
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 8 No. 2, 2023

CLOUD KEY-VALUE STORAGE
Oleh Pykulytskyi, Bohdan Havano

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine
Author's e-mails: Oleh.Pykulytskyi.mKIKS.2022@lpnu.ua; bohdan.i.havano@lpnu.ua

https://doi.org/10.23939/acps2023.02.133

Submitted on 06.10.2023

© Pykulytskyi O., Havano B., 2023

Abstract: The paper represents all the stages of design-
ing, architecting, and developing cloud-based key-value
storage. This work aims to bring new approaches to dis-
tributed data systems. The authors focus on the security
and productivity of the project as well as security and
maintainability.

The authors have studied the use of hash tables in a
multi-threaded environment. Architectural approaches and
tools have been described. The general structure of the key-
value storage server has been presented. The server algo-
rithm has been presented. Our research delves into the
intricate nuances of utilizing hash tables in a multi-
threaded environment, shedding light on the intricacies and
challenges of managing concurrent access to key-value data
structures. The authors have explored the trade-offs be-
tween lock-free designs and traditional locking approaches.

Index Terms: cloud storage, multithreading, key-value
storage, lock-free.

I. INTRODUCTION
Nowadays, the vast majority of software solutions

use some cloud storage. They are used for educational
purposes, and store business analytics. This technology
has become widespread in medicine. For example, it is
used for storing biometric data from the human state
remote monitoring tools 0, big data [2], Internet of
Things [3]. It is evident that with the development and
spread of technologies, more and more types of cloud
storage offer their approach to interacting with them.
This variety allows for choosing the cloud storage that
best solves problems.

Cloud computing is a way for businesses to use
technology without having to buy it themselves. Instead,
they rent the technology from a company that already
has it. This saves the business money because they don't
have to spend a lot of money upfront. It also helps them
save money on operating costs because they only pay for
what they need. Cloud computing also makes it easy for
businesses to grow and handle more customers because
they can easily get more technology when they need it
[4]. And finally, using cloud computing is convenient
because businesses can access their technology from
different devices like computers and phones. It also
helps businesses because they don't have to worry about
things going wrong with their technology. After all, the
company they rent from takes care of that [5].

Local machines are becoming less and less adapt-
able, necessitating more regular updates to the hardware
and software components. Program architecture deterio-
rates in flexibility with time and gets more complex. At
the same time there are cloud platforms that enable re-
source optimization, guarantee scalability, and provide
flexibility to address this issue [6].

As the number of internet users continues to rise
annually, the costs associated with processing and stor-
ing user data have also increased. New tasks that require
high-performance storage, capable of reading and writ-
ing data quickly, have also emerged. Relational data-
bases are currently the most widely used type of storage,
consisting of related data organized into tables with
relationships established between them.

However, in many cases, relational databases may
be excessive, and their relatively slow speed is a hin-
drance. Key-value storage provides a practical solution
in such scenarios. By storing data in memory instead of
on disk, key-value storage significantly reduces latency
and response time per request, as RAM speed can be up
to 50 times faster than that of hard disks. Databases also
use concurrency to utilize multiple CPUs, by assigning
transactions to different threads.

 This type of storage is particularly effective for
storing large volumes of unrelated small-sized data,
which can be accessed, modified, or deleted quickly.
Applications of key-value storage include caching, ac-
celeration of application response, user session data
storage, authorization key storage, and high-performance
operation data storage, among others.

II. REVIEW OF RECENT PUBLICATIONS
Key-value data stores have been a topic of research

for many years. This type of software system has be-
come a fundamental component of modern data center
infrastructure. During this time, many proposed solutions
were oriented toward different parts of the system. Some
researchers are focused on improving algorithms for
persistent stores, while others propose different ap-
proaches to improve the performance or safety of key-
value databases.

Intel Software Guard Extensions (SGX) [7] were
proposed as a way to improve the safety of the in-
memory key-value stores. SGX can provide secure cloud
computing on remote systems under untrusted privileged

Oleh Pykulytskyi, Bohdan Havano 134

system software. The main advantage of SGX is that it
provides isolated execution environments protected from
malicious operating systems and physical attacks, which
can significantly improve the safety of the systems.
However, as the paper shows, this approach can restrict
the performance of the store.

