
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 8 No. 2, 2023

CLOUD COMPUTING WITH RESOURCE ALLOCATION
BASED ON ANT COLONY OPTIMIZATION

Taras Kniazhyk, Oleksandr Muliarevych

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine.
Authors’ e-mail: taras.kniazhyk.mkiks.2022@lpnu.ua

https://doi.org/10.23939/acps2023.02.104

Submitted on 01.01.2023

© Kniazhyk T., Muliarevych O., 2023

Abstract: In this study, we explore the intricacies of cloud
computing technologies, with an emphasis on the challenges
and concerns pertinent to resource allocation. Three opti-
mization techniques—Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), and Genetic Algorithm
(GA) — have been meticulously analyzed concerning their
applications, objectives, and operational methodologies.
The study underscores these algorithms' pivotal role in
enhancing cloud resource optimization, while also elucidat-
ing their respective merits and limitations.

As the complexity of cloud computing escalates, devising
efficacious strategies for resource management and alloca-
tion becomes imperative. Such strategies are paramount in
aiding organizations in cost containment and performance
amplification. The ensuing comparative analysis has been
crafted to offer a holistic insight into the three algorithms,
thus empowering cloud providers to judiciously select an
optimization technique that aligns with the unique de-
mands and challenges of their cloud computing infrastruc-
ture.

Index Terms: resource allocation, ACO, PSA, GA, cloud
computing

I. INTRODUCTION
Cloud computing has surfaced as a pivotal techno-

logical advancement, furnishing businesses with scalable
and economically viable solutions, a development that
Dewangan et al. extensively discussed 0. Yet, proficient
management of resources and cost containment in cloud
ecosystems remains a significant challenge [2]. Contem-
porary optimization techniques, including Particle
Swarm Optimization (PSO) [3], Ant Colony Optimiza-
tion (ACO) [4], and Genetic Algorithms (GA) [5], are
tailored to address these challenges.

The intricacies of deciphering and regulating cloud-
related expenditures, especially in modern Industry 4.0
contexts, pose substantial challenges for organizations 0.
Unexpected cost surges, further explored by Sehgal et
al., can amplify these challenges [2]. Raj et al. empha-
size the importance of designing cloud-native applica-
tions to adapt to these dynamically changing cloud envi-
ronments [6].

Despite the scalability merits proffered by cloud
service providers, without adept tools and services, ex-
penditures can escalate uncontrollably [7]. A notable 73
% of cloud-centric decision-makers grapple with chal-

lenges related to optimal resource allocation, highlight-
ing the essential role of cloud optimization 0. Singh et al.
further elaborated on the dynamics of resource allocation
across various computing paradigms [7].

This treatise delves into the nuances of cloud opti-
mization, informed by the algorithms explored by Ko-
chenderfer and Wheeler [8]. The discourse examines the
significance, illustrative scenarios, and tools for fiscal
management in cloud operations, aided by insights from
evolutionary optimization algorithms [9].

In the domain of DevOps, the essence of cloud op-
timization lies in adeptly allocating resources across
diverse application scenarios in our previous works [10].
However, 'cloud optimization' interpretations vary
among enterprises, depending on their application land-
scapes, a robust cloud optimization blueprint can identify
avenues for refinement [4].

For entities with established cloud footprints, terms
like "cloud management" often feature prominently. The
insights into security concepts and practices further em-
phasize the need for secure resource allocation in the
cloud [2].

Studies such as those by Jun et al. have revealed the
potential of nature-inspired algorithms like ACO in op-
timizing cloud resources [11]. Meanwhile, Arianyan et
al.'s focus on efficient resource allocation through ge-
netic algorithms provides another perspective on the
topic [5]. The versatility and adaptability of such algo-
rithms in various application contexts are further echoed
in works by Liu and Li [12] and Yichen et al. [13].

During the research investigation, AWS cloud in-
frastructure was used, despite the variety of available
approaches [14] we used the same single instances [15]
to exclude the influence of infrastructure implementation
of Kubernetes cluster or serverless functions.

Finally, the importance of location in cloud optimi-
zation, as presented by Ekwe-Ekwe and Barker, cannot be
understated, especially considering the variability in cloud
resource pricing across regions [16]. And, as highlighted
by Ardagna and Pernici, there's an urgent need to guaran-
tee both global and local QoS constraints in web service
selection, underlining the complexity of the resource allo-
cation task [17]. One of the highly resource-consuming
tasks, that we have experienced in the past, is image proc-
essing [18], especially during the training phase.

