solution for managing large amounts of data.
In summary, developing a microprocessor-based

weather station software system requires careful consid-
eration of the hardware and software components. Secur-
ing IoT devices involves implementing measures such as
encryption, access control, and regular software updates
to protect against vulnerabilities and ensure the confi-
dentiality, integrity, and availability of data. Securely
connecting the dots using REST API and middleware
involves using a standardized interface (REST API) and
middleware software to facilitate communication be-
tween different IoT devices while implementing security
measures such as authentication, authorization, and data
encryption to protect against threats [10].

The combination of .NET Micro Framework, Visual
Studio, C#, Asp.net, MQT, Azure IoT Hub, and Thing
speak provides a powerful set of tools and platforms to
create meteorological platforms on microprocessor plat-
forms using network technology [11]. An efficient IoT-
based weather station involves using sensors to collect data
on weather conditions such as temperature, humidity, and
precipitation, transmitting the data wirelessly to a central
hub or cloud-based platform and using machine learning
algorithms to analyse and predict weather patterns [12].

III. GOAL OF THE WORK

The purpose of this work is to develop and imple-
ment a weather software system on a microprocessor
platform using .NET technology, with a web interface for
visualization and storage of data. The system aims to
provide a solution for monitoring and analysis of the
weather in various areas, such as agriculture, aviation, and
meteorology. One of the purposes is the incorporation of
machine learning algorithms to improve the accuracy of
weather predictions. This can be accomplished by training
a neural network or other machine learning model on
historical weather data and then using the model to make
more accurate predictions based on real-time sensor data.
To measure the effectiveness of this improvement, we will
compare the accuracy of the predictions made by the
machine learning model to the accuracy of predictions
made by other weather systems without machine learning.
This could be done by comparing the predicted weather
conditions to actual weather conditions over a while and
calculating statistical measures such as mean absolute
error, standard deviation, and correlation coefficients, the
mean absolute error and standard deviation should be at
least 0.5 °C lower for a neural network compared to other
weather systems without machine learning. The work also
aims to demonstrate the benefits of using the .NET plat-
form and software design templates in the development of
software systems.

IV. SYSTEM COMPONENTS

Weather software system on a microprocessor plat-

form using .NET technology with a web interface for

visualization and storage of data will have the following

components:

 Data acquisition component: This component is

responsible for collecting weather data from various sou-

rces, such as sensors, satellites, and weather stations. The

collected data is then stored in a database for further pro-

cessing and analysis.

 Data processing and analysis component: This

component is responsible for processing and analysing the

collected weather data to extract meaningful information. It

uses advanced algorithms and statistical models to identify

patterns, trends, and anomalies in the data.

 Web interface component: This component pro-

vides a web-based user interface that allows users to visual-

ize the weather data and perform various operations, such

as querying, filtering, and exporting data. The web interface

also provides real-time updates and notifications to keep

users informed of any changes in weather conditions.

 Storage component: This component is responsi-

ble for storing the collected weather data in a secure and

scalable manner. It ensures that the data is easily accessible

and available for future use.

 Integration component: This component provides

integration capabilities with other systems and platforms,

such as mobile devices and third-party applications, to

extend the system’s functionality and reach.

Fig. 2 shows a temperature graph, which is dis-

played in the visualization interface. A temperature

graph is a graphical representation of temperature over

time, with the horizontal X-axis representing time in

hours and the vertical Y-axis representing temperature in

Celsius. The graph displays a continuous line that con-

nects a series of temperature data points plotted against

their corresponding time values.

Fig. 2. Temperature graph

The project includes an Arduino-based weather sta-

tion, an ASP.NET Core MVC data presentation page,

and an ASP.NET Core WEB API. The collected data is

sent using ESP8266 and written to the SQL Server data-

base via WEB API. The weather station consists of the

following parts:

 Arduino Nano.

 Nano Shield.

 AM2320 – Digital Temperature and Humidity

Sensor.

 BMP280 – Barometric Pressure and Altitude Sen-

sor.

 ML8511 – UV sensor.

Bohdan Marii, Tetyana Pavych, Yaroslav Paramud 60

 GP2Y1010F45 – Optical Dust Sensor.

 DS3231 – RTC.

 ESP8266 – Wi-Fi.

 SD card module.

