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Fractional HCV infection model with adaptive immunity and treatment is suggested and
studied in this paper. The adaptive immunity includes the CTL response and antibodies.
This model contains five ordinary differential equations. We will start our study by proving
the existence, uniqueness, and boundedness of the positive solutions. The model has
free-equilibrium points and other endemic equilibria. By using Lyapunov functional and
LaSalle’s invariance principle, we have shown the global stability of these equilibrium
points. Finally, some numerical simulations will be given to validate our theoretical results
and show the effect of the fractional derivative order parameter and the other treatment
parameters.
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1. Introduction

The hepatitis C virus (HCV) is one of the dangerous diseases that can result in severe liver damage [1].
Globally, 51 million are infected by HCV in the world, according to World Health Organization [2]. An
infected individual can transmit the virus to someone else through blood-to-blood contact. Nowadays,
sharing some specific items or injecting drugs are how most people contract the hepatitis C virus.

Mathematical modeling is an effective tool for understanding the transmission mechanism of most
infectious diseases, it permits to give solutions to fight or minimize the side effects of these diseases
and also to imagine possible scenarios and health directions [3]. As most biological reactions contain
memory, therefore the normal derivative is not sufficient to better describe the transmission dynamics
of infectious diseases because this type of derivative does not take into account the memory effect.
So, there is another type of derivative called the fractional derivative which takes into consideration
this effect [4]. Many works use this derivative to describe the dynamic of transmission of infectious
diseases [5—20]. Recently, in [21] suggest a fractional viral epidemic model with antibodies and a
cytotoxic T-lymphocyte response as follows:

1- X
DX = A — ol = &) XV

14+ mX +nV’
ag(l —e,.4) XV
DY = —fi erjr) M2y~ aYZ,

DV =o09(1 —€p)Y — psV —m VW,

DW = yoVW — paW,

D7 =o03YZ — usZ,

D® means the fractional derivative order where 0 < o < 1. The variable X, Y, V|, W and Z design

respectively the susceptible cells, the infected cells, the free viruses, the antibodies and cytotoxic T-

lymphocyte (CTL) response. A means the reproduction rate of susceptible cells, the ratio %
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is the infection function of susceptible cells by a free virus, with m and n two positive constants. The
infected particles are killed at 01Y Z, the free viruses are produced at the rate o9(1 — €,;)Y. The
Antibodies kill the viruses at the rate v; VW and are produced at the rate y2VW. The CTL grow at
rate o3Y Z. The mortality rate of the variables X, Y, V, W, and Z are respectively u1 X, pusY, usV,
waW, and psZ. The efficacy of the drugs, reverse transcriptase and protease inhibitors are represented
by €, and e,4, where 0 < £,4,€p; < 1. The authors have proved the stability of equilibrium points. The
disadvantage of this latest model and other models [22-30| they study the dynamic of infections by
using only one mode of infection (virus-to-cell) but the hepatits C can transmitted by two within-host
modes the first one is called virus-to-cell that is to say that the infection transmits virus to the cell and
the second stand is cell-to-cell this means that the infection transmits cell to the cell [31-37|. Recently,
Yaagoub and Allali in [38] suggest a HBV model with cell-to-cell and virus-to-cell transmissions and
adaptive immunity, they gave the different theorems of existence and well-posedness of all solutions;
and also demonstrated the global stability of steady states and they finished their work by giving some
numerical simulations.

When the infection by the hepatitis C virus becomes chronic, the treatment is necessary to eliminate
the disease or to combat further complications. There is a group of treatment forms recommended by
World Health Organization, it depends on the patient’s age and also his health situation [2]. Many
mathematical models take into consideration the treatment or quarantine to describe the dynamics of
some diseases [39-41|. In this work, we suggest the following HCV fractional model with two modes
of transmission virus-to-cell and cell-to-cell in which we take into account the treatment of HCV:
(D% = A — oy (1 —up)av — ao(1 — ug)xy — py,

D% = o1(1 —w)zv + az(l — ug)zy — o1yz — p2y,
D% = ooy — y1vw — usv, (1)
D%w = yvw — prqw,

| D% = 03yz — psz.

A A
K2y H3v
Uﬁﬂ 'ylbw
ar(l —up)av + ag(l — ug)zy
03-92 ’yﬁ)w

Y
— A —> 1T » @M5Z> HaW »

Fig. 1. The diagram of fractional HCV infection model.