Cloud Computing With Resource Allocation Based on Ant Colony Optimization 105

II. RESOURCE ALLOCATION OVERVIEW
Cloud computing refers to the delivery of hosted

services over the Internet and is categorized into three
types: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS) [6].
Clouds can be public or private, to provide easy, scalable
access to computing resources and IT services.

Cloud infrastructure consists of hardware and soft-
ware components needed for implementing a cloud
computing model. Three general service delivery catego-
ries include IaaS, PaaS, and SaaS.

IaaS: Providers like Amazon Web Services offer
virtual server instances, storage, and APIs for workload
migration to a virtual machine. IaaS is like a remote data
center for business users.

PaaS: Cloud providers host development tools on
their infrastructure, accessible through APIs, web por-
tals, or gateway software. Examples include Salesforce's
Lightning Platform and Google App Engine.

SaaS: A distribution model that delivers software
applications over the internet, accessible from any loca-
tion using a computer or mobile device. Examples in-
clude Microsoft 365 for productivity and email services.

Cloud computing offers several benefits such as
cost reduction, pay-per-use, broad network access, multi-
tenancy, resource pooling, and reliability. Cloud provid-
ers continually expand their services, resulting in greater
usability, reliability, and scalability compared to tradi-
tional compute and storage instances. Serverless comput-
ing, for example, allows developers to create code exe-
cuted by the cloud provider in response to events, elimi-
nating the need to manage servers or instances.

Cloud computing offers businesses and clients an
on-demand computing environment for leasing re-
sources. The primary goal for both cloud consumers and
suppliers is to allocate cloud resources effectively and
profitably [2]. These resources are often limited, and
providers must distribute them within the cloud envi-
ronment's constraints while meeting the needs of cloud
applications.

Resource allocation is a critical component of cloud
computing, as its efficiency directly impacts the per-
formance of the entire cloud environment [7]. Chal-
lenges in resource allocation include cost efficiency,
response time, reallocation, computational performance,
and task scheduling. Cloud computing consumers aim to
complete tasks at the lowest possible cost. Resource
allocation entails providing services and storage space
for specific tasks requested by users, utilizing various
allocation strategies. These strategies involve coordinat-
ing cloud provider activities when allocating scarce
cloud resources and addressing cloud applications' re-
quirements.

Cloud users and providers, the two parties in a
cloud computing environment, have distinct objectives.
Providers seek to maximize resource utilization and
profits, while users aim to reduce expenses without
compromising performance. Various strategies help
maintain a balance between resource allocation and cost,

preventing over-provisioning, under-provisioning, re-
source fragmentation, and resource contention.

Resource allocation in the cloud has some limita-
tions:

1) Cloud users rent resources from remote servers
but lack control over them, making migration and
searching for better data storage challenging.

2) Data transfer between providers can pose risks,
with data stored in the public cloud being vulnerable to
phishing and hacking attacks. Malware can spread rap-
idly due to interconnected servers.

3) In-depth knowledge is necessary for mastering
resource allocation and management since cloud service
providers hold extensive information about cloud opera-
tions.

4) Local software installation is needed for using
peripheral devices like scanners and printers with the
cloud, though networked peripherals work well with the
cloud.

Enterprises continue to rely on cloud computing for
various use cases, including increasing efficiency, opti-
mizing costs, ensuring data security, and storing unlim-
ited data. Knowledge of resource allocation is increas-
ingly essential for cloud users seeking to optimize their
cloud usage costs. While many strategies exist for allo-
cating resources in the cloud, the most effective method
is the one that satisfies cloud users and maximizes in-
come for cloud service providers.

III. PURPOSE OF WORK
This research seeks to meticulously formulate a

proficient resource allocation blueprint that leverages the
capabilities of the Ant Colony Optimization (ACO)
algorithm, with a distinct aim to enhance the time effi-
ciency in resource allocation within cloud computing
environments.