 18650 Li-ion and Charger (Optional).

The ESP8266 is based on a 32-bit LX106 processor

and can be programmed using the Arduino IDE or the

Lua scripting language. It has GPIO pins that can be

used to control external devices, and it also supports

protocols such as SPI, I2C, and UART for communi-

cating with other devices.

One of the most notable features of the ESP8266 is

its built-in Wi-Fi capabilities, which allow it to connect

to a wireless network and communicate with other de-

vices over the internet. It can function as a client or a

server and supports both TCP and UDP protocols.

Due to its low cost and small size, the ESP8266 is

often used in DIY projects and small-scale IoT applica-

tions, such as home automation, weather monitoring, and

smart appliances. It has since been superseded by the

ESP32, but it remains a popular choice for many makers

and hobbyists.

The system consists of an Arduino Nano microcon-

troller, which is connected to several sensor modules, inc-

luding a digital temperature and humidity sensor (AM2320),

a barometric pressure and altitude sensor (BMP280), a UV

sensor (ML8511), and an optical dust sensor (GP2Y

1010F45). The system also includes a real-time clock module

(DS3231), a Wi-Fi module (ESP8266), and an SD card

module for data storage.

Also, in the system, Heat Index is calculated. Heat

Index is calculated by taking into account both tempera-

ture and humidity, as high humidity can make the air feel

hotter than it is. Heat Index is often used by meteorolo-

gists to issue heat advisories or warnings to help people

take appropriate precautions during hot weather. It's

important to stay hydrated, seek shade, and limit outdoor

activities during times of high heat index to avoid heat-

related illnesses. Heat Index values above 33 °C are

considered dangerous, and values above 41 °C can be

life-threatening.

The formula for calculating the heat index in de-

grees Celsius:

Using (1), where Hi is the heat index, T is the tem-

perature in Celsius and H is the relative humidity as a

percentage, the heat index was calculated.

The Arduino Nano is the central processing unit of

the system, responsible for collecting data from the vari-

ous sensors, processing the data, and controlling the

output of the system. The sensor modules provide envi-

ronmental data, such as temperature, humidity, pressure,

UV intensity, and dust particle concentration, which are

used by Arduino to monitor and control the system.

The real-time clock module ensures that the system

maintains accurate time and can schedule tasks and

events based on the current time. The Wi-Fi module

provides connectivity to the internet, allowing the system

to upload data to a remote server or receive commands

from a remote client.

The SD card module allows the system to store data

locally, providing a backup in case of connectivity issues

or server downtime. The optional 18650 Li-ion battery

and charger provide a portable power source for the

system, making it suitable for use in remote or outdoor

environments.

Fig. 3 shows an illustration of the System structure.

The weather station is an Arduino-based weather station,

which is sending weather data using ESP8266. ESP8266

is a low-cost, Wi-Fi-enabled microcontroller that can be

used for a variety of IoT (Internet of Things) applica-

tions. It was firstly introduced in 2014 by the Chinese

company Systems, and it quickly gained popularity due

to its small size, low power consumption, and built-in

Wi-Fi capabilities.

The Web API (Application Programming Interface)

layer and controller level are both important components

of a software application.

The API layer is the interface between the applica-

tion and the outside world. It allows other applications

and services to interact with the application by providing

a set of functions, protocols, and rules that define how

they can communicate with it. APIs can be used for a

variety of purposes, such as data sharing, integration

with third-party services, and automation of tasks.

In a typical software application, the API layer sits

on top of the application's business logic layer, which

contains the core functionality of the application. The API

layer provides a simplified and standardized way of ac-

cessing the application's functionality while abstracting

away the complexity of the underlying implementation.

Controllers are often organized into a hierarchy,

with higher-level controllers responsible for handling

broader requests and lower-level controllers handling

more specific requests. For example, a web application

might have a top-level controller that handles requests

for the entire application, and then lower-level control-

lers that handle requests for specific features or modules

of the application.

Arduino

weather

station

Web Api BLL

DAL
Presentati

on Layer

Fig. 3. System structure

Implementation of the Weather Station Software on a Microprocessor Platform Using .NET Technology 61

Overall, the system architecture is designed to pro-

vide a flexible and modular platform for environmental

monitoring and control, with the ability to communicate

data and receive commands from remote clients.

Arduino Connection

I2C Sensors

 VCC – 5V;

 GND – GND;

 SDA – A4;

 SCL – A5.

