
ADVANCES IN CYBER-PHYSICAL SYSTEMS 
Vol. 8 No. 2, 2023 

CLOUD KEY-VALUE STORAGE 
Oleh Pykulytskyi, Bohdan Havano 

Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine 
Author's e-mails: Oleh.Pykulytskyi.mKIKS.2022@lpnu.ua; bohdan.i.havano@lpnu.ua 

https://doi.org/10.23939/acps2023.02.133 

Submitted on 06.10.2023 

© Pykulytskyi O., Havano B., 2023 

Abstract: The paper represents all the stages of design-
ing, architecting, and developing cloud-based key-value 
storage. This work aims to bring new approaches to dis-
tributed data systems. The authors focus on the security 
and productivity of the project as well as security and 
maintainability.  

The authors have studied the use of hash tables in a 
multi-threaded environment. Architectural approaches and 
tools have been described. The general structure of the key-
value storage server has been presented. The server algo-
rithm has been presented. Our research delves into the 
intricate nuances of utilizing hash tables in a multi-
threaded environment, shedding light on the intricacies and 
challenges of managing concurrent access to key-value data 
structures. The authors have explored the trade-offs be-
tween lock-free designs and traditional locking approaches. 

Index Terms: cloud storage, multithreading, key-value 
storage, lock-free.  

I. INTRODUCTION 
Nowadays, the vast majority of software solutions 

use some cloud storage. They are used for educational 
purposes, and store business analytics. This technology 
has become widespread in medicine. For example, it is 
used for storing biometric data from the human state 
remote monitoring tools 0, big data [2], Internet of 
Things [3]. It is evident that with the development and 
spread of technologies, more and more types of cloud 
storage offer their approach to interacting with them. 
This variety allows for choosing the cloud storage that 
best solves problems. 

Cloud computing is a way for businesses to use 
technology without having to buy it themselves. Instead, 
they rent the technology from a company that already 
has it. This saves the business money because they don't 
have to spend a lot of money upfront. It also helps them 
save money on operating costs because they only pay for 
what they need. Cloud computing also makes it easy for 
businesses to grow and handle more customers because 
they can easily get more technology when they need it 
[4]. And finally, using cloud computing is convenient 
because businesses can access their technology from 
different devices like computers and phones. It also 
helps businesses because they don't have to worry about 
things going wrong with their technology. After all, the 
company they rent from takes care of that [5]. 

Local machines are becoming less and less adapt-
able, necessitating more regular updates to the hardware 
and software components. Program architecture deterio-
rates in flexibility with time and gets more complex. At 
the same time there are cloud platforms that enable re-
source optimization, guarantee scalability, and provide 
flexibility to address this issue [6]. 

As the number of internet users continues to rise 
annually, the costs associated with processing and stor-
ing user data have also increased. New tasks that require 
high-performance storage, capable of reading and writ-
ing data quickly, have also emerged. Relational data-
bases are currently the most widely used type of storage, 
consisting of related data organized into tables with 
relationships established between them. 

However, in many cases, relational databases may 
be excessive, and their relatively slow speed is a hin-
drance. Key-value storage provides a practical solution 
in such scenarios. By storing data in memory instead of 
on disk, key-value storage significantly reduces latency 
and response time per request, as RAM speed can be up 
to 50 times faster than that of hard disks. Databases also 
use concurrency to utilize multiple CPUs, by assigning 
transactions to different threads. 

 This type of storage is particularly effective for 
storing large volumes of unrelated small-sized data, 
which can be accessed, modified, or deleted quickly. 
Applications of key-value storage include caching, ac-
celeration of application response, user session data 
storage, authorization key storage, and high-performance 
operation data storage, among others. 

II. REVIEW OF RECENT PUBLICATIONS  
Key-value data stores have been a topic of research 

for many years. This type of software system has be-
come a fundamental component of modern data center 
infrastructure. During this time, many proposed solutions 
were oriented toward different parts of the system. Some 
researchers are focused on improving algorithms for 
persistent stores, while others propose different ap-
proaches to improve the performance or safety of key-
value databases. 