This paper [8] proposes a design based on persis-
tent memory (PM). The key idea is to decouple the role
of a KV store into a volatile index for fast indexing and a
persistent log structure for efficient storage. The authors
proposed a compact log format and pipelined horizontal
batching techniques to achieve high throughput, low
latency, and multi-core scalability.

In this paper [9] authors try to achieve high single-
node throughput by improving several parts of the sys-
tem, like network I/O, parallel data access, and the over-
all design of key-value data structures. The authors em-
phasize the importance of high-speed nodes in an in-
memory database since they may reduce costs by requir-
ing fewer of them overall, reducing the cost and over-
head of replication and invalidation.

As it can be observed from the review, key-value
stores experience strong interest from researchers. Over-
all, the dynamic landscape of key-value data stores con-
tinues to attract a wealth of interest and exploration from
the research community. These endeavors span a spec-
trum of objectives, ranging from fortifying security
measures to advancing the performance and scalability
of key-value databases through inventive design strate-
gies, as exemplified in this section.

Furthermore, the emphasis on improving network
I/O, parallel data access, and the overall design of key-
value data structures in pursuit of high single-node
throughput highlights the pragmatic importance of opti-
mizing key-value data stores. This not only enhances
performance but also has potential cost-saving implica-
tions by reducing the need for extensive replication and
invalidation processes.

III. OBJECTIVES
The main objective of this paper is to develop a

high-performance in-memory key-value database by
embracing lock-free approaches to the storage process.
In-memory storage allows for the improvement of the
performance of many types of software systems. Since
this type of software is very latency-sensitive, it is very
important to provide fast access to the data.

While current solutions use locks internally, with
the development of new lock-free algorithms and ap-
proaches, it is crucial to utilize them in data storage. To
accomplish this goal, we have to quantify and evaluate
the performance gains achieved by lock-free techniques
in key-value stores, particularly in terms of throughput,
latency, and scalability. Compare these results against
traditional lock-based approaches to highlight the advan-
tages and trade-offs. The resulting system should be
capable of performing more than 300,000 operations per
second while efficiently utilizing hardware resources,
with a particular emphasis on achieving these bench-

marks on a 16-core CPU. Additionally, the target latency
should remain below 1 millisecond under normal operat-
ing conditions, ensuring that this high level of perform-
ance is consistently achievable across a multi-core proc-
essing environment.

Another important task is to investigate how lock-
free mechanisms impact the concurrent access and scal-
ability of key-value stores, with a focus on scenarios
involving high contention and varying workloads. We
need to conduct a comparative study between lock-free
key-value stores and their lock-based counterparts, offer-
ing a holistic view of the benefits and trade-offs in dif-
ferent application contexts.

By addressing these objectives, this research paper
aims to contribute valuable insights into the realm of
lock-free techniques in key-value stores, providing a
foundation for further advancements in the field and
aiding practitioners in designing high-performance,
scalable, and concurrent data storage systems. Imple-
menting high-performance storage should allow compa-
nies to reduce their expenses on server infrastructure as
well as increase the throughput of client traffic.

IV. DISTRIBUTED DATA STORAGE
To store data in memory, it is necessary to consider

data types that allow maximum efficiency in working
with them. For these needs, a hash table is perfect. A
hash table is one of the implementations of an associa-
tive array. An associative array is a data type that stores
a collection of pairs (e.g., key, value). Each key can
appear only once in the collection, and the array supports
operations like looking up a value and removing items
from the array. Associative arrays have two essential
properties. Only one key can have a given value, and
every key can only appear once in the list.

A hash table usually uses a hash function to calcu-
late an index, which is then used to look up a value in an
array of slots. If the desired value is not found in the first
slot in the collection, the hash table will look in the sec-
ond slot, and so on. If the expected value is still not
found, the hash table will check the third slot, and so on.

A hash table is a type of storage that uses buckets
to divide the data into smaller groups. When looking up
an item in a hash table, the system calculates its hash (a
number representing its unique identity). Then it looks
through the buckets, checking which bucket the hash
belongs to. If the hash belongs to a bucket, the system
grabs the item from that bucket and moves on. If the
hash doesn't belong to a bucket, the system looks for an
open bucket with room for the item. The linked list is
then scanned to see if the desired element is present. If
the linked list is short, this scan is quick. If the linked list
is not short, the key is hashed again to find the correct
bucket for the linked list. Then, the bucket is checked to
see if the item is there, and finally, the desired element is
added or removed from the bucket in the usual way for
linked lists.