In this model, all the parameters are defined in the previous paragraph and are displayed in the
diagram represented in Figure 1. Finally, we would like to mention that the fractional derivative models
have shown their great importance not only in biological systems but also in many other fields [42—-44].

This paper consists of the following five sections. In Section 2, some definitions and properties of
fractional derivatives were given. In Section 3, the existence, positivity and boundedness of solutions
of system (1) were established. In Section 4, we will give the different theorems of the global stability
concerning the equilibrium points. Numerical simulation and some discussions are given in Section 5,
while the last section concludes the work.
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2. Preliminary results

Now we give some results of fractional order derivative which will help us to properly analyze our
model (1) later
Definition 1 (Ref. [45]). The fractional integral of order ac > 0 of function G: Ry — R is defined
by

1

O /0 (t — $)°1G(s) ds,

where I'(z) = [;° e~ 't*~!dt.

Definition 2 (Ref. [46])). The Mittag—Leffler function of parameter o > 0, noted by E,, is defined

as
+00 4
Eut) =) ———.
at) ;r(aiﬂ)

Let L: R™ — R", where n > 1. We consider the following fractional order system given by
DY (t) = L(Y), (2)
with Y(0) = Yp, Yo € R™ and 0 < o < 1. To prove the uniqueness of solutions of system (2), we give
the following proposition.
Proposition 1. If the function L satisfies the two following conditions
1) L(Y) and g—}L,(Y) are continuous on R™;
2) |L(Y)|| < Ty + T||Y] for all Y € R™, with T and T5 are two positive constants.
Then, the system (2) has a unique solution defined on R’}.

Lemma 1 (LaSalle’s invariance principle). Let C be a compact set of R;. Every solution of the
system (2), starting from a point in C and remains in C for all t, if there exists a C' function V (z)
defined over C satisfies the following condition

DV <0.

Let E be the set of all points in C, where D*V = 0, and M be the largest invariant set in . Then,
every solution Y (t) starting in C approaches M ast — cc.

3. Uniqueness, positivity, and boundedness of solutions

In order to analyze our proposed model (1), we will give the different theorems of existence, uniqueness,
and well-posedness of all model solutions.

Theorem 1. The model (1) has a positive and bounded solution for any initial positive condition.

Proof. From the different components of the system (1), we have
( D%z|,—0 = A >0,
D%yly—0 = a1 (1 —u1)av > 0,
D%ly=g = o1y > 0,
Dw|y=0 =02=0,
D%%|,—o=02>0.
So, the solutions of the system (1) remain positive. For the boundedness of this solution, let the total
population

g
N=zty+ 2y 20,2,
20’2 2’720’2 g3
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By adding all the equations in system (1), we will have
DN < A — g — M2y H2H3 pRYIM 1M
2 209 2720'2 o3

< A-6N,
with 6 = min {41, &2, ps, pa, p5 }. Therefore,

—A A
N < <7 +N(0)> Eo(—0t%) + 7
here E,(-) is Mittag—Leffler function.
So, H:={z+y+ 320+ 42w+ Ttz < } is positively invariant for the system (1).

] 209 27202
So, all solutions are positive and bounded ]

Theorem 2. For any positive initial condition in H, the system (1) has a unique solution.

Proof. We can rewrite the system (1) as follow
DY (t) = L(t,Y (1)),
with

and
A —ai(1—up)zv — ag(l — ug)xy — pix
a1 (1 —up)av + ag(l — ug)xy — o1yz — P2y

L(t,Y(t) = 02y — Y1VW — H3V
Y2VvW — paw
03Yz — K5z

The function L satisfies the first condition of the Theorem 1. For the condition 2 of this theorem, after
some calculation, we have

L@ X @) < A+ £V @), (3)

A A osA
where { = max {N%Nlaal(l —u1), o2(1 — ug), 01,0971, pa, Y2, 03, 55, L, B2, B2 }

Therefore, L satisfies two conditions of the Theorem 1. Therefore, the model (1) has a unique
solution. [

4. Global stability of equilibria

In this section, we will show that the model (1) has one free-equilibrium point and four endemic
equilibria. Some results of global stability will be given in this section by using some Lyapunov
functional as in [45] and using LaSalle’s invariant principle as given in Lemma 1.