Intel Software Guard Extensions (SGX) [7] were 
proposed as a way to improve the safety of the in-
memory key-value stores. SGX can provide secure cloud 
computing on remote systems under untrusted privileged 
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system software. The main advantage of SGX is that it 
provides isolated execution environments protected from 
malicious operating systems and physical attacks, which 
can significantly improve the safety of the systems. 
However, as the paper shows, this approach can restrict 
the performance of the store. 

This paper [8] proposes a design based on persis-
tent memory (PM). The key idea is to decouple the role 
of a KV store into a volatile index for fast indexing and a 
persistent log structure for efficient storage. The authors 
proposed a compact log format and pipelined horizontal 
batching techniques to achieve high throughput, low 
latency, and multi-core scalability. 

In this paper [9] authors try to achieve high single-
node throughput by improving several parts of the sys-
tem, like network I/O, parallel data access, and the over-
all design of key-value data structures. The authors em-
phasize the importance of high-speed nodes in an in-
memory database since they may reduce costs by requir-
ing fewer of them overall, reducing the cost and over-
head of replication and invalidation. 

As it can be observed from the review, key-value 
stores experience strong interest from researchers. Over-
all, the dynamic landscape of key-value data stores con-
tinues to attract a wealth of interest and exploration from 
the research community. These endeavors span a spec-
trum of objectives, ranging from fortifying security 
measures to advancing the performance and scalability 
of key-value databases through inventive design strate-
gies, as exemplified in this section.  

Furthermore, the emphasis on improving network 
I/O, parallel data access, and the overall design of key-
value data structures in pursuit of high single-node 
throughput highlights the pragmatic importance of opti-
mizing key-value data stores. This not only enhances 
performance but also has potential cost-saving implica-
tions by reducing the need for extensive replication and 
invalidation processes. 

III.  OBJECTIVES 
The main objective of this paper is to develop a 

high-performance in-memory key-value database by 
embracing lock-free approaches to the storage process. 
In-memory storage allows for the improvement of the 
performance of many types of software systems. Since 
this type of software is very latency-sensitive, it is very 
important to provide fast access to the data. 

While current solutions use locks internally, with 
the development of new lock-free algorithms and ap-
proaches, it is crucial to utilize them in data storage. To 
accomplish this goal, we have to quantify and evaluate 
the performance gains achieved by lock-free techniques 
in key-value stores, particularly in terms of throughput, 
latency, and scalability. Compare these results against 
traditional lock-based approaches to highlight the advan-
tages and trade-offs. The resulting system should be 
capable of performing more than 300,000 operations per 
second while efficiently utilizing hardware resources, 
with a particular emphasis on achieving these bench-

marks on a 16-core CPU. Additionally, the target latency 
should remain below 1 millisecond under normal operat-
ing conditions, ensuring that this high level of perform-
ance is consistently achievable across a multi-core proc-
essing environment.  

Another important task is to investigate how lock-
free mechanisms impact the concurrent access and scal-
ability of key-value stores, with a focus on scenarios 
involving high contention and varying workloads. We 
need to conduct a comparative study between lock-free 
key-value stores and their lock-based counterparts, offer-
ing a holistic view of the benefits and trade-offs in dif-
ferent application contexts. 

By addressing these objectives, this research paper 
aims to contribute valuable insights into the realm of 
lock-free techniques in key-value stores, providing a 
foundation for further advancements in the field and 
aiding practitioners in designing high-performance, 
scalable, and concurrent data storage systems. Imple-
menting high-performance storage should allow compa-
nies to reduce their expenses on server infrastructure as 
well as increase the throughput of client traffic. 