The experimental resource allocation system, based
on classical methods, can handle 100 tasks in nearly
1000 ms. This data was derived from a series of prelimi-
nary experiments conducted in a controlled AWS envi-
ronment. The specific cloud computing setup was repli-
cated using methology and details described by Dewan-
gan et al.in their investigations [1]. The aim is to find a
nature-inspired method that has better performance, with
at least a 5 % calculation time decrease.

The comparative effectiveness of the ACO, PSO,
and GA algorithms relative to classical methods, specifi-
cally in the realm of optimization tasks and resource
allocation in the cloud computing, is detailed in the dis-
tinct works [8, 9, 11].

The main purpose of current article is to conduct a
comprehensive comparative study juxtaposing ACO
against PSO and GA in terms of foundational mecha-
nisms, representative tasks, and applications in cloud
computing, aiming to underline the substantial and quan-
tifiable benefits of ACO in specified cloud computing
scenarios.

Investigate the foundational mechanisms of ACO,
PSO, and GA, unraveling their operating principles and

Taras Kniazhyk, Oleksandr Muliarevych 106

potential bottlenecks in the context of cloud computing
applications. Adjust and optimize the parameters of the
ACO algorithm to enhance its performance against the
set metrics. Finally, Performance Testing – to evaluate
and define the most optimal nature-inspired method
under simulated cloud computing environments and
specific task loads (like 100 tasks and more), ensuring
the rigorous assessment of its efficacy and efficiency in
diverse scenarios.

As a summary step, perform an in-depth analysis of
the resulting data, with particular attention to the compu-
tational time of the ACO, PSO, and GA algorithms,
further refining the algorithm to bolster its efficiency and
effectiveness.

IV. ADJUSTMENT OF NATURE-INSPIRED
OPTIMIZATION METHODS

Many local optimization algorithms are gradient-
based. As indicated by their name, these methods lever-
age gradient information to pinpoint an optimal solution.
Owing to their efficiency (in terms of the number of
function evaluations required to determine the optimum),
the ability to address problems with multiple design
variables, and a minimal need for problem-specific pa-
rameter adjustments, gradient-based algorithms have
found extensive applications in diverse engineering
optimization problems. Yet, they come with their set of
limitations: propensity to identify only local optima,
challenges in handling discrete optimization problems,
intricate implementation, and a vulnerability to numeri-
cal disturbances. In essence, these algorithms have been
thoroughly researched and are well-documented [8].

An exploration of local search methods wouldn't be
comprehensive without acknowledging non-gradient-
based local search techniques such as Powell's method and
the Nelder-Mead simplex algorithm. Both can manage
non-linear, unconstrained optimization challenges. While
Powell's method hinges on the principle of conjugate
directions, the Nelder-Mead approach uses a simplex
coupled with a series of basic rules to mirror the least
favorable vertex through the centroid of the simplex.

Over recent decades, evolutionary optimization al-
gorithms [9] have ascended in prominence. Contrary to
local techniques that modify a singular design point
(often influenced by gradient data) in successive itera-
tions, these algorithms forgo gradient details, typically
relying on a collection of design points (or a 'population')
to discern the optimal design. Drawing inspiration from
natural processes, these methodologies offer strengths
like robustness, a heightened chance of uncovering a
global or near-global optimum, straightforward imple-
mentation, and adaptability to discrete optimization
challenges. Nonetheless, they aren't without their chal-
lenges: pronounced computational demands, subpar
constraint management, the necessity for problem-
specific parameter adjustments, and constraints on prob-
lem dimensions. Now, let's delve into several nature-
inspired algorithms evaluated within the framework of
the developed computer system: PSO, ACO, and GA.

A. PARTICLE SWARM OPTIMIZATION ALGORITHM
Particle Swarm Optimization (PSO) is a nature-

inspired algorithm presenting an uncomplicated mecha-
nism to scout for an optimal solution within a designated
solution domain. What sets PSO apart from myriad other
optimization techniques is its exclusive dependency on
the objective function, without any reliance on the gradi-
ent or any differential form of the objective. Moreover,
its hyperparameters are relatively limited [3].

To mathematically model the PSO principles and
enable the swarm to find the global minimum of a fitness
function we need to consider the following:

• Each particle in Particle Swarm Optimization
has an associated position, velocity, and fitness value.

• Each particle keeps track of its “particle best-
Fitness value” and “particle bestFitness position”.

• A record of “global bestFitness position” and
“global bestFitness value” is maintained.