4.1. The basic reproduction number

The basic reproduction number Ry is defined biologically as the number of newly infected individuals
generated by one typical infected individual in a population constituted only by susceptible persons.
Mathematically this number is defined as the spectral radius of the next generation matrix FV ~! with
F' designs the matrix of new infections and V' is the transfer matrix of infected individuals. Let

o <a1(10—u1) a2(10—u2)>

V:(”2 O).
—02 M3
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So,

ag(l—u2)ps+ai(l—ui)os  ai(l—ur)
FV_l = 23 ©3 .
0 0
Then,
ag(1 —ug)us + a1 (1l —up)os

M2 i3

Ry =

4.2. Equilibrium points
The system (1) has a free-equilibrium point other four steady states are given as follows

1. The disease-free equilibrium: F; = (%, 0,0, 0,0).
2. If Ry > 1, then there exists an equilibrium point without immune: E; = (x1,y1,v1,0,0),

—B1 +\/B? + 4A,Cy y A~z op!
1= —

€T = 9A s s V1 = —Y1-
1 H2 K3
Here A _ a1(l—ur)pio2 + ao(l—u2)p1 B _ —ai(l—ui)Ao> . as(1—u2)A . and C = A.
1= H3p2 - 3H2 12 K1,
3. The endemic equilibrium point with CTL response: Fy = (x9,y2,v2,0, 22), where
oy = Apg = = T2 A — pxe — poy2
a1 (1 —ur)og + pz(aa(l — ug) + 1)’ o3’ p3” o1Y2

4. The endemic equilibrium point with antibodies response: E3 = (x3,ys3,v3, ws,0), where

_ —B3+/Bj +4A3Cs Az M4 _ 02y3 — [3V3
= ys= ————, v3=-—, w3=-——"2",

243 ’ p2 Y2 713
Here, Ay = 220-wm p. [ — azl=u2) ond Oy = A
) /”’2 9y *
5. The endemic equlhbrlum point with CTL response and antibodies response:

Ey = (24,Y4,v4, w4, 21), where

o3Avys H2
T4 = y Y4 = —,
a1 (1 —ur)ozpg + ao(l — uz)yapi2 + (17203 o3
_ A— _
vy = @7 wy = 02Y4 M3U47 7y = H1T4 M2y4'
Y2 Y14 01Y4

To show the existence of these equilibria. Let the following numbers:
ROTLs _ %7 RV — ﬂ7 RCTLsW M7 RCTLsW o3Y3
M5 Ha Ha M5

With RETLs means the reproductive number of CTL immune, biologically is the number of CTL cells
triggered by contaminated cells when the infection is successful and when the immune response is
absent. RW the reproductive number of humoral immune design the number of CTL cells triggered by
the virus the infection is successful and when the immune response is absent. RfTLs’W the competitive
number of humoral, means the number of antibodies triggered by the virus when the CTL and the
immune response exist, and RCTLS W the competitive number of C'T'L immune, design biologically the
number of CTL cells activated by infected cells when C'T'L immune exist. Now, we show the existence
conditions of equilibrium points. For Ey and E; always exist. For Fo exist when A — p1xo — poys
positive, which mean R¢TL5 > 1. For E5 exist when o9y3— p3vs > 0, which means R" > 1. In another
way, w3 = lvl . (RCTLSR?TLS’W 1). Finally, this equilibrium point exists for RY > 1, RCTLS WS,

and RCTLS WS 1. For FE, exist when wy > 0 and z4 > 0, this means

02Y4 — U3V4 M3 CTLs,W
P = (T )
Y1V4 il

Wy =
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and

A— —
2= H1T4 — 2Y4 M_i (joTLs,W _ 1) _

1y o
Then, F, exist only for RCTLS W'> 1 and RCTLS WS

4.3. Global stability of steady states

In this subsection, we will give some results of the global stability of the steady states.

Theorem 3. If Ry < 1, the disease-free Ey equilibrium is globally asymptotically stable.