IV.  DISTRIBUTED DATA STORAGE 
To store data in memory, it is necessary to consider 

data types that allow maximum efficiency in working 
with them. For these needs, a hash table is perfect. A 
hash table is one of the implementations of an associa-
tive array. An associative array is a data type that stores 
a collection of pairs (e.g., key, value). Each key can 
appear only once in the collection, and the array supports 
operations like looking up a value and removing items 
from the array. Associative arrays have two essential 
properties. Only one key can have a given value, and 
every key can only appear once in the list. 

A hash table usually uses a hash function to calcu-
late an index, which is then used to look up a value in an 
array of slots. If the desired value is not found in the first 
slot in the collection, the hash table will look in the sec-
ond slot, and so on. If the expected value is still not 
found, the hash table will check the third slot, and so on. 

A hash table is a type of storage that uses buckets 
to divide the data into smaller groups. When looking up 
an item in a hash table, the system calculates its hash (a 
number representing its unique identity). Then it looks 
through the buckets, checking which bucket the hash 
belongs to. If the hash belongs to a bucket, the system 
grabs the item from that bucket and moves on. If the 
hash doesn't belong to a bucket, the system looks for an 
open bucket with room for the item. The linked list is 
then scanned to see if the desired element is present. If 
the linked list is short, this scan is quick. If the linked list 
is not short, the key is hashed again to find the correct 
bucket for the linked list. Then, the bucket is checked to 
see if the item is there, and finally, the desired element is 
added or removed from the bucket in the usual way for 
linked lists. 
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A. DISTRIBUTED HASH TABLES 
Distributed Hash Tables (DHTs) are a distributed 

storage technology that allows data to be stored and 
retrieved across a network of nodes. DHTs use a hash 
function to assign data to nodes in the network, allowing 
for efficient storage and retrieval of data. DHTs have 
been used in various applications, including peer-to-peer 
networks, cloud storage, and distributed databases. This 
article will explore the design, research, and applications 
of distributed hash tables. 

The design of distributed hash tables involves sev-
eral vital components. These include the hash function 
used to assign data to nodes, the routing protocol used to 
find nodes in the network, and the data replication strat-
egy used to ensure data availability. The hash function 
used in a DHT should be fast, collision-resistant, and 
evenly distribute data across the nodes in the network. 
The routing protocol used in a DHT should allow for 
efficient data routing between nodes, even in the face of 
node failures and network congestion. Finally, the data 
replication strategy used in a DHT should ensure that 
data is available despite node failures and network parti-
tions. 

Distributed hash tables have been used in various 
applications, including peer-to-peer networks, cloud 
storage, and distributed databases. In cloud storage, 
DHTs are used to store and retrieve data across multiple 
nodes in a distributed database system. When a user 
uploads data to the cloud, the DHT algorithm hashes the 
data's identifier to locate the appropriate node(s) where it 
will be stored. Subsequently, when a user requests access 
to the data, the DHT swiftly retrieves it by following the 
same hashing process, making cloud storage systems 
highly scalable and fault-tolerant. This not only enhances 
data access speed but also increases data redundancy, 
further safeguarding against data loss or system failures. 

B. CONSISTENT HASHING 
Consistent hashing (Fig. 1) is a shared hash table 

technique that allows data to be evenly distributed across 
shards while minimizing the number of data items that 
need to be moved when the number of shards changes. 

The theory behind consistent hashing is based on the 
idea of a ring. Each node in the network is also mapped to 
a point on the ring. Data items are then stored on the node 
whose point on the ring is the closest to the point on the 
ring that corresponds to the hash value of the data item. 
This allows for the efficient distribution of data across the 
network, fault tolerance, and load balancing. 

The implementation of consistent hashing involves 
several key components. These include the hash function 
used to map data items to points on the ring, the number 
of virtual nodes representing each physical node on the 
ring, and the mechanism used to handle node failures 
and additions. The hash function used in consistent hash-
ing should be fast and produce a uniform distribution of 
hash values. The number of virtual nodes used to repre-
sent each physical node on the ring can affect the sys-

tem's load balancing and fault tolerance properties. A 
more significant number of virtual nodes per physical 
node can lead to better load balancing and fault tolerance 
but also increase the system's complexity. The mecha-
nism used to handle node failures and additions can 
involve the use of replicas or the migration of data to 
other nodes in the network. 