Cloud Key-Value Storage 135

A. DISTRIBUTED HASH TABLES
Distributed Hash Tables (DHTs) are a distributed

storage technology that allows data to be stored and
retrieved across a network of nodes. DHTs use a hash
function to assign data to nodes in the network, allowing
for efficient storage and retrieval of data. DHTs have
been used in various applications, including peer-to-peer
networks, cloud storage, and distributed databases. This
article will explore the design, research, and applications
of distributed hash tables.

The design of distributed hash tables involves sev-
eral vital components. These include the hash function
used to assign data to nodes, the routing protocol used to
find nodes in the network, and the data replication strat-
egy used to ensure data availability. The hash function
used in a DHT should be fast, collision-resistant, and
evenly distribute data across the nodes in the network.
The routing protocol used in a DHT should allow for
efficient data routing between nodes, even in the face of
node failures and network congestion. Finally, the data
replication strategy used in a DHT should ensure that
data is available despite node failures and network parti-
tions.

Distributed hash tables have been used in various
applications, including peer-to-peer networks, cloud
storage, and distributed databases. In cloud storage,
DHTs are used to store and retrieve data across multiple
nodes in a distributed database system. When a user
uploads data to the cloud, the DHT algorithm hashes the
data's identifier to locate the appropriate node(s) where it
will be stored. Subsequently, when a user requests access
to the data, the DHT swiftly retrieves it by following the
same hashing process, making cloud storage systems
highly scalable and fault-tolerant. This not only enhances
data access speed but also increases data redundancy,
further safeguarding against data loss or system failures.

B. CONSISTENT HASHING
Consistent hashing (Fig. 1) is a shared hash table

technique that allows data to be evenly distributed across
shards while minimizing the number of data items that
need to be moved when the number of shards changes.

The theory behind consistent hashing is based on the
idea of a ring. Each node in the network is also mapped to
a point on the ring. Data items are then stored on the node
whose point on the ring is the closest to the point on the
ring that corresponds to the hash value of the data item.
This allows for the efficient distribution of data across the
network, fault tolerance, and load balancing.

The implementation of consistent hashing involves
several key components. These include the hash function
used to map data items to points on the ring, the number
of virtual nodes representing each physical node on the
ring, and the mechanism used to handle node failures
and additions. The hash function used in consistent hash-
ing should be fast and produce a uniform distribution of
hash values. The number of virtual nodes used to repre-
sent each physical node on the ring can affect the sys-

tem's load balancing and fault tolerance properties. A
more significant number of virtual nodes per physical
node can lead to better load balancing and fault tolerance
but also increase the system's complexity. The mecha-
nism used to handle node failures and additions can
involve the use of replicas or the migration of data to
other nodes in the network.

Fig. 1. Consistent hashing

One of the key benefits of using consistent hashing
in these applications is its ability to provide fault toler-
ance and load balancing. Because data is distributed
across multiple network nodes, consistent hashing can
continue operating even in the face of node failures or
network partitions. In addition, consistent hashing can
handle large amounts of data and traffic, making it a
highly scalable solution for distributed storage and proc-
essing.

V. SYNCHRONIZATION AND THREAD SAFETY
To handle multiple connections efficiently, it is

necessary to distribute the load between connections and
provide them with shared access to data.

Developing a high-performance, secure network
application requires efficient use of threads. This task
becomes one of the most critical and complicated when
it comes to data storage, especially in-memory storage.
To deal with shared data between threads, we must em-
phasize the importance of the synchronization primitive.

Synchronization primitives are mechanisms usually
provided by an operating system to support thread or
process synchronization. Many programming languages
implement their API to interact with these mechanisms.

They can be divided into two large groups: those
that use shared memory and those that allow sending
information from one thread to another. Those that pro-
vide access to shared memory include mutex, sema-
phore, RWlock, condition variable, barrier, etc.