Fig. 1. represents the data structure used to store the
swarm population. This data structure holds information
about each particle's position, velocity, and fitness value,
as well as their best individual and global positions.

Fig. 1. Data structure to store Swarm population

Fig. 2. illustrates the data structure used to store the
ith particle of the swarm.

This data structure captures the details specific to
the individual particle, such as its position, velocity, and
fitness value. Here is the proposed approach used to
adjust PSO for resource allocation problem-solving.

Step 1. Initialization:
• Define the number of particles in the swarm N.
• For each particle i, randomly initialize the posi-

tion representing a potential solution to resource alloca-
tion.

• The position vector might represent how differ-
ent resources (CPU, memory) are allocated to tasks.
Initialize the velocity for each particle.

• Evaluate the fitness of each particle using a
predefined objective function – the cost of resources.

Cloud Computing With Resource Allocation Based on Ant Colony Optimization 107

Fig. 2. Data structure to store ith particle of Swarm

Step 2. Iterative Optimization running in a two-
level cycle with max iteration criteria and per each parti-
cle:

• Update the personal best position (pBest) if the
current position has better fitness and update the global
best position (gBest) among all particles.

• Update the velocity of the particle.
• Update the position of the particle.
• If the new position is better than the pBest, up-

date the pBest.
• Update the global best position (gBest) among

all particles.
Step 3. Post Optimization: The gBest position

represents the optimized resource allocation solution,
using it we apply result allocation in the cloud environ-
ment. Try to evaluate current resources and consider
dynamic changes.

A remarkable aspect of PSO is the presence of a
stable topology, where particles can communicate with
one another and enhance the learning rate to achieve the
global optimum. The metaheuristic nature of this optimi-
zation algorithm offers numerous opportunities, as it
iteratively seeks to improve a candidate solution by
optimizing the problem at hand.

B. ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) [10] stands out as

a stochastic method devised to trace optimal routes,
inspired by the behavior of ants foraging for the most
efficient path between their colony and food sources.
Originally conceptualized for the traveling salesman
problem, ACO's applicability has extended to a variety
of intricate optimization challenges [4]. Ants, being
social insects, communicate through pheromone trails.
Elevated pheromone concentrations enhance the likeli-
hood of a path's selection by subsequent ants [11]. To
grasp ACO's application to the traveling salesman prob-
lem (TSP) [10], one should visualize a fully integrated

construction graph where vertices denote cities and edge
lengths correlate to inter-city distances. Pheromone con-
centrations and heuristic metrics are tethered to graph
edges. Ants devise solutions by probabilistically select-
ing edges, guided by these metrics. Once all ants com-
plete their tours, pheromone concentrations are revised.
This process iterates until a termination criterion is satis-
fied. Within the realm of resource allocation, ACO ex-
cels in navigating through graphs representing myriad
resource allocation alternatives.

Here is the proposed approach used to adjust ACO
for the resource allocation problem-solving.

Step 1. Initialization – define the number of ants in
the colony N. Place the ants in random positions. Initial-
ize the pheromone levels on the paths.

Step 2. Construct Ant Solutions running in cycle
two procedures:

• Construct a solution by moving the ant from
state to state within the feasible solution space.

• At each step, apply a stochastic local search
procedure biased by pheromone levels to simulate deci-
sion-making.

Step 3. Pheromone Update:
• Evaporate some portion of the pheromone on

all paths.
• For each ant, deposit pheromone on the paths it

took based on the quality of its solution.
Step 4. Daemon Actions – this phase evaluates cur-

rently available resources and considers dynamic
changes.

Step 5. Convergence Check – check for conver-
gence criteria. If not converged, go to Step 2.

Step 6. Solution Construction – construct the resource
allocation solution from the highest pheromone path.

C. GENETIC ALGORITHM
Define Genetic algorithm (GA) [5] is an optimiza-

tion method based on natural selection that solves con-
strained and unconstrained problems. GA modifies a
population of individual solutions over successive gen-
erations, evolving toward an optimal solution [12].

Three main rules [13] are used in GA to create the
next generation: selection rules (parents are stochasti-
cally selected based on their fitness scores); crossover
rules (two parents are combined to form children); muta-
tion rules (random changes are applied to individual
parents to form children).