 

 

Fig. 1. Consistent hashing 

One of the key benefits of using consistent hashing 
in these applications is its ability to provide fault toler-
ance and load balancing. Because data is distributed 
across multiple network nodes, consistent hashing can 
continue operating even in the face of node failures or 
network partitions. In addition, consistent hashing can 
handle large amounts of data and traffic, making it a 
highly scalable solution for distributed storage and proc-
essing. 

V. SYNCHRONIZATION AND THREAD SAFETY 
To handle multiple connections efficiently, it is 

necessary to distribute the load between connections and 
provide them with shared access to data. 

Developing a high-performance, secure network 
application requires efficient use of threads. This task 
becomes one of the most critical and complicated when 
it comes to data storage, especially in-memory storage. 
To deal with shared data between threads, we must em-
phasize the importance of the synchronization primitive. 

Synchronization primitives are mechanisms usually 
provided by an operating system to support thread or 
process synchronization. Many programming languages 
implement their API to interact with these mechanisms. 

They can be divided into two large groups: those 
that use shared memory and those that allow sending 
information from one thread to another. Those that pro-
vide access to shared memory include mutex, sema-
phore, RWlock, condition variable, barrier, etc. 
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Mutex (from mutual exclusion) is a synchroniza-
tion primitive that prevents the usage of shared data at 
the same time by two or more threads (execution proc-
esses). Mutex usually holds shared data inside it, known 
as a critical section. The mutual exclusion algorithm 
ensures that if a process is already performing a write 
operation on a data object (critical section). No other 
thread is allowed to write or read the same object until 
the first process has finished writing upon the data object 
critical section and released the object for other proc-
esses to read and write upon. 

Any thread that successfully locks the mutex be-
comes the owner of the mutex until it unlocks the mutex. 
Every thread that attempts to write to the shared data or 
read this data has to wait until the owner unlocks the 
mutex. 

Readers-writer lock is quite similar to a mutex, but 
unlike it, it allows multiple read operations simultane-
ously. Just like mutex, the RWlock is built on top of 
semaphore. This fact makes it possible to theoretically 
speed up access to shared data, given that replacing a 
mutex with RWlock is "seamless."  

Synchronization primitives can have a significant 
impact on the performance of software applications. On 
the one hand, synchronization is necessary to ensure 
correctness and safety. However, on the other hand, 
excessive synchronization can lead to decreased per-
formance as threads wait for access to shared resources. 

One of the primary performance considerations 
with synchronization primitives is contention. Conten-
tion occurs when multiple threads attempt to access a 
shared resource simultaneously and must wait for access. 
This can lead to decreased performance, as threads wait 
for access to the resource rather than doing valuable 
work. 

This becomes especially noticeable during inten-
sive writing to the table, where the difference with a 
distributed table is up to 10 times. Distributed and lock-
free hash tables demonstrate similar performance, but the 
distributed hash table provides much more security be-
cause it uses locks to access internal tables. 

It is a reasonable choice to use lock-based data 
structures in high-throughput required systems. How-
ever, we need to mention that this approach creates a 
noticeable overhead when accessing the data structure. 
Usually, locks like mutex use a system call to block the 
execution on a thread that wants to acquire the lock 
while it is locked by a different thread. If this overhead is 
critical for the system, it is reasonable to consider a lock-
free approach. Highly concurrent access to shared data 
demands a sophisticated ‘fine-grained’ locking strategy 
(Fig. 2) to avoid serializing non-conflicting operations. 
Such strategies are hard to design correctly and with 
good performance because they can harbor problems 
such as deadlock, priority inversion, and convoying. 
Lock manipulations may also degrade the performance 
of cache-coherent multiprocessor systems by causing 
coherency conflicts and increased interconnect traffic, 
even when the lock protects read-only data.  