Oleh Pykulytskyi, Bohdan Havano 136

Mutex (from mutual exclusion) is a synchroniza-
tion primitive that prevents the usage of shared data at
the same time by two or more threads (execution proc-
esses). Mutex usually holds shared data inside it, known
as a critical section. The mutual exclusion algorithm
ensures that if a process is already performing a write
operation on a data object (critical section). No other
thread is allowed to write or read the same object until
the first process has finished writing upon the data object
critical section and released the object for other proc-
esses to read and write upon.

Any thread that successfully locks the mutex be-
comes the owner of the mutex until it unlocks the mutex.
Every thread that attempts to write to the shared data or
read this data has to wait until the owner unlocks the
mutex.

Readers-writer lock is quite similar to a mutex, but
unlike it, it allows multiple read operations simultane-
ously. Just like mutex, the RWlock is built on top of
semaphore. This fact makes it possible to theoretically
speed up access to shared data, given that replacing a
mutex with RWlock is "seamless."

Synchronization primitives can have a significant
impact on the performance of software applications. On
the one hand, synchronization is necessary to ensure
correctness and safety. However, on the other hand,
excessive synchronization can lead to decreased per-
formance as threads wait for access to shared resources.

One of the primary performance considerations
with synchronization primitives is contention. Conten-
tion occurs when multiple threads attempt to access a
shared resource simultaneously and must wait for access.
This can lead to decreased performance, as threads wait
for access to the resource rather than doing valuable
work.

This becomes especially noticeable during inten-
sive writing to the table, where the difference with a
distributed table is up to 10 times. Distributed and lock-
free hash tables demonstrate similar performance, but the
distributed hash table provides much more security be-
cause it uses locks to access internal tables.

It is a reasonable choice to use lock-based data
structures in high-throughput required systems. How-
ever, we need to mention that this approach creates a
noticeable overhead when accessing the data structure.
Usually, locks like mutex use a system call to block the
execution on a thread that wants to acquire the lock
while it is locked by a different thread. If this overhead is
critical for the system, it is reasonable to consider a lock-
free approach. Highly concurrent access to shared data
demands a sophisticated ‘fine-grained’ locking strategy
(Fig. 2) to avoid serializing non-conflicting operations.
Such strategies are hard to design correctly and with
good performance because they can harbor problems
such as deadlock, priority inversion, and convoying.
Lock manipulations may also degrade the performance
of cache-coherent multiprocessor systems by causing
coherency conflicts and increased interconnect traffic,
even when the lock protects read-only data.

Fig. 2. The lifecycle of a record

A data structure is “lock-free” if and only if an op-
eration is completed after a certain number of steps have
been executed system-wide on the data structure. This
guarantee of “system-wide” progress is usually achieved
by having a process experience contention so that it can
wait for the competing operation to finish before con-
tinuing with its work. This guarantees that every execut-
ing process always ensures the forward progress of an
operation. This is very different from a lock-based algo-
rithm, where a process spins or blocks until the compet-
ing operation is completed.

The biggest problem in designing lock-free data
structures (and especially collections) is to deal with
cases when one thread currently reads the data, and an-
other thread tries to rewrite this data. In this case, when
the writer rewrites the given data, it gets back the old
data, which it needs to decide what to do with. A writer
cannot easily deallocate it, since other threads may rely
on this data.

This task is usually solved by embracing the mem-
ory reclamation mechanism.

The most straightforward is reference counting
(RC). This approach allows the safe reclamation of
pointers when there are no active references to them. It is
a technique used to automatically determine when a
piece of memory (such as an object or data structure) is
no longer in use so that it can be safely deallocated. Each
pointer that needs to be reference-counted has a counter
(usually an atomic unsigned integer) associated with it.
Each time the thread wants to access this pointer, it in-
crements the counter by one. When a pointer is not
needed (when data goes out of scope), a thread decre-
ments this counter by one. When the counter reaches 0,
data can be finally deallocated. Even though these opera-
tions require only one additional operation (increment or
decrement) (and on some architectures, even one instruc-
tion), this method is not very efficient because memory
management decisions are made on a per-reference ba-
sis. This means that memory may be reclaimed and ob-
jects may be deallocated more frequently than in other
garbage collection strategies, leading to higher memory

Cloud Key-Value Storage 137

management overhead. In addition, each decrement
operation requires a compare-and-swap (CAS) operation
to prevent data races and double-free problems.