ESP8266

 TX – pin 3;

 RX – pin 2;

 CH_PD – pin 5;

 VCC – 3.3V;

 GND – GND.

V. SYSTEM DEVELOPMENT

The code for the weather station will depend on the

specific sensors we’re using.

Fig. 4 shows a class diagram. The main class is

Weather. The class “Weather” represents a weather mea-

surement with several fields:

 Weather Id: a unique identifier for each weather

measurement, generated by the database.

 Date Time: the date and time when the measure-

ment was taken.

 Weather Name: a string describing the weather

conditions (e. g., sunny, cloudy, rainy).

 Temperature: a double value representing the

temperature in degrees Celsius or Fahrenheit.

 Humidity: a double value representing the relative

humidity as a percentage.

 Pressure: a double value representing the atmos-

pheric pressure in Pa.

 Dust: a double value representing the concentra-

tion of dust particles in the air.

 UV: a double value representing the intensity of

ultraviolet radiation.
Fig. 5 shows a table diagram for the database. It is

pretty much the same with the same fields as the Weath-
er model in the .Net project, which has also necessary
weather information. The table has 8 columns:

 Weather Id: This is a serial data type and serves as
the primary key for the table. It is automatically populated
with a unique value for each new row added to the table.

 Date Time: This column is of the data type
TIMESTAMP and allows the user to store date and time
values. It is allowed to be null, meaning it's optional to have
a value for each record.

 Weather Name: This column is of the data type
VARCHAR (10) and stores a string representing the weath-
er condition. It is allowed to be null.

 Temperature: This column is of the data type dou-

ble precision and stores the temperature value. The double-

precision data type allows the user to specify the total num-

ber of digits that can be stored, as well as the number of

digits after the decimal point. In this case, the user can store

values up to 4 digits, with 2 of them after the decimal point.

It is allowed to be null;

 humidity: This column is of the data type double

precision and stores the humidity value. It is allowed to be

null;

Weather

Class

DateTime

Dust

Humidity

Pressure

Temperature

UV

WeatherId

WeatherName

WeatherContext

Class

Weathers

On Configuring

OnModelCreation

WeatherName

Properties

Methods

Properties

ErrorViewModel

Class

Properties

RequestId

ShowRequestId

Fig. 4. Class diagram

 pressure: This column is of the data type double

precision and stores the pressure value. It is allowed to be

null;

 dust: This column is of the data type double preci-

sion and stores the dust value. It is allowed to be null;

 UV: This column is of the data type double preci-

sion and stores the ultraviolet (UV) radiation from the sun

value. It is allowed to be null.

The constraint PK_WEATHER primary key

(Weather Id) at the end of the code block specifies that

the primary key for this table is the Weather Id column.

In the code, we have a Weather Controller class

that derives from the Controller Base class. It is an

ASP.NET Core web API controller that handles HTTP

requests for weather data.

The Weather Controller class has a constructor that

receives a Weather Context object. The Weather Context

is used to connect to a database that stores weather data.

The class also has two methods, Get and Post.

The Get method handles HTTP GET requests and

returns a Weather object with the specified ID. The Post

method handles HTTP POST requests and inserts a new

Weather object into the database.

An Arduino sketch was written in C++ language

that is designed to collect data from multiple sensors and

post the data to a remote server over Wi-Fi. A summary

of the sensors used:

 SD card: used for data logging.

 UV sensor: measures UV intensity.

Bohdan Marii, Tetyana Pavych, Yaroslav Paramud 62

Fig. 5. Weather table diagram

 Dust sensor: measures dust concentration.

 DS3231: a real-time clock (RTC) module that

provides an accurate date and time information.

 AM2320: a digital temperature and humidity sen-

sor.

 BMP280: a digital pressure sensor.

 ESP8266: a Wi-Fi module used to connect to a

wireless network and post the data to the remote server.

The sketch starts by initializing the sensors and es-

tablishing a Wi-Fi connection using the ESP8266 mo-

dule. The loop function waits for 10 minutes before

calling the WriteSdAndPost function, which logs the

data to the SD card and posts it to the remote server. The

WriteSdAndPost function reads the date and time from

the RTC module, as well as the temperature, humidity,

pressure, UV intensity, and dust concentration from the

other sensors. The data is then formatted into a string

and sent to the server using an HTTP POST request.