 

Fig. 2. The lifecycle of a record 

A data structure is “lock-free” if and only if an op-
eration is completed after a certain number of steps have 
been executed system-wide on the data structure. This 
guarantee of “system-wide” progress is usually achieved 
by having a process experience contention so that it can 
wait for the competing operation to finish before con-
tinuing with its work. This guarantees that every execut-
ing process always ensures the forward progress of an 
operation. This is very different from a lock-based algo-
rithm, where a process spins or blocks until the compet-
ing operation is completed. 

The biggest problem in designing lock-free data 
structures (and especially collections) is to deal with 
cases when one thread currently reads the data, and an-
other thread tries to rewrite this data. In this case, when 
the writer rewrites the given data, it gets back the old 
data, which it needs to decide what to do with. A writer 
cannot easily deallocate it, since other threads may rely 
on this data. 

This task is usually solved by embracing the mem-
ory reclamation mechanism. 

The most straightforward is reference counting 
(RC). This approach allows the safe reclamation of 
pointers when there are no active references to them. It is 
a technique used to automatically determine when a 
piece of memory (such as an object or data structure) is 
no longer in use so that it can be safely deallocated. Each 
pointer that needs to be reference-counted has a counter 
(usually an atomic unsigned integer) associated with it. 
Each time the thread wants to access this pointer, it in-
crements the counter by one. When a pointer is not 
needed (when data goes out of scope), a thread decre-
ments this counter by one. When the counter reaches 0, 
data can be finally deallocated. Even though these opera-
tions require only one additional operation (increment or 
decrement) (and on some architectures, even one instruc-
tion), this method is not very efficient because memory 
management decisions are made on a per-reference ba-
sis. This means that memory may be reclaimed and ob-
jects may be deallocated more frequently than in other 
garbage collection strategies, leading to higher memory 
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management overhead. In addition, each decrement 
operation requires a compare-and-swap (CAS) operation 
to prevent data races and double-free problems. 

A hazard pointer (HP) is a single-writer multi-
reader pointer that can be owned by at most one thread at 
any time. Only the owner of the hazard pointer can set its 
value, while any number of threads may read its value. A 
thread that is about to access dynamic objects optimisti-
cally acquires ownership of a set of hazard pointers to 
protect such objects from being reclaimed. The owner 
thread sets the value of a hazard pointer to point to an 
object to indicate to concurrent threads — that may re-
move such object — that the object is not yet safe to 
reclaim.  

They are used to inform the other threads of what 
data structures are being accessed by a thread and that 
thus cannot be reclaimed by others. Hazard pointers 
usually imply a significant overhead caused by threads 
having to share their location every time they move on 
the data structure. 

Epoch-based reclamation (EBR) takes a different 
approach. The scheme builds on limbo lists which con-
tain a retired object until no stale references can exist. It 
uses a global epoch counter to determine when no stale 
references exist to any object in a limbo list. Each time a 
process starts an operation in which it will access shared 
memory objects, it observes the current epoch. When all 
processes have observed the current epoch, the limbo list 
that was populated two epochs ago can safely be re-
claimed. This now-empty list can be immediately recy-
cled and populated with retired nodes in the new epoch. 

When a thread wants to operate on the data struc-
ture, it first sets its "active" flag and then updates its 
local epoch to match the global one. If the thread re-
moves a node from the data structure, it adds that node to 
the retired list for the current global epoch. When it 
completes its operation, it clears the “active” flag. Each 
thread puts the current epoch E in a reservation at the 
beginning of operations, reserving all objects retired on 
and after epoch E. 

EBR is much more efficient than HPs because it 
only introduces a small amount of overhead at the be-
ginning of each operation. On the other hand, HPs re-
quire costly synchronization every time a new record is 
accessed. However, the drawback of EBR is that proc-
esses have limited knowledge about which records might 
be accessed by a potentially crashed process, as writing 
to memory only occurs at the start of each operation 
instead of every time a new record is accessed. 