A hazard pointer (HP) is a single-writer multi-
reader pointer that can be owned by at most one thread at
any time. Only the owner of the hazard pointer can set its
value, while any number of threads may read its value. A
thread that is about to access dynamic objects optimisti-
cally acquires ownership of a set of hazard pointers to
protect such objects from being reclaimed. The owner
thread sets the value of a hazard pointer to point to an
object to indicate to concurrent threads — that may re-
move such object — that the object is not yet safe to
reclaim.

They are used to inform the other threads of what
data structures are being accessed by a thread and that
thus cannot be reclaimed by others. Hazard pointers
usually imply a significant overhead caused by threads
having to share their location every time they move on
the data structure.

Epoch-based reclamation (EBR) takes a different
approach. The scheme builds on limbo lists which con-
tain a retired object until no stale references can exist. It
uses a global epoch counter to determine when no stale
references exist to any object in a limbo list. Each time a
process starts an operation in which it will access shared
memory objects, it observes the current epoch. When all
processes have observed the current epoch, the limbo list
that was populated two epochs ago can safely be re-
claimed. This now-empty list can be immediately recy-
cled and populated with retired nodes in the new epoch.

When a thread wants to operate on the data struc-
ture, it first sets its "active" flag and then updates its
local epoch to match the global one. If the thread re-
moves a node from the data structure, it adds that node to
the retired list for the current global epoch. When it
completes its operation, it clears the “active” flag. Each
thread puts the current epoch E in a reservation at the
beginning of operations, reserving all objects retired on
and after epoch E.

EBR is much more efficient than HPs because it
only introduces a small amount of overhead at the be-
ginning of each operation. On the other hand, HPs re-
quire costly synchronization every time a new record is
accessed. However, the drawback of EBR is that proc-
esses have limited knowledge about which records might
be accessed by a potentially crashed process, as writing
to memory only occurs at the start of each operation
instead of every time a new record is accessed.

When multiple threads or processes access a hash
table simultaneously, synchronization is necessary to
prevent race conditions and ensure consistency. Differ-
ent synchronization primitives can be used to protect
hash tables from concurrent modifications, including
locks, semaphores, and mutexes. In the context of hash
tables, different synchronization primitives have varying
impacts on performance.

To take measurements, we need to perform the fol-
lowing steps:

1) Generate the mixture of operations we will be
running, which consists of a certain percentage of reads,
inserts, erases, updates, and upserts. We pre-generate the
mixture to avoid computing which operation to run while
timing the workload.

2) Pre-generate all keys we will be inserting into
the table. We can calculate an upper bound on the num-
ber of keys inserted based on the prefill percentage and
the number of inserts and upserts we will perform.
Again, pre-generating the keys avoids doing it while
timing the workload. We do not need to pre-generate the
values since the values are the same for all operations.

3) Initialize the table.
4) Fill up the table in advance to the specified

prefill percentage.
5) Run the pre-generated mixture of operations

and time how long it takes to complete all of them.
6) Report the details of the benchmark configura-

tion and the quantities measured, including time elapsed,
throughput, and (optionally) memory usage samples.

To decide what type of synchronization primitive to
use, we conducted a series of benchmarks to test the
performance of different synchronization primitives
paired with different hash tables.

Three measures were conducted for a set of hash
table + synchronization primitive with other loads to
simulate real situations (Fig. 3, Fig. 4). Measurements
were carried out in the Rust programming language and
the bustle measurement library. Bustle runs four tests for
each hash table on a different number of threads to
measure performance in different environments.

Fig. 3. Throughput for different lock types

Fig. 4. Throughput for different memory reclamation strategies

Oleh Pykulytskyi, Bohdan Havano 138

The above benchmarks show that all used tables
show similar performance in a single-threaded environ-
ment. However, when we talk about multithreading,
mutexes, and RWlocks in combination with a standard
hash table becomes very inefficient.

This becomes especially noticeable during inten-
sive writing to the table, where the difference with a
distributed table is up to 10 times. Distributed and lock-
free hash tables demonstrate similar performance, but the
distributed hash table provides much more security be-
cause it uses locks to access internal tables.

VI. SERVER ARCHITECTURE
The server's general structure (Fig. 5) represents

each spawned server instance in the cloud. Every server
instance can handle multiple clients simultaneously
while efficiently processing them. Since each server is
multi-threaded, there are no performance vulnerabilities.
All incoming connections are held in the program's main
thread asynchronously. This fact allows not to block the
execution of the program on each connection, which
significantly reduces the average time of establishing a
connection.