Proof. Let the following Lyapunov function Lg

al(l—u o
Lo=y+ ald—wm) o,
H3 g3
The « derivative of Lg is given by
ai(l —up)o ai(l—u
DLy < an (1 —up)av + ag(l — ug)zy — o1yz — oy + i V 2y— i 1)’Ylfuw

M3 M3

—a1(1 —u)v+or1yz — Qs
o3

< on(1—u)o(@ — 1) + pay (Oq(l —u) n ar(l —ug)w 1)
H2pt3 2
<ag(l—up)v(r —1) 4+ poy (Ro—1).
Then, when aj(1 — uj)v(z — 1) < 1, and if Ry < 1, we will have D*Ly < 1. Let Py =
{(z,y,v,w,2)|D* Lo = 0}, then the largest positivity invariant set of Py is the singleton Ey. Therefore,
from the Lemma 1 we can deduce that the equilibrium point Ej is globally asymptotically stable. m
For the global stability of the equilibrium point F;, we assume the following conditions

<£_ﬂ><1_ﬂ)<0, Vi, v >0 (H1)
V1 x v
and
<£_ﬂ> <1_£><0, Vi, y > 0. (Haz)
iz Y

Theorem 4. If Ry > 1, R°TLs < 1, and RV < 1, then the equilibrium point E; is globally asymp-
totically stable.

Proof. Let the following Lyapunov function Ly

L= (i—lni—1> + <i—lni—1> + 2000 <1—1nﬁ—1> Ly B2y,
ol 4a Y Y 02 U1 U1 0’3 Y202
The « derivative of Ly is given by
DLy < (1 - —) Do < &> Doy + 12 (1 - ﬂ) Do+ ZLpey 4 B2 pay,
€T Y 02 v 3 Y202

x
<A —px — ;IA + 1z + o (1 —up)xv + ag(l —ug)xry —aq (1 — ul)w’u%

— (1 — ug)xyg T poyy + oY1z — H2ks ,uzyﬂm'usvl _Jibks + pemitn, o H2ip4
Yy 02 v 02 03 02 Y202
As
A=z + o (1 —up)zivr + ao(l —ug)zi1yr = pT1 + pyr,
n_m
v o9
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Therefore,

DaLl § H121 <2 ————— 1) + a1(1 — ul)wlvl <4 - = — —
T r1nmy Y1v V1 v

T v v X vz v
+ ag(1 — uz)r1y1 (4 ~L oM ;—?) + a1 (1 — up)r1v; <v_ - —1> (1 - —1>
1

T v

T 010,
+as(1 — ug)zyn (ﬁ _ _1> (1 _ @) 1+ T4 (RCTLs _q) 4 K2 (pgw
1 Hs5 Y202

and

and

Then, if R <1 and R" < 1, we will have D®L; < 0. Let P, = {(z,y,v,w,2) | D*L; = 0}, then
the largest positivity invariant set of P; is the singleton Ej. Therefore, from the Lemma 1 we can

deduce that the equilibrium point E; is globally asymptotically stable. u
For the global stability of the equilibrium point Es, we assume the following conditions
<1_ﬂ> (1-2) <0, vrvz0 (Hz)
(%) x v
<£_ﬂ> <1_%><0, Vz, y >0, (Hy)
Y2 x Y
and
<£_£> (1_@><0, Vi, y > 0. (Hs)
V2 Y2 v

Theorem 5. If R¢TLs > 1 and RlcTLS’W < 1, then the equilibrium point Fs is globally asymptoti-
cally stable.

Proof. Let the following Lyapunov function Lo

The « derivative of Lo is given by
D%Ly < <1 — @> D% + (1 _ %) D%y + H2 (1 _ ’U_g) D% + EDQZ—I- M2'71Daw
v Y 72 v a3 Y202
2 Y2 Y2
<A—pz — ;A + p1g + o (1 — up)zv + ao(l — ug)zoy — oy (1 — ul);m)5 — (1l — U2)xy;

1277102 H27Y1 4 O1M5
w — w— o01Yzo + 22.
03

(% g
'u3v—,u2y?2—|—'u2'u3v2— 1M5Z_|_
2

M2
+ p2y2 + o1y2z —
o9 o3 02 Y202
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As
A = p1xo 4 a1 (1 — uy)wove + az(l — uz)xoys = p122 + poy2 + 01y229,
T2ps5
Vg = ——.
Hn3o3
Therefore,
DaLg < Q12 <2—ﬁ—£> —|—a1(1—ul)g;21)2 (4_w_&_i_%>
x ) To2U2Y Ya2v V2 XU

x (% v T T (% v x
+a1(1—ul)x2?}2 <—1——2—&———;—‘Zz>+a2(1—u2)x2y2 <4—x——&———ﬂ>
2

x T v (Y
T Y2 Y Y2 Yav V2

X X v V! v L2V
S pi2 <2——2——> + a1(1 — up)xave (4—i_&____2 2)
T T2 ToU2y YU V2 TV