Here is the proposed approach used to adjust GA
for resource allocation problem-solving.

Step 1. Initialization – generate an initial popula-
tion of chromosomes, where each chromosome is a fea-
sible resource allocation. Evaluate the fitness of each
chromosome in the population.

Step 2. Selection – select chromosomes to form a
new population; selection should favor fitter solutions.

Step 3. Crossover – with a crossover probability,
crossover the pairs of chromosomes randomly chosen
from the population. This is done to reproduce a new
population of chromosomes.

Taras Kniazhyk, Oleksandr Muliarevych 108

Step 4. Mutation – with mutation probability, mu-
tate the new population at each position.

Step 5. Evaluation – evaluate the individual fitness
of each chromosome in the current population.

Step 6. Termination Check – if a maximum number
of generations has been reached or dynamic changes
appeared, we need to terminate. If the result is invalid or
the calculation is not finished, go back to Step 2.

Step 7. Solution Construction – the best chromo-
some represents the optimized resource allocation solu-
tion, apply this allocation in the cloud environment.

Genetic algorithms possess inherent parallel proc-
essing capabilities, making them apt for optimizing a
diverse array of challenges, from discrete functions to
multi-objective problems. Their operation is not contin-
gent upon derivative data, and they are equipped to yield
multiple optimal outcomes. However, the traditional GA
isn't optimized for simple challenges and might encoun-
ter computational hurdles due to recurrent fitness value
evaluations.

V. CASE STUDY
In this section, we provide an empirical assessment

of three optimization algorithms previously described:
Ant Colony Optimization (ACO), Particle Swarm Opti-
mization (PSO), and Genetic Algorithm (GA), all tai-
lored to tackle resource allocation issues within cloud
computing environments. These algorithms' perform-
ances were juxtaposed within a rigorously designed
experimental framework.

In Fig. 3. there are showcases a comparative per-
formance assessment of Ant Colony Optimization
(ACO), Particle Swarm Optimization (PSO), and Ge-
netic Algorithm (GA) as they navigate resource alloca-
tion challenges in cloud computing settings.

Fig. 3. Performance test results of ACO, PSO
 and GA algorithms

The evaluations were orchestrated within a virtual
cloud setting facilitated by Amazon Web Services
(AWS) [14]. This cloud infrastructure was composed of
a network of EC2 instances, comprising a diverse blend

of compute-optimized (c5.large) and memory-optimized
(r5.large) instances. Such a blend epitomizes the hetero-
geneity commonplace in contemporary cloud platforms
[15]. Notably, every c5.large instance was outfitted with
2 vCPUs and 4 GB of RAM, whereas each r5.large
counterpart was provisioned with 2 vCPUs and 16 GB of
RAM.

The experimental workload encompassed a spec-
trum of computational tasks that are archetypal of cloud
operations, such as data processing and graphical data
storage processing. These tasks came with their unique
resource prerequisites and QoS stipulations [17].

Our prime objective was twofold: curtailing both
the makespan (cumulative completion timeframe) and
the associated costs while guaranteeing a foundational
performance threshold for each task. As a result, a multi-
objective fitness function was deemed apt for assess-
ments.

Algorithm test configurations for Ant Colony Op-
timization (ACO):

• number of ants is 20,
• the evaporation rate is 0.1,
• pheromone influence is 1.0,
• heuristic influence is 1.0.
Algorithm test configurations for PSO:
• number of particles is 40,
• inertia weight is 0.729,
• the cognitive constant is 1.49445,
• social constant is 1.49445.
Algorithm test configurations for GA:
• population size is 50,
• crossover probability is 0.8,
• mutation probability is 0.02.
Each algorithm underwent 30 autonomous runs.

During each iteration, the algorithm endeavored to allo-
cate resources to a task assortment. The tasks and their
specifications were crafted from a blend of authentic
traces coupled with synthetic workloads, ensuring a
comprehensive representation of diverse scenarios.

The tasks integrated within this experimental
framework spanned an array of computational endeav-
ors, encompassing data processing, machine learning
model development, scientific simulations, and expan-
sive optimization challenges. Given the hefty computa-
tional demands and distinct requisites of these tasks,
adept resource allocation emerges as indispensable for
streamlined operations, user gratification, and peak re-
source deployment.