Some important points to note about the sketch:

The specific pins used for each sensor are listed at

the beginning of the sketch.

The sketch uses several libraries, including Soft-

ware Serial, DS3231, Adafruit_BMP280, and AM2320.

These libraries need to be installed before uploading the

sketch to the Arduino board.

Also, the neural network is used for weather fore-

casting. Weather forecasting is a complex and challeng-

ing task that involves analysing vast amounts of data

from various sources, such as temperature sensors, hu-

midity sensors, and other sensors. Neural networks are a

type of artificial intelligence that can learn patterns and

relationships in the data and use this information to make

predictions. In weather forecasting, neural networks are

trained using historical weather data, and the trained

network can then be used to predict future weather con-

ditions

The neural network consists of an input layer that

takes in various weather features such as temperature,

humidity, wind speed, precipitation, and pressure. The

number of nodes in the input layer depends on the num-

ber of weather features being used as input. Multiple

hidden layers are used with various numbers of neurons

in each layer. These hidden layers use activation func-

tions such as ReLU or tanh to add non-linearity to the

model and to help the model learn complex relationships

between the input features. The number of neurons in the

hidden layers can be determined through hyperparameter

tuning.

The data used to train the neural network needs to

be preprocessed before feeding it to the model. Prepro-

cessing steps may include scaling the data, normalizing

the data, or filling in missing values in the data.

Feature selection is an important step in weather

forecasting because not all weather features may be

relevant for predicting a specific weather condition.

Selecting the right set of features can improve the accu-

racy of the neural network.

The neural network has various hyperparameters

that need to be tuned to achieve the best performance.

Some of the hyperparameters include the number of

hidden layers, the number of neurons in each hidden

layer, the learning rate of the optimizer, and the activa-

tion function used in the hidden layers.

The output layer of the neural network predicts the

weather condition such as temperature, rainfall, or pres-

sure. The loss function measures the difference between

the predicted weather values and the actual weather

values. Mean Squared Error (MSE) is a common loss

function used in weather forecasting. The number of no-

des in the output layer depends on the number of weather

conditions being predicted.

The optimizer is used to minimize the loss function

and improve the accuracy of the predictions. Adam or

Stochastic Gradient Descent (SGD) is a commonly used

optimizer for weather forecasting. The neural network is

trained on historical weather data. The data is divided

into training and validation sets. The training data is used

to adjust the weights and biases of the neural network

during the training process.

Regularization techniques such as L1, L2, or drop-

out are used to prevent overfitting and improve the gen-

eralization of the model.

The testing data is used to evaluate the performance

of the trained neural network. The testing data is not

used during the training process. By using a neural net-

work for weather forecasting, it is possible to improve

the accuracy of weather predictions by learning complex

relationships between the input features and the weather

conditions.

The algorithm of working neural networks is the fol-

lowing. To use neural networks for predicting future

weather historical weather data for the area of interest is

collected, such as temperature, humidity, wind speed,

precipitation, and other relevant variables. The data is

prepared for input into the neural network by normalizing

and scaling it. Then, the data is split into training and

testing sets, and the architecture of the neural network will

Implementation of the Weather Station Software on a Microprocessor Platform Using .NET Technology 63

be defined. This includes the number and type of layers,

activation functions used in each layer, and the loss func-

tion used to evaluate the performance of the model.

The neural network is trained using the training da-

ta, and the weights and biases in the network would be

adjusted to minimize the loss function and improve the

accuracy of the predictions. The performance of the

model is evaluated using the testing data to identify any

overfitting or underfitting of the model and suggest any

further improvements that need to be made.

Once the model is trained and evaluated, it can be

used to make predictions about future weather patterns.

The neural network takes in current weather data as

input and outputs predictions for future weather patterns,

such as temperature, humidity, wind speed, precipitation,

and other relevant variables. Regular updates with new

data are necessary to ensure the model remains accurate

over time.

One of the key advantages of using neural networks

for weather forecasting is their ability to handle non-

linear relationships in the data. For example, a neural

network can learn the complex relationships between

temperature, humidity, and atmospheric pressure to pre-

dict the likelihood of rain. Additionally, neural networks

can be used to predict more than just the weather condi-

tions themselves.

In addition to traditional neural networks, other ad-

vanced neural network architectures such as recurrent

neural networks (RNNs) and convolutional neural net-

works (CNNs) can also be used for weather forecasting.