T V! v x v X V!
+ a2(1 — UQ)I'QyQ <4 _— = & - — — ﬂ) —|-041(1 — ul)xgvg <— — —2> (1 — —2)
T2 Y2 V2 Ty U2

x v v
+ az(1 — u2)zays <£ - —2> ( - %> +o1Y222 <— - ﬁ) (1 - —2) + N (RlcTLS’W —1).
Y2 T Y V2 Y2 v Y202
As FEj5 satisfies the conditions (Hs), (Hy), and (Hs), then

and

As the arithmetic mean is greater than or equal to the geometric mean, we will have

x T
2- 2 - = <o,

T xI9
VY2 Yva v U2
4——=-—=—=_-— - ==K\,
T2U2Y Ya2v V2 xrv

and

Then, if RlcTLS’W < 1, we will have D*Ls < 0. Let Py = {(z,y,v,w, z) | D* Lo = 0}, then the largest

positivity invariant set of P» is the singleton F5. Therefore, from the Lemma 1 we can deduce that

the equilibrium point F» is globally asymptotically stable. ]
For the global stability of the equilibrium point E3, we assume the following conditions

(1_@><1_E)<0, Vo, v >0 (Hs)
U3 x v
and
<£_@> <1_@><0, Vr,y > 0. (H7)
Y3 x Yy
Theorem 6. IfRY > 1, R2CTLS’W < 1and RW > —r—, then the equilibrium point Ej is globally

CcT
R2

asymptotically stable.

Proof. Let the following Lyapunov function L3
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Ly = 3 <£—1n£—1>+y3 <£—ln£—1> + B2y (ﬁ—ln1—1>
z3 x3 Y3 Y3 02 U3 U3

D,y 2 (3—1113—1).
o3 Y202 w3 w3

The « derivative of Lg is given by

DLy < (1—5) DO + <1—@> Doy + 12 (1—@> Doy + Lpay 4 K21 (1—@> Dw
T Y 02 v 03 Y202 v

z
<A—pzx— ;31\ + prrs + a1 (1 — ug)zsv + ao(l —ug)asy — ag (1 — ul):w%

243 K271 /44 o115
v3 + w — z
02 Y202 g3

Y3 2M3 U3
—an(l - U2)$y; + poys + o1yzz — 2ls,, Hay == +

_ H2mipa Mﬂlvwg 4 M271,U4w3'
Y202 02 Y202

As

A = w3+ a1 (1 — up)r3vz + az(l — uz)z3ys = 173 + pays,

_ M4 _ 02Y3 — K3V3
vy = —, =
V2 Y1v3

Therefore,

DL < py3 (2— = £> + a1(l — u1)zsvs (4—% L @>
€T T3 r3v3y Ysv V3 v

x v T3V x vs v X
+a1(l — u1)zsvs (-1 g ;v3> + az(1 — u2)z3ys <4 - 3—%>
T x
+ as(1l — u2)xays <—1 L B A 3_1/3) + o012 <y3 — &>
T Y3 Ty 03

X X v U, v 3.
S p1r3 (2——3——> + aq(1 — uy)xsvs (4_£_E___ﬂ>
ro T3 r3v3y  Yv U3 TV

X U, v X v X U,
+ 012(1 — UQ):Egyg <4 - — = & - — — i;) —I—Oél(l — ul)l’gvg (U_ — —3> (1 — —3)

X v v,
+ a2(1 — u2)w3y3 <£ — —3> <1 - $> + 01Y323 <— — E) (1 — —3>
Y3 x Yy v3 Y3 v

+ 2144 (R2CTL5,W _ 1)‘
7202
As Es satisfies the both conditions (Hg) and (H7), then

(2-2)(-2)<
Y3 €z Y

As the arithmetic mean is greater than or equal to the geometric mean, we will have

I3 x
2-—=-—<0,
T I3
VY3 (OR3 (Y Ir3v3
g TU¥s yvs v T3z

r3v3y Ysv V3 v

Then, if R2CTLS’W < 1, we will have D*Ls < 0. Let P3 = {(z,y,v,w, z) | D*Ls = 0}, then the largest
positivity invariant set of Pj is the singleton E3. Therefore, from the Lemma 1. We can deduce that
the equilibrium point F3 is globally asymptotically stable. ]
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For the global stability of the equilibrium point F4, we assume the following conditions

v T4 Vg
_ _ = — ) K >

<v4 a:><1 v>\0’ Ve, v >0, ()

<£_ﬂ> <1_%><0, Vi, y >0, (Hy)
Ya z Yy

and

<£ _ 2) (1 _ %> <0, Yu,y>=0. (H1o)

V2 Y2 v

Theorem 7. If RlcTLS’W > 1 and R2CTLS’W > 1, then the equilibrium point F4 is globally asymp-
totically stable.