Fig. 5. Server structure

After establishing the connection, the server starts
receiving incoming frames. Each received command
represents one or more available commands. After re-
ceiving, each frame is put into the deque.

A double-ended queue (deque) is a data type whose
elements can be added or removed at the beginning and
end. It allows us to put data in the main thread and re-
ceive them in one of the threads in the pool.

Deque supports the following operations:
• Adding an element to the end of the queue.
• Adding an element to the beginning of the

queue.
• Selection of the last element.
• Selection of the first element.
• Checking the first element (without removing it

from the deque).
• Checking the last element (without removing it

from the deque).
A deque can be implemented using an array or a

linked list. When using an array, two indices are main-
tained to keep track of the front and back of the deque.
When using a linked list, the deque is implemented as a
doubly linked list, with pointers to both the front and
back nodes.

Deque implementations can vary depending on the
specific use case. For example, when implementing a
deque in a user interface, the deque might be imple-

mented as a circular buffer to allow for efficient scroll-
ing through a list of items. In our case, the deque might
be implemented using a linked list for better memory
efficiency.

In addition to the essential insertion and deletion
operations at both ends, deques can support other opera-
tions, such as peeking at the front or back element,
checking if the deque is empty, and iterating over the
elements in the deque. These operations can also be
implemented efficiently, typically in O(1) time.

Insertion and deletion at the front and back of the
deque can be performed in constant time, O(1) when
using an array or a linked list. This is because the posi-
tion of the front and back of the deque is always known,
and inserting or deleting an element at either end re-
quires updating one or two pointers.

Each server instance has a set of threads in a thread
pool. When the thread completes another task (process-
ing the client request), it turns to deque. From the end, it
reads the last task and removes it from the deque. On the
other side main thread listens to all the connections and
adds the incoming commands to the front of the deque.

This approach allows the server to process incom-
ing requests in the order in which they come. Thread
pools can be faster than creating new threads for each
task because the overhead of thread creation and destruc-
tion is limited to the initial pool creation. If there are too

Cloud Key-Value Storage 139

many threads in reserve, this can waste memory and
slow down performance. Associating tasks with threads
that live over multiple network transactions can keep
them more efficient.

 In addition, this approach makes it possible to dy-
namically add and remove threads to optimize the cloud
server for the current load and number of simultaneous
connections. A separate thread is not tied to the task that
comes to it for execution, which allows us to change the
process of processing a client request in the future with-
out changing the logic of the thread pool. When the
client is disconnected main thread can remove all the
tasks related to this connection from the queue.

VII. SERVER ALGORITHM
The server’s algorithm (Fig. 6) describes the proc-

ess of handling each connection. As it was mentioned
earlier, the client communicates with the cloud server
through frames. A frame represents the intermediate
layer between the command which is handled by the
server, and raw bytes, which are sent via TCP. A frame
can contain either one command or several using a
"bulk" parameter. On a transport layer, when a TCP
frame is sent from the sending host, it is first encapsu-
lated in an IP packet containing the IP addresses of the
sending and receiving hosts. The IP packet is then sent to
the receiving host over the network.

When the receiving host receives the IP packet, it
first checks the destination IP address to determine if it is
intended for it. If the packet is intended for it, the receiv-
ing host extracts and processes the TCP segment from
the packet. The receiving host uses the information in the
TCP header, such as the sequence number and acknowl-
edgment number, to ensure that the segments are deliv-
ered reliably and in the correct order.

If a segment is lost or corrupted during transmis-
sion, the receiving host sends a message to the sending
host requesting that the missing or corrupted segment be
retransmitted. This process ensures that the data is deliv-
ered reliably and in the correct order, even in network
errors or congestion.

Each frame consists of data and a data type identi-
fier. The following table shows the supported types and
their corresponding identifiers. The type identifier comes
first in the message and occupies one byte.