RNNs are used at processing time-series data, such as

weather measurements, by incorporating feedback loops

that allow the network to learn from its previous predic-

tions. CNN, on the other hand, can extract spatial and

temporal features from weather data to identify complex

patterns and relationships.

VI. RESULTS

Table 1 shows the Latest Data table of the visuali-

zation interface of the application, which provides the

latest data on environmental conditions.

Table 1

Latest Weather Data

Time 2023/02/25 07:00

Temperature 28.6 С

Humidity 75.2 %

Pressure 71872.41 Pa

Dust 0.06 mg/m3

UV 0.01 mW/cm2

Heat Index 32.8 С

The first column indicates the parameter being

measured, such as temperature, humidity, pressure, and

dust.

The second column provides the value of each pa-

rameter in its respective unit of measurement. For exam-

ple, the temperature is measured in degrees Celsius (С),

humidity is measured in percentage (%), pressure is

measured in pascals (Pa), and dust is measured in milli-

grams per cubic meter (mg/m³). UV: The intensity of

ultraviolet radiation at the time of data collection, in

milliwatts per square centimetre (mW/cm²). In this case,

the intensity was 0.01 mW/cm².

The data from Arduino was validated using Ac-

cuWeather resources. By combining the power of IoT

technology with an AccuWeather Europe data source,

we can ensure that we're getting accurate data for our

application. The website provides current and historical

weather data, including current conditions, hourly and

daily forecasts, and radar and satellite imagery. By com-

paring our readings from Arduino sensors with the data

provided by AccuWeather, we can validate the accuracy

of our measurements and gain additional insights into the

weather conditions in our area. On February 25 at 07:00

AccuWeather was showing 7.1 °C and 78 humidity and

86000 Pa, which means that the data from Arduino sen-

sors were accurate enough for use.

The tables below Table 2 and Table 3 show per-

formance metrics for two different endpoints (GET and

POST respectively) of a .Net Web API that provides

weather information. Here’s a breakdown of each col-

umn:

 Number of Requests: This column indicates the

number of requests that have been made to each endpoint.

 Many Successful Responses: This column indi-

cates the number of successful responses returned by each

endpoint.

 Dust sensor: measures dust concentration.

 DS3231: a real-time clock (RTC) module that

provides an accurate date and time information.

 Percentage of Failed Requests: This column lists

the percentage of requests that failed for each endpoint.

 Average Request Time (ms): This column lists the

average amount of time it takes for the API to process each

request for each endpoint, in milliseconds.

 Median Request Time (ms): This column lists the

median amount of time it takes for the API to process each

request for each endpoint, in milliseconds.

These performance metrics can be used to analyse

the performance of the API and identify areas where

improvements can be made. If the average or median

request times are too high, it may indicate that the API is

overloaded.

Table 2

Performance analysis for API/weather GET endpoint

Number

of

requests

Number

of suc-

cessful

responses

The per-

centage of

failed

requests,

%

Average

time of

execution,

ms

Median

request

time, ms

10000 10000 0.0 35 30

15000 15000 0.0 45 41

30000 30000 0.0 51 47

50000 50000 0.0 52 48

70000 70000 0.0 55 52

Bohdan Marii, Tetyana Pavych, Yaroslav Paramud 64

Table 3

Performance analysis for API/weather

POST endpoint

Number

of

requests

Number

of suc-

cessful

responses

The per-

centage of

failed re-

quests, %

Average

time of

execution,

ms

Median

request

time, ms

10000 10000 0.0 41 35

15000 15000 0.0 56 50

30000 30000 0.0 61 55

50000 50000 0.0 66 57

70000 70000 0.0 71 61

To improve the accuracy of the weather predic-

tions, a machine learning model was incorporated that is

trained on historical weather data. To train a neural net-

work for weather forecasting, historical weather data is

firstly collected and pre-processed. The data is then split

into training, validation, and testing datasets. The train-

ing dataset is used to adjust the weights of the network’s

neurons to minimize the prediction error, while the vali-

dation dataset is used to evaluate the network’s perfor-

mance during training. The testing dataset is used to

evaluate the network’s ability to generalize and predict

the weather accurately on new, unseen data. Let’s com-

pare it with the rule-based algorithm which simply

checks whether the temperature is above or below a

certain threshold and whether the humidity is above or

below a certain threshold, and then makes a prediction

based on those two criteria. Sensor data for a week were

collected and make weather predictions using both the

rule-based algorithm and the machine learning model.