Proof. Let the following Lyapunov function Ly4

V4:x4<£—ln£—1>+y4<y£—ln£—l>+&v4<1—ln1—1>
4

T4 T4 Yq 02 V4 V4
+@ﬂ<i_mi_g+&ﬂw(ﬂ_mﬂ_g.
o3 24 24 Y202 Wy Wy

The « derivative of Ly is given by

DL, < (1—ﬂ> D% + (1— %> Doy 4 B2 (1— ”—4) D%
T Yy o9 v

+2(1—9)Daz+@(1—%)mw
g3 z Y202 x

x4 Ya
<A—px— ;A + przg + a1 (1 — ug)zgv + ao(l —ug)xgy — g (1 — ul)xvg

v o o
—ay(1l— ug):nyy—4 + poys + o1yaz — 'u2'u3v + H2m L — 1#52 — o1Y2z4 + 115 24
Yy 02 02 03
v v
LTS o - VT L ST
Y202 02 Y202 v o9
As
A = przg + (1 — ur)wavg + ao(l — u2)Tays = p1T4 + poys + o1ya24,
5 4 O2Y4 — 4304
y4='u—, U4='u—, = J2U4 " Fs
o3 V2 Y1V4
Therefore,

DaV4 <:u1334 (2_% - i) -1-041(1—u1)3:4v4 (4—— -z - — —>
r x4 T4v4y  Y4av Vg AV
T4 v T4U4

+ a1 (1 — up)xguy (—1——4———1— >+a2(1—U2)$4y4 <4————————
T v x

x x v v
+ as(1 — u2)xay2 <—1 S Z + 4_y4> + 01Yaz4 <—1 4 + v + —>
r  Ys 2y

X x v v v 4.
< 124 (2——4——> + a1(1 — uy)zgv4 (4_ﬂ_M___ﬂ>
z T4ULY  Yav vy TV

T vy v X vz v
+ aa(1 — u2)w4ys (4 ~ Ly ;—34> + a1(1 — u1)w4vy <v_ - —4> <1 - —4>
4

+%u_mmM(ﬁ_ﬂ)Qf%§+mma<2_ﬁ>@_%)
Ya X Yy V4 Ya v
H

As E, satisfies the conditions (Hg), (Hyg), and (Hjg), then
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As the arithmetic mean is greater than or equal to the geometric mean, we will have
x x
2- = 2 <o,
T T4
v v v x4
4_i_ﬁ___ﬂ<0,
T4U4Y Yav V4 v

Then, if RlcTLS’W > 1 and RQCTLS’W > 1, we will have D*V, < 0. Let Py = {(z,y,v,w, z) | D*Vy = 0},
then the largest positivity invariant set of Py is the singleton E4. Therefore, from the Lemma 1 we can
deduce that the equilibrium point Ej is globally asymptotically stable. ]

5. Numerical simulations

In this section, we will present some numerical simulations to confirm the results found in the theoretical
part concerning the global stability of the equilibrium points, to demonstrate the effect of fractional
derivatives and also the effect of the treatment on the infection.

To improve our theoretical results, will present two kinds of numerical simulations, the first one for
showing the effect of fractional derivative order on the convergence toward equilibria and the second
stand for proving the effectiveness of the parameters of treatment on the HCV infection.

5.1. Effect of fractional order derivative

In this subsection, we present some numerical simulations that value our theoretical results concerning
the global stability of equilibria and show the effectiveness of fractional order derivative on the stability
of equilibrium points using the value of the different parameters presented in Table 1 with the value
of fractional derivative order between 1 and 0.4. We are using Matlab to perform this numerical
simulation and using also the following schema like in [47]:

hCl{

V(1) = gy (U D7 = G = DJ) GOV (1) + Y (o)
R
+ ﬁ Z ((,7 -1+ 1)a+1 —2(5 — z')‘“‘l +(j—i— 1)a+1) G(Y ()
i=1

« e}

h h
+ mG <Y(tj—1) + mG(Y(tj—l))> ;
where t; = t(j—1)+h, for j = 0,1,..., N—1, with the following initial condition Yy = (12,10,8,7,5)7.