By analyzing the experimental results (see Fig. 3.),
it is evident that the ACO algorithm outperforms PSO
and GA in the context of the testing tasks. The ACO
compared to PSO for 100 tasks requires less than 50 %
of the calculation time (700 ms per ACO and 1400 ms
per PSA). The ACO compared to GA for 100 tasks re-
quires less than nearly 60 % of the calculation time
(700 ms per ACO and 1760 ms per PSA). Moreover,

Cloud Computing With Resource Allocation Based on Ant Colony Optimization 109

when the number of tasks increases up to 500, ACO still
keeps its performance benefit compared to other tested
nature-inspired methods.

The developed system using adjusted ACO re-
source allocation can compute 100 tasks on average for
700 ms, compared to nearly 1000 ms per experimental
system using the classical method application. It means
we got a boost of the performance by more than 30 %
when the target expected threshold for nature-inspired
methods was at least 5%.

VI. CONCLUSION
The article demonstrated how nature-inspired optimi-

zation methods could be adjusted to solve resource alloca-
tion problems. Our research established the effectiveness of
the Ant Colony Optimization algorithm for resource alloca-
tion in cloud computing environments. Despite its computa-
tional expense and parameter tuning requirements, ACO
delivered superior performance compared to PSO and GA.
Future work includes refining the algorithm to minimize its
disadvantages and exploring parallelization techniques to
enhance real-time application.

The proposed ACO-based method for cloud com-
puting resource allocation has the potential to cater to a
wide range of tasks while maintaining efficiency, flexi-
bility, and adaptability in dynamic and complex cloud
computing environments. The improvement of the de-
veloped system with adjusted ACO resource allocation
implementation increases the performance of task proc-
essing by more than 30 % better than the experimental
system (700 ms per ACO and nearly 1000 ms per ex-
perimental system using the classical approach for the
100 tasks).

The methodology of how nature-inspired methods,
particularly Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), and Genetic Algorithms
(GA), could be used for resource allocation problems
offers a robust framework for further research in this
scientific area. Future studies could also explore the
algorithm's interoperability across diverse cloud service
models, such as Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service
(SaaS), thereby amplifying its applicability and utility in
various cloud computing facets and ensuring that the
methodologies developed are robust, versatile, and ap-
plicable across a multitude of scenarios and applications.

REFERENCES
[1] Dewangan B., Choudhury T., Toe T., Singh B., Nhu N.,

Tomar R., (2021). Cloud Autonomic Computing in Cloud
Resource Management in Industry 4.0. Switzerland:
Springer, pp. 123–195. DOI: https://doi=10.1007/978-3-
030-71756-8_9

[2] Sehgal N., Bhatt. P., Acken J., (2020). Cloud Computing
with Security, Concepts and Practices. Second edition.
Switzerland: Springer, pp. 75–109. DOI:
https://doi=10.1007/978-3-030-24612-9

[3] Cai J., Peng P., Huang X. and Xu B., (2020). A Hybrid
Multi-Phased Particle Swarm Optimization with Sub
Swarms, 2020 International Conference on Artificial Intel-
ligence and Computer Engineering (ICAICE), Beijing,
China, pp. 104–108. DOI: https://doi=10.1109/
ICAICE51518.2020.00026

[4] Kozlov O., (2021). Information Technology for Designing
Rule bases of Fuzzy Systems using Ant Colony Optimiza-
tion, International Journal of Computing, 20(4), pp. 471–
486. DOI: https://doi.org/10.47839/ijc.20.4.2434

[5] Arianyan E., Maleki D., Yari A. and Arianyan I., (2012).
Efficient resource allocation in cloud data centers through
genetic algorithm, 6th International Symposium on Tele-
communications (IST), Tehran, Iran, pp. 566–570. DOI:
https://doi=10.1109/ISTEL.2012.6483053

[6] Raj P., Vanga S., Chaudhary A., (2022). Cloud-native
Computing: How to Design, Develop, and Secure Micros-
ervices and Event-Driven Applications, John Wiley &
Sons, pp. 129–163. DOI: https://doi.org/10.1002/
9781119814795.ch13

[7] Singh A., Indrusiak L., Dziurzanski P., (2022). Dynamic
Resource Allocation in Embedded, High-Performance and
Cloud Computing, e-book, Denmark: River Publishers,
pp. 128–154. [Electronic resource]. – Available at:
https://eprints.whiterose.ac.uk/106984/1/Published_ebook_
RP_E9788793519077.pdf (Accessed: 01 January 2023)