Table 4

The collected data for six consecutive days

 Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Actual

data, °C
7.5 6.9 10.1 12.5 6.8 7.5

Predicted

by trai-

ned ma-

chine

learning,

°C

7.1 6.7 9.1 11.2 7.5 7.4

Predicted

by rule-

based,

°C

8.5 7.5 8.0 10.5 6.2 6.9

So, Table 4 shows the collected data. The table dis-

plays temperature data for six consecutive days. The first

row shows the actual temperature values in degrees

Celsius for each day which was received and stored by

Arduino sensors and confirmed using AccuWeather

resource, while the second and third rows show the pre-

dicted temperature values using different methods. Note

that the predicted temperature values from the machine

learning system are closer to the actual temperature va-

lues as compared to the rule-based system. This indicates

that machine learning algorithms can be effective in

making accurate predictions.

The formula for calculating the mean absolute error

(MAE):

Using (2), where MAE is the mean absolute error,
yi is the prediction for test sequence number (i), n is the
total number of data points, and xi is the actual data for
test sequence number (i), we can calculate the MAE – a
rule-based and trained machine learning algorithm,
which is 1.15 °C and 0.61 °C respectively.

And the formula for calculating a standard devia-

tion (SD):

Using (3), where SD is a standard deviation, yi is
the prediction for test sequence number (i), n is the total
number of data points, and xi is the actual data for test
sequence number (i), we can calculate the SD a rule-
based and trained machine learning algorithm, which is
2.81 °C and 1.51 °C respectively.

From the calculations, we can see that the machine-
learning algorithm is more accurate than the rule-based
algorithm, as it has lower values for both MAE and SD.

The formula for calculating how much less are
MAE and SD for the machine-learning algorithm:

. (4)
Using (4), where R – a result, which represents how

much lower MAE and SD are for the machine-learning
algorithm than the rule-based algorithm, y – the MAE
and in the second calculation SD for the rule-based algo-
rithm, and x – the MAE and in the second calculation SD
for the machine-learning algorithm, for the machine-
learning algorithm, the MAE is

 .

Lower than the rule-based algorithm, and the SD is

Lower, which corresponds to the purpose of the work.

VII. CONCLUSION

In conclusion, the development and implementation
of a weather software system on a microprocessor plat-
form using .NET technology was proposed in this work.
The system’s web interface provided a solution for
monitoring and analyzing weather data in various indus-
tries, such as agriculture, aviation, and meteorology. By
comparing readings from AccuWeather with data col-
lected by Arduino sensors, we ensured the accuracy of
measurements. The accuracy of weather predictions was
improved by the incorporation of machine learning algo-
rithms to improve the accuracy of weather predictions.
The proposed weather software system has many poten-
tial benefits for various industries that rely on weather
data. For example, in the agricultural industry, accurate
weather predictions can help farmers make decisions
about when to plant, harvest, and irrigate crops, which
can lead to increased yields and reduced water usage.

Implementation of the Weather Station Software on a Microprocessor Platform Using .NET Technology 65

Similarly, in the aviation industry, weather conditions
can affect flight plans and safety, so having access to up-
to-date and accurate weather information is crucial for
airline operators and pilots.

The predicted weather conditions were compared to

actual weather conditions over a while and also calculat-

ed statistical measures such as mean absolute error and

standard deviation, which are 0.54 °C and 1.3 °C respec-

tively lower for a neural network compared to other

weather systems without machine learning. Overall, the

proposed system is a valuable tool for those who need to

make informed decisions based on accurate and up-to-

date weather information.

REFERENCES

[1] T. M. Bumbary (2017). “Utilizing a network of wireless

weather stations to forecast weather in developing coun-

tries”, IEEE Integrated STEM Education Conference

(ISEC), Princeton, NJ, USA, pp. 109–111. DOI:

10.1109/ISECon.2017.7910223.

[2] A. Suryana, F. P. Lismana, R. M. Rachmat, S. D. Putra and

M. Artiyasa (2016). “Implementation of Weather Station

for The Weather Reality in A Room”, 6th International

Conference on Computing Engineering and Design

(ICCED), Sukabumi, Indonesia, pp. 1–6. DOI: 10.1109/

ICCED51276.2020.9415799.