Figure 2 shows the evolution of the infection of the different compartments. We can observe that
all curves represent the compartments x, y, v, w, and z converge to the point (20,0,0,0,0) for the
different values of fractional derivative order parameter. The value of the basic reproduction number
with the value of different parameters given in column two of Table 1 is given by Ry = 0.775 (see
Table 2). This value verified the conditions of global stability of this free equilibrium point Ey given
in Theorem 3.

In Figure 3, we can notice that all curves representing the different variables of our model converge to
the point (0.715, 39.285, 78.200, 0, 0) for the different values of the fractional order derivative parameter.
The value of basic reproduction number Ry, the CTL immune reproductive number RETL* and the
humoral immune reproductive number Ry are given by Ry = 1.4, R¢TL% = 0.24, and R = 0.22 (see
the second column of Table 2). These values check the Theorem 4 conditions of global stability of Fj.
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Table 1. Values of the model (1) parameters.
Parameters Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7
A 4 4 4 4 4 4
U1 0.5 0.8 0.8 0.8 0.8 —
Uz 0.6 0.85 0.85 0.85 0.85 -
a 0.3 0.2 0.2 0.2 0.2 0.2
a2 0.4 0.4 0.4 0.4 0.4 0.4
1 0.1 0.1 0.1 0.1 0.1 0.1
o 0.0.15 0.1 0.1 0.1 0.1 0.1
3 0.2 0.1 0.1 0.1 0.1 0.1
g 0.35 0.7 0.7 0.7 0.3 0.3
s 0.4 0.8 0.3 0.15 0.3 0.3
o1 0.1 0.1 0.1 0.1 0.1 0.1
02 0.2 0.2 0.2 0.2 0.2 0.2
o3 0.15 0.005 0.09 0.003 0.03 0.03
o1 0.15 0.15 0.15 0.1 0.15 0.15
Y2 0.2 0.002 0.002 0.002 0.2 0.2
Table 2. Values of the model (1) reproductive numbers.
EO El E2 E3 E4
Ry = 0.775 Ry=14 RCTLs =15 RV =224 RETLSW — 133
s CTL,W CTLs,W CTLs,W
RCTLs = (.24 R; = 0.02 R; =0.78 R; =2
RY =0.22
12 20
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Fig. 2. Global stability of Ey with the different value of fractional derivative order.

The Figure 4 describes the dynamics of HCV infection, and we can notice that all curves converge
toward the point (3.3648,6.4706,9.7059,0,0). The CTL immune reproductive number RET* and the

humoral immune reproductive number RlcTL’HUM i

in this case are given in column three of Table 2 by

RCTL = 1.5 and RlcTLS’W = 0.02, these values coincide with the conditions of Theorem 6 concerning
the global stability of Fj.
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Fig. 3. Global stability of E; with the different value of fractional derivative order.
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Fig. 4. Global stability of Ey with the different value of fractional derivative order.
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Fig. 5. Global stability of E3 with the different value of fractional derivative order.
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Fig. 6. Global stability of E4 with the different value of fractional derivative order.
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We observe the same thing in Figure 5, all curves converge toward the point (1.042, 38.957, 35, 0.818,0)
for the different values of the fractional order derivative parameter. The value of the humoral immune
reproductive number R and the CTL immune competitive number RgTLs’W are given by RW = 2.24,
RS TLsW — 0.78 (see the fourth column of Table 2). These values satisfy the conditions of the Theo-
rem 6 concerning the global stability of Fj.

The last Figure 6 shows the behavior of HCV infection. In this figure, we can see that all curves
converge toward the point (5.263,10,1.5,8.22,2.473) for the different values of the fractional order

derivative parameter. The humoral immune reproductive number RICTLS’W and he CTL immune

competitive number RQC TLsW are given by RlcTLS’W = 1.33 and RQC TLsW — 9 (see the column four
of Table 2). These value check the Theorem 7 conditions concerning the global stability of Ey. All
previous numerical findings confirm our theoretical results about the global stability of steady states.
We can deduce that for a smaller value of fractional derivative order the curves representing the
variables of the model converge more quickly to the equilibria and for a higher value «, the variables of
the model converge more slowly to the steady states. So, the fractional order derivative has no effect

on the global stability but on the speed of the convergence toward the equilibrium points.

6. Effect of the treatment parameters on HCV infection

In this subsection, we show the effect of the parameters of the treatment u; and wus to reduce de HCV
infection using the value of the parameter presented in Table 1.