When multiple threads or processes access a hash 
table simultaneously, synchronization is necessary to 
prevent race conditions and ensure consistency. Differ-
ent synchronization primitives can be used to protect 
hash tables from concurrent modifications, including 
locks, semaphores, and mutexes. In the context of hash 
tables, different synchronization primitives have varying 
impacts on performance. 

To take measurements, we need to perform the fol-
lowing steps: 

1)  Generate the mixture of operations we will be 
running, which consists of a certain percentage of reads, 
inserts, erases, updates, and upserts. We pre-generate the 
mixture to avoid computing which operation to run while 
timing the workload. 

2)  Pre-generate all keys we will be inserting into 
the table. We can calculate an upper bound on the num-
ber of keys inserted based on the prefill percentage and 
the number of inserts and upserts we will perform. 
Again, pre-generating the keys avoids doing it while 
timing the workload. We do not need to pre-generate the 
values since the values are the same for all operations. 

3)  Initialize the table. 
4)  Fill up the table in advance to the specified 

prefill percentage. 
5)  Run the pre-generated mixture of operations 

and time how long it takes to complete all of them. 
6)  Report the details of the benchmark configura-

tion and the quantities measured, including time elapsed, 
throughput, and (optionally) memory usage samples. 

To decide what type of synchronization primitive to 
use, we conducted a series of benchmarks to test the 
performance of different synchronization primitives 
paired with different hash tables.  

Three measures were conducted for a set of hash 
table + synchronization primitive with other loads to 
simulate real situations (Fig. 3, Fig. 4). Measurements 
were carried out in the Rust programming language and 
the bustle measurement library. Bustle runs four tests for 
each hash table on a different number of threads to 
measure performance in different environments. 

 

 

Fig. 3. Throughput for different lock types 

 

Fig. 4. Throughput for different memory reclamation strategies 
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The above benchmarks show that all used tables 
show similar performance in a single-threaded environ-
ment. However, when we talk about multithreading, 
mutexes, and RWlocks in combination with a standard 
hash table becomes very inefficient.  

This becomes especially noticeable during inten-
sive writing to the table, where the difference with a 
distributed table is up to 10 times. Distributed and lock-
free hash tables demonstrate similar performance, but the 
distributed hash table provides much more security be-
cause it uses locks to access internal tables. 

VI. SERVER ARCHITECTURE 
The server's general structure (Fig. 5) represents 

each spawned server instance in the cloud. Every server 
instance can handle multiple clients simultaneously 
while efficiently processing them. Since each server is 
multi-threaded, there are no performance vulnerabilities. 
All incoming connections are held in the program's main 
thread asynchronously. This fact allows not to block the 
execution of the program on each connection, which 
significantly reduces the average time of establishing a 
connection. 

 

 

Fig. 5. Server structure

After establishing the connection, the server starts 
receiving incoming frames. Each received command 
represents one or more available commands. After re-
ceiving, each frame is put into the deque. 

A double-ended queue (deque) is a data type whose 
elements can be added or removed at the beginning and 
end. It allows us to put data in the main thread and re-
ceive them in one of the threads in the pool. 

Deque supports the following operations: 
• Adding an element to the end of the queue. 
• Adding an element to the beginning of the 

queue. 
• Selection of the last element. 
• Selection of the first element. 
• Checking the first element (without removing it 

from the deque). 
• Checking the last element (without removing it 

from the deque). 
A deque can be implemented using an array or a 

linked list. When using an array, two indices are main-
tained to keep track of the front and back of the deque. 
When using a linked list, the deque is implemented as a 
doubly linked list, with pointers to both the front and 
back nodes. 

Deque implementations can vary depending on the 
specific use case. For example, when implementing a 
deque in a user interface, the deque might be imple-

mented as a circular buffer to allow for efficient scroll-
ing through a list of items. In our case, the deque might 
be implemented using a linked list for better memory 
efficiency. 