[8] Kochenderfer M. J., Wheeler T. A., (2019). Algorithms for
Optimization. United Kingdom: MIT Press, pp. 125–189.
DOI: https://doi.org/10.1109/MCS.2019.2961589

[9] Badar, Altaf Q. H., (2021). Evolutionary Optimization
Algorithms. United States, CRC Press, pp. 113–218. DOI:
https://doi.org/10.1201/b22647

[10] Muliarevych O., (2016). Solving dynamic assymetrical
Travelling Salesman Problem in conditions of partly un-
known data, Lviv-Slavsk, Lviv Polytechnik Publ.,
TCSET'2016 vol.1, pp. 446–448. DOI:
https://doi.org/10.1109/TCSET.2016. 7452084

[11] Jun S., Yatskiv N., Sachenko A. and Yatskiv V., (2012).
Improved method of ant colonies to search independent
data transmission routes in WSN, 2012 IEEE 1st Interna-
tional Symposium on Wireless Systems (IDAACS-SWS),
Offenburg, Germany, pp. 52–57. DOI:
https://doi.org/10.1109/IDAACS-SWS.2012.6377632

[12] Liu S., Li Z., (2017). A modified genetic algorithm for
community detection in complex networks, 2017 Interna-
tional Conference on Algorithms, Methodology, Models
and Applications in Emerging Technologies
(ICAMMAET), Chennai, India, pp. 1–3. DOI:
https://doi.org/10.1109/
ICAMMAET.2017.8186747

[13] Yichen L., Bo L., Chenqian Z. and Teng M., (2020). Intel-
ligent Frequency Assignment Algorithm Based on Hybrid
Genetic Algorithm, 2020 International Conference on
Computer Vision, Image and Deep Learning (CVIDL),
Chongqing, China, pp. 461–467. DOI:
https://doi.org/10.1109/CVIDL51233.2020.00-50

[14] Muliarevych O., (2022), Acceptance and shipping warehouse
zones calculation using serverless approach, 12th Interna-
tional Conference on Dependable Systems, Services and
Technologies (DESSERT), Athens, Greece, pp. 1–6. DOI:
https://doi.org/10.1109/DESSERT58054.2022.10018786

[15] Sampaio A. M. and Barbosa J. G., (2019). Enhancing Reliabil-
ity of Compute Environments on Amazon EC2 Spot In-
stances, 2019 International Conference on High Performance

Taras Kniazhyk, Oleksandr Muliarevych 110

Computing & Simulation (HPCS), Dublin, Ireland, pp. 708–
715. DOI: https://doi.org/10.1109/HPCS48598.2019.9188116

[16] Ekwe-Ekwe N. and Barker A., (2018). Location, Location,
Location: Exploring Amazon EC2 Spot Instance Pricing
Across Geographical Regions, 18th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing
(CCGRID), Washington, DC, USA, pp. 370–373. DOI:
https://doi.org/10.1109/CCGRID.2018.00059

[17] Ardagna D. and Pernici B., (2005). Global and local QoS
constraints guarantee in Web service selection, IEEE In-
ternational Conference on Web Services (ICWS'05), Or-
lando, FL, USA, 2005, pp. 805–806. DOI:
https://doi.org/10.1109/ICWS.2005.66

[18] Tsiunyk B., Muliarevych O., (2022). Software System for
Motion Detection and Tracking, Advances in Cyber-
Physical Systems, 7(2), pp. 156–162. DOI:
https://doi.org/10.23939/ acps2022.02.156

Taras Kniazhyk received a Bache-
lor’s degree in Computer Engineering
at Lviv Polytechnic National Univer-
sity in 2019. Since 2022 he has been
receiving a Master's degree.

Oleksandr Muliarevych is an Asso-
ciate Professor at the Computer
Engineering Department at Lviv
Polytechnic National University.
He earned his PhD Degree in Com-
puter Systems and Components at
Lviv Polytechnic National University
in 2016.
Research areas: Multi-Agent Sys-
tems, Swarm Intelligence, Computer
Vision, Internet of Things, Decentral-
ized Cyber-Physical Systems.