[3] J.-M. Li, L. Han, S.-Y. Zhen and L.-T. Yao (2010). “The

assessment of automatic weather station operating quality

based on fuzzy AHP”, International Conference on Ma-

chine Learning and Cybernetics, Qingdao, China,

pp. 1164–1168. DOI: 10.1109/ICMLC.2010.5580916.

[4] Taras Boretskyi (2019). The Methods of Protection and

Hacking of Modern Wi-Fi Networks in Advances in

Cyber-Physical Systems, Vol. 4, No. 1, pp. 1–6. DOI:

https://doi.org/10.23939/acps2019.01.001

[5] P. Kapoor and F. A. Barbhuiya (2019). “Cloud Based

Weather Station using IoT Devices”, TENCON 2019 –

2019 IEEE Region 10 Conference (TENCON), Kochi,

India, pp. 2357–2362. DOI: 10.1109/TENCON.

2019.8929528.

[6] S.-j. Yang, X.-y. Deng and M.-y. Wang (2012). “Construc-

tion of modern education technology web-based course

platform based on .NET”, 7th International Conference on

Computer Science & Education (ICCSE), Melbourne,

VIC, Australia, 2012, pp. 1702–1705. DOI: 10.1109/

ICCSE.2012.6295393.

[7] S. S. Syazlina Mohd Soleh, M. M. Som, M. H. Abd

Wahab, A. Mustapha, N. A. Othman and M. Z. Saringat

(2018). “Arduino-Based Wireless Motion Detecting Sys-

tem”, IEEE Conference on Open Systems (ICOS),

Langkawi, Malaysia, pp. 71–75. DOI: 10.1109/ICOS.

2018.8632703.

[8] Adepoju, Temilola & Oladele, Matthias & Kasali, Abdul-

wakil & Fabiyi, Gbenga (2020). Development of a Low-

Cost Arduino-Based Weather Station. FUOYE Journal

of Engineering and Technology. DOI:

5.10.46792/fuoyejet.v5i2.508.

[9] H. Üçgün and Z. K. Kaplan (2017). “Arduino-based

weather forecasting station”, International Conference on

Computer Science and Engineering (UBMK), Antalya,

Turkey, pp. 972–977. DOI: 10.1109/UBMK.2017.8093

397.

[10] H. Garg and M. Dave (2019). “Securing IoT Devices and

SecurelyConnecting the Dots Using REST API and Mid-

dleware”, 4th International Conference on Internet of

Things: Smart Innovation and Usages (IoT–SIU), pp. 1–6.

DOI: 10.1109/IoT-SIU.2019.8777334.

[11] A. Suryana, F. P. Lismana, R. M. Rachmat, S. D. Putra and

M. Artiyasa (2020). “Implementation of Weather Station

for The Weather Reality in A Room”, 2020 6th Interna-

tional Conference on Computing Engineering and Design

(ICCED), Sukabumi, Indonesia, pp. 1–6. DOI: 10.1109/

ICCED51276.2020.9415799.

[12] A. S. Bin Shahadat, S. Islam Ayon and M. R. Khatun

(2021). “Efficient IoT-based Weather Station”, IEEE In-

ternational Women in Engineering (WIE) Conference on

Electrical and Computer Engineering (WIECON-ECE),

Bhubaneswar, India, pp. 227–230. DOI: 10.1109/

WIECON-ECE52138.2020.9398041.

Bohdan Marii received his

B. S. degree in Computer Engine-

ering at Lviv Polytechnic National

University, Ukraine, in 2022. His re-

search interests include the architec-

ture, patterns and development of

web applications, SQL databases,

and programming and technologies

for web programming.

Tetyana Pavych Senior

Business Analyst at MedBridge Inc.

Bachelor’s degree in Management

Information Systems in 2019 at

Northwood University, Midland,

MI, USA. Business Career Program

graduated in 2021 at Computer

Systems Institute, Chicago, IL,

USA. Her research is in the CRM

management, business intelligence,

and data analysis area.

Yaroslav Paramud – Ph. D.,

Assoc. Prof at Computer Enginee-

ring Department of Lviv Poly-

technic National University. Scien-

tific interests include processing

radar information, research algo-

rithms, and structures of specialized

computing devices and systems.