In addition to the essential insertion and deletion 
operations at both ends, deques can support other opera-
tions, such as peeking at the front or back element, 
checking if the deque is empty, and iterating over the 
elements in the deque. These operations can also be 
implemented efficiently, typically in O(1) time. 

Insertion and deletion at the front and back of the 
deque can be performed in constant time, O(1) when 
using an array or a linked list. This is because the posi-
tion of the front and back of the deque is always known, 
and inserting or deleting an element at either end re-
quires updating one or two pointers. 

Each server instance has a set of threads in a thread 
pool. When the thread completes another task (process-
ing the client request), it turns to deque. From the end, it 
reads the last task and removes it from the deque. On the 
other side main thread listens to all the connections and 
adds the incoming commands to the front of the deque.  

This approach allows the server to process incom-
ing requests in the order in which they come. Thread 
pools can be faster than creating new threads for each 
task because the overhead of thread creation and destruc-
tion is limited to the initial pool creation. If there are too 
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many threads in reserve, this can waste memory and 
slow down performance. Associating tasks with threads 
that live over multiple network transactions can keep 
them more efficient. 

 In addition, this approach makes it possible to dy-
namically add and remove threads to optimize the cloud 
server for the current load and number of simultaneous 
connections. A separate thread is not tied to the task that 
comes to it for execution, which allows us to change the 
process of processing a client request in the future with-
out changing the logic of the thread pool. When the 
client is disconnected main thread can remove all the 
tasks related to this connection from the queue. 

VII. SERVER ALGORITHM 
The server’s algorithm (Fig. 6) describes the proc-

ess of handling each connection. As it was mentioned 
earlier, the client communicates with the cloud server 
through frames. A frame represents the intermediate 
layer between the command which is handled by the 
server, and raw bytes, which are sent via TCP. A frame 
can contain either one command or several using a 
"bulk" parameter. On a transport layer, when a TCP 
frame is sent from the sending host, it is first encapsu-
lated in an IP packet containing the IP addresses of the 
sending and receiving hosts. The IP packet is then sent to 
the receiving host over the network. 

When the receiving host receives the IP packet, it 
first checks the destination IP address to determine if it is 
intended for it. If the packet is intended for it, the receiv-
ing host extracts and processes the TCP segment from 
the packet. The receiving host uses the information in the 
TCP header, such as the sequence number and acknowl-
edgment number, to ensure that the segments are deliv-
ered reliably and in the correct order. 

If a segment is lost or corrupted during transmis-
sion, the receiving host sends a message to the sending 
host requesting that the missing or corrupted segment be 
retransmitted. This process ensures that the data is deliv-
ered reliably and in the correct order, even in network 
errors or congestion. 

Each frame consists of data and a data type identi-
fier. The following table shows the supported types and 
their corresponding identifiers. The type identifier comes 
first in the message and occupies one byte. 

Table 1 

Supported commands 
Command 

name 
Command description 

GET finds a key in storage and returns it back 
SET insert value in the storage, or update if an entry 

exists 
AUTH authorize current connection 
INCR increments the counter by 1 
DECR decrements the counter by 1 

EXISTS returns true if the key exists in the storage 
CLOSE close the current connection, purge all the keys 

DEL delete the key-value pair from the storage 

To represent a single command, a client can use a 
bulk string by putting a command name, key, value, and 
other fields individually. For example, to get the key's 
value, the client sends the following message: 
"0x5\r\nGET\r\nkey\r\n". All available commands sup-
ported by the server are listed in the following table. A 
client can combine several commands in a single frame. 
For this, the client needs to use an array, each element of 
which is a separate command. All supported commands 
are listed in Table 1. 

 

 

Fig. 6. Algorithm for handling connection 
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VIII. ANALYSIS OF RESULTS 
Latency is indeed a critical metric in data storage 

systems. It represents the time delay between a request 
for data and the moment that data is delivered or re-
trieved. Low latency is often desirable in various appli-
cations, such as databases, cloud computing, and real-
time data processing, where timely access to information 
is crucial. 