Table 1

Supported commands
Command

name
Command description

GET finds a key in storage and returns it back
SET insert value in the storage, or update if an entry

exists
AUTH authorize current connection
INCR increments the counter by 1
DECR decrements the counter by 1

EXISTS returns true if the key exists in the storage
CLOSE close the current connection, purge all the keys

DEL delete the key-value pair from the storage

To represent a single command, a client can use a
bulk string by putting a command name, key, value, and
other fields individually. For example, to get the key's
value, the client sends the following message:
"0x5\r\nGET\r\nkey\r\n". All available commands sup-
ported by the server are listed in the following table. A
client can combine several commands in a single frame.
For this, the client needs to use an array, each element of
which is a separate command. All supported commands
are listed in Table 1.

Fig. 6. Algorithm for handling connection

Oleh Pykulytskyi, Bohdan Havano 140

VIII. ANALYSIS OF RESULTS
Latency is indeed a critical metric in data storage

systems. It represents the time delay between a request
for data and the moment that data is delivered or re-
trieved. Low latency is often desirable in various appli-
cations, such as databases, cloud computing, and real-
time data processing, where timely access to information
is crucial.

The most pivotal and important metric in data stor-
age is latency. There are diverse factors that impact la-
tency and optimizing any of these factors seems to be
effective.

The arrival rate of keys is a parameter that de-
scribes how an unbalanced load affects the performance
and in particular latency of the system. In this experi-
ment, the arrival of keys was concurrent and was in-
creasing by a constant number of keys each time per unit
(1 sec). This allows us to test the system under different,
gently increasing workloads and draw conclusions about
average latency for a single key.

This test was conducted only for valid keys, delib-
erately omitting missed keys, since missed keys usually
are handled much faster, which could affect the validity
of the test. By focusing solely on valid keys, we ensure
that the experiment accurately reflects the system's abil-
ity to handle the ordinary, expected workload without
the influence of exceptional cases.

As illustrated in Fig. 7, the proposed system can
show a latency of less than 1 msec for the arrival rate of
keys up to 90. From the Fig. 7, we can notice that la-
tency increases gently when Kps is less than 30.

This suggests that the system is not only optimized
for high loads but also maintains reasonable latency even
when the workload is lighter. This versatility in latency
performance is valuable because not all workloads are
consistently high, and some applications may require
low latency even during periods of lower data demand.

Fig. 7. Evolution of latency when the average arrival rate
of keys varies from 0 Kps to 90 Kps

Another metric we should consider is throughput.
To measure the throughput of the system, we have run
the server with different numbers of connections, to
measure how high-parallel workloads affect the per-
formance. The results of this test are presented in Table
2. From this data, it's evident that the system's through-

put is influenced by the number of connections and
threads. This information is valuable for understanding
the system's limitations and for capacity planning in real-
world deployments.

As we can see from Table 2, the system is capable
of handling up to 322580 operations/sec. It is noticeable
that when the number of connections increases by 10
times, throughput drops only by less than 2 times, which
indicates the high level of sustainability of the system.

Table 2

Throughput benchmark
Number of
connections

Number of threads Throughput (opera-
tions/sec)

1 16 322580
10 16 187312
20 16 168771
30 16 99915

IX. CONCLUSION
Cloud storage key-value offered a powerful and

flexible solution for storing and accessing data in mod-
ern computing environments. Cloud key-value stores
were based on a distributed architecture that enabled data
to be stored and accessed across multiple servers. This
architecture allowed for the creation of highly available
and fault-tolerant systems that could handle large vol-
umes of data and support complex data structures.

The advantages of using key-value stored in the
cloud extend to scalability and performance, allowing
them to seamlessly adapt to dynamic workloads and
concurrent requests. As the foundation of modern dis-
tributed systems, their design, research, and development
were paramount to realizing the full potential of cloud
computing.

The use of key-value stores in the cloud also of-
fered significant benefits in terms of scalability and
performance. By distributing data across multiple serv-
ers, these systems can handle many simultaneous re-
quests and scale dynamically to accommodate changing
workloads.

In summary, the design, research, and development
of cloud key-value stores were critical topics for modern
distributed systems. These systems offered significant
benefits in terms of scalability, performance, and reli-
ability, but they required careful consideration of the
design and implementation to ensure that they were
robust and secure.

 By leveraging the appropriate synchronization
primitives, hashing algorithms, and security approaches,
developers can build highly available and fault-tolerant
systems that meet the demands of modern distributed
applications in the cloud. The system's throughput was
measured under various conditions, including different
numbers of connections and threads.