100
U =uy =1 25 F u =uy =1
l—uy = up = 0.7] —u; = uy = 0.7
80 —u; = uy = 0.4 20l —u; = us = 0.4
—u; =uy =0 —u =uy =0
60
X y 15
40 10 H
20 7 51
Oé 0 . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time
8
U =uy =1 L up =uy =1
—uy = uy = 0.7| 8 —u; = up = 0.7|
6 —u; = uy = 0.4 —u; = us = 0.4

—u; =upy =0 6 —u; = uy =0
1 z
v o4 Al |
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Fig. 7. Effect of u; and us on the HCV infection.

This figure shows the effect of the parameters of the treatment u; and us to eliminate HCV infection.
In this figure, we can notice that in the existence of the treatment the number of infected cells and
the number of free viruses diminished, also we can see that the number of susceptible cells increased.
Moreover, we also note the absence of an adaptive immune response because the existence of treatment
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helps fight the infection. Otherwise, we can notice a reduction of susceptible cells and an increase in
infected cells, free viruses, and the adaptive immune.

7. Conclusion

In this work, we have analyzed a fractional order HCV model cell-to-cell and virus-to-cell and treat-
ment. In our suggested model, the antibody and cytotoxic T-lymphocyte immune responses are taken
into consideration. The presented model has one basic reproduction number Ry that was obtained
by using the next generation matrix method and other four basic reproductive numbers are RC7%s
the CTL immune reproductive number, R the humoral immune reproductive number, RlcTLS’W the
humoral competitive number and RSV the CTL immune competitive number. These reproductive num-
bers depend on the chosen parameters of treatment. By using Lyapunov’s functional and LaSalle’s
invariance principle, we gave the theorems of global stability of the equilibria, this stability depends on
the different reproductive numbers. Finally, some numerical simulations are given in the last part of
this paper to value our theoretical results concerning the global stability of steady states, and to show
the effect of fractional derivative order and the parameters of treatment on the stability. We notice
that the values of the fractional derivative have no effect on the stability of steady States but only on
the speed of the convergence toward the corresponding equilibrium points, for the effect of parameters
of treatment we deduce that in the presence of these parameters, the infection diminished.
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Opo6osa mopenb HCV-iHdekuii 3 agantusHnm
IMYHITETOM i JIIKyBaHHAM

Ary6 3., Amnani K.

Jlabopamopin mamemamuru, tHHOPMAMUKY Ma NPUKAGIHUT NPO2DAM,
Parxysvmem HaAYK T MEeTHOAO02T,
Vwisepcumem Xacawa II Kacabaarnxu, n.c. 146, Moxammedis 20650, Mapoxko

V 1iit cTaTTi 3aIPOTIOHOBAHO Ta, JOCIIIXKeHO ApoboBy Momeab HCV-indeknil 3 aganTuBanm
iMmyniTeToM i JiiKyBaHHsIM. AantuBHu iMmyHiTeT BRIo4Yae Binqnosins CTL it anturina. [la
MOJIEJIb MICTUTD I’ sITh 3BUYANHUX Tu(EpPEHIiaTbHUX PIBHAHB. JLOC/IIIKEHHS TOYNHAIOTh-
Csl 3 JIOBEJIEHHs iICHYBaHHS, €IMHOCTI Ta 0OOMEXKEHOCTI JToJaTHUX Po3B’sa3KiB. Mosens Mae
TOYKH BiJIbHOI piBHOBaru Ta iHmmi eHjeMidni piBHoBaru. BukopucrtoByrounu ¢ynkiiio Jls-
myHoBa Ta npuHnmI iHBapianTHocTi JlaCaJist, mokasaHo riobajibHy CTIRKICTH IUX TOYOK
piBroBaru. [lin kizenp, MpoBeIEHO MEKITBKA YNCETPHAX CUMYJISI, 00 mepeBipuTu oTpu-
MaHI TEOPETUYHI PEe3y/IbTATH Ta MOKA3ATH BILUIMB IAapaMETPa MOPSIKY JpOoO0BOI mOXimTHOT
Ta IHIMUX TapaMeTpiB JIKyBaHHSI.

Kntouosi cnosa: dpobosuti nopadox; HCV; 6id xaitmunu do xaimunu; 610 eipycy do
KATMURU; 240000010 CATKICMb; YUuceAbHe MOOeAIOBAHMA.
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