The most pivotal and important metric in data stor-
age is latency. There are diverse factors that impact la-
tency and optimizing any of these factors seems to be 
effective.  

The arrival rate of keys is a parameter that de-
scribes how an unbalanced load affects the performance 
and in particular latency of the system. In this experi-
ment, the arrival of keys was concurrent and was in-
creasing by a constant number of keys each time per unit 
(1 sec). This allows us to test the system under different, 
gently increasing workloads and draw conclusions about 
average latency for a single key.  

This test was conducted only for valid keys, delib-
erately omitting missed keys, since missed keys usually 
are handled much faster, which could affect the validity 
of the test. By focusing solely on valid keys, we ensure 
that the experiment accurately reflects the system's abil-
ity to handle the ordinary, expected workload without 
the influence of exceptional cases. 

As illustrated in Fig. 7, the proposed system can 
show a latency of less than 1 msec for the arrival rate of 
keys up to 90. From the Fig. 7, we can notice that la-
tency increases gently when Kps is less than 30.  

This suggests that the system is not only optimized 
for high loads but also maintains reasonable latency even 
when the workload is lighter. This versatility in latency 
performance is valuable because not all workloads are 
consistently high, and some applications may require 
low latency even during periods of lower data demand. 

 

 

Fig. 7. Evolution of latency when the average arrival rate  
of keys varies from 0 Kps to 90 Kps 

Another metric we should consider is throughput. 
To measure the throughput of the system, we have run 
the server with different numbers of connections, to 
measure how high-parallel workloads affect the per-
formance. The results of this test are presented in Table 
2. From this data, it's evident that the system's through-

put is influenced by the number of connections and 
threads. This information is valuable for understanding 
the system's limitations and for capacity planning in real-
world deployments.  

As we can see from Table 2, the system is capable 
of handling up to 322580 operations/sec. It is noticeable 
that when the number of connections increases by 10 
times, throughput drops only by less than 2 times, which 
indicates the high level of sustainability of the system. 

Table 2 

Throughput benchmark 
Number of 
connections 

Number of threads Throughput (opera-
tions/sec) 

1 16 322580 
10 16 187312 
20 16 168771 
30 16 99915 

IX. CONCLUSION 
Cloud storage key-value offered a powerful and 

flexible solution for storing and accessing data in mod-
ern computing environments. Cloud key-value stores 
were based on a distributed architecture that enabled data 
to be stored and accessed across multiple servers. This 
architecture allowed for the creation of highly available 
and fault-tolerant systems that could handle large vol-
umes of data and support complex data structures.  

The advantages of using key-value stored in the 
cloud extend to scalability and performance, allowing 
them to seamlessly adapt to dynamic workloads and 
concurrent requests. As the foundation of modern dis-
tributed systems, their design, research, and development 
were paramount to realizing the full potential of cloud 
computing. 

The use of key-value stores in the cloud also of-
fered significant benefits in terms of scalability and 
performance. By distributing data across multiple serv-
ers, these systems can handle many simultaneous re-
quests and scale dynamically to accommodate changing 
workloads. 

In summary, the design, research, and development 
of cloud key-value stores were critical topics for modern 
distributed systems. These systems offered significant 
benefits in terms of scalability, performance, and reli-
ability, but they required careful consideration of the 
design and implementation to ensure that they were 
robust and secure. 

 By leveraging the appropriate synchronization 
primitives, hashing algorithms, and security approaches, 
developers can build highly available and fault-tolerant 
systems that meet the demands of modern distributed 
applications in the cloud. The system's throughput was 
measured under various conditions, including different 
numbers of connections and threads.  

It exhibited strong performance with a high 
throughput of up to 322580 operations/sec. As the num-
ber of connections increased, the throughput remained 
substantial, showcasing the system's ability to scale and 
efficiently process requests. The system demonstrated 
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low latency, with values consistently below 1 msec for 
arrival rates of keys up to 90. This indicated that the 
system was capable of responding quickly to data re-
trieval requests, even under moderate to high loads. 
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