It exhibited strong performance with a high
throughput of up to 322580 operations/sec. As the num-
ber of connections increased, the throughput remained
substantial, showcasing the system's ability to scale and
efficiently process requests. The system demonstrated

Cloud Key-Value Storage 141

low latency, with values consistently below 1 msec for
arrival rates of keys up to 90. This indicated that the
system was capable of responding quickly to data re-
trieval requests, even under moderate to high loads.

REFERENCES
[1] A. Melnyk, Y. Morozov, B. Havano and P. Hupalo, (2021).

Protection of Biometric Data Transmission and Storage in
the Human State Remote Monitoring Tools. 11th IEEE In-
ternational Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applica-
tions (IDAACS), Cracow, Poland, vol. 1, pp. 301–306,
DOI: 10.1109/IDAACS53288.2021.9661047

[2] Mazumdar, S., Seybold, D., Kritikos, K., & Verginadis, G.,
(2019). A survey on data storage and placement method-
ologies for Cloud-Big Data ecosystem. Journal of Big
Data, vol. 6, pp. 1–37. DOI: https://doi.org/10.1186/
s40537-019-0178-3

[3] Awan, I., Younas, M., & Benbernou, S., (2021). Conver-
gence of cloud, Internet of Things, and big data: new plat-
forms and applications. Concurrency and Computation:
Practice and Experience, vol. 33, no. 23, pp. 1–3. DOI:
10.1002/cpe.6668

[4] Sadeeq, M.A., Abdulkareem, N.M., Zeebaree, S.R., Ah-
med, D.M., Sami, A.S., & Zebari, R.R., (2021). IoT and
Cloud Computing Issues, Challenges and Opportunities: A
Review. Qubahan Academic Journal, vol. 1, no. 2, pp. 1–
7. DOI: https://doi.org/10.48161/qaj.v1n2a36

[5] Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P.,
Katarki, N., Bruno, A., Hu, J., Ritchken, B., Jackson, B.,
Hu, K., Pancholi, M., He, Y., Clancy, B., Colen, C., Wen,

F., Leung, C., Wang, S., Zaruvinsky, L., Espinosa Zar-
lenga, M., Lin, R., Liu, Z., Padilla, J., & Delimitrou, C.,
(2019). An Open-Source Benchmark Suite for Microser-
vices and Their Hardware-Software Implications for Cloud
& Edge Systems. Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 3–18.
DOI: https://doi.org/10.1145/3297858.3304013

[6] Vladyslav Kotyk, Yevhenii Vavruk, (2022). Comparative
Analysis of Server and Serverless Cloud Computing Plat-
forms, Advances in Cyber-Physical Systems, vol. 7, no. 2, pp.
115–120. DOI: https://doi.org/10.23939/acps2022. 02.115

[7] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun
Jeon, and Jaehyuk Huh, (2019). ShieldStore: Shielded In-
memory Key-value Storage with SGX. Proceedings of the
Fourteenth EuroSys Conference 2019, March 25–28,
2019, Dresden, Germany. ACM, New York, NY, USA,
pp. 1–15. DOI: https://doi.org/10.1145/3302424.3303951

[8] Chen, Y., Lu, Y., Yang, F., Wang, Q., Wang, Y., & Shu, J.,
(2020). FlatStore: An Efficient Log-Structured Key-Value
Storage Engine for Persistent Memory. Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pp. 1077–1091. DOI: https://doi.org/10.1145/
3373376.3378515

[9] Lim, H., Han, D., Andersen, D.G., & Kaminsky, M.,
(2014). MICA: A Holistic Approach to Fast In-Memory
Key-Value Storage. 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’14),
vol. 39, no. 4, pp. 429–444. DOI: 10.5555/2616448.
2616488

Oleh Pykulytsky received the B.S.
degree in Computer Engineering at
Lviv Polytechnic National
University in 2022. Now he is a
fifth-year computer engineering stu-
dent at Lviv Polytechnic National
University. His research interests
include networking, architecture,
system design, concurrency and
back-end development.

Bohdan Havano received the B.S.
degree in Computer Engineering at
Lviv Polytechnic National University
in 2015 and M.S. degree in system
programming at Lviv Polytechnic
National University in 2016. He has
been doing scientific research work
since 2017. His research interests
include architecture and data pro-
tection in cyber-physical systems.

