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Fractional HCV infection model with adaptive immunity and treatment is suggested and
studied in this paper. The adaptive immunity includes the CTL response and antibodies.
This model contains five ordinary differential equations. We will start our study by proving
the existence, uniqueness, and boundedness of the positive solutions. The model has
free-equilibrium points and other endemic equilibria. By using Lyapunov functional and
LaSalle’s invariance principle, we have shown the global stability of these equilibrium
points. Finally, some numerical simulations will be given to validate our theoretical results
and show the effect of the fractional derivative order parameter and the other treatment
parameters.
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1. Introduction

The hepatitis C virus (HCV) is one of the dangerous diseases that can result in severe liver damage [1].
Globally, 51 million are infected by HCV in the world, according to World Health Organization [2]. An
infected individual can transmit the virus to someone else through blood-to-blood contact. Nowadays,
sharing some specific items or injecting drugs are how most people contract the hepatitis C virus.

Mathematical modeling is an effective tool for understanding the transmission mechanism of most
infectious diseases, it permits to give solutions to fight or minimize the side effects of these diseases
and also to imagine possible scenarios and health directions [3]. As most biological reactions contain
memory, therefore the normal derivative is not sufficient to better describe the transmission dynamics
of infectious diseases because this type of derivative does not take into account the memory effect.
So, there is another type of derivative called the fractional derivative which takes into consideration
this effect [4]. Many works use this derivative to describe the dynamic of transmission of infectious
diseases [5–20]. Recently, in [21] suggest a fractional viral epidemic model with antibodies and a
cytotoxic T-lymphocyte response as follows:











































DαX = Λ− µ1x−
α1(1− εrt)XV

1 +mX + nV
,

DαY =
α2(1− εrt)XV

1 +mX + nV
− µ2y − σ1Y Z,

DαV = σ2(1− εpi)Y − µ3V − γ1V W,

DαW = γ2VW − µ4W,

DαZ = σ3Y Z − µ5Z,

Dα means the fractional derivative order where 0 < α 6 1. The variable X, Y , V , W , and Z design
respectively the susceptible cells, the infected cells, the free viruses, the antibodies and cytotoxic T-
lymphocyte (CTL) response. Λ means the reproduction rate of susceptible cells, the ratio α1(1−εrt)XV

1+mX+nV
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is the infection function of susceptible cells by a free virus, with m and n two positive constants. The
infected particles are killed at σ1Y Z, the free viruses are produced at the rate σ2(1 − εpi)Y . The
Antibodies kill the viruses at the rate γ1VW and are produced at the rate γ2VW . The CTL grow at
rate σ3Y Z. The mortality rate of the variables X, Y , V , W , and Z are respectively µ1X, µ2Y , µ3V ,
µ4W , and µ5Z. The efficacy of the drugs, reverse transcriptase and protease inhibitors are represented
by εpi and εrt, where 0 < εrt, εpi < 1. The authors have proved the stability of equilibrium points. The
disadvantage of this latest model and other models [22–30] they study the dynamic of infections by
using only one mode of infection (virus-to-cell) but the hepatits C can transmitted by two within-host
modes the first one is called virus-to-cell that is to say that the infection transmits virus to the cell and
the second stand is cell-to-cell this means that the infection transmits cell to the cell [31–37]. Recently,
Yaagoub and Allali in [38] suggest a HBV model with cell-to-cell and virus-to-cell transmissions and
adaptive immunity, they gave the different theorems of existence and well-posedness of all solutions;
and also demonstrated the global stability of steady states and they finished their work by giving some
numerical simulations.

When the infection by the hepatitis C virus becomes chronic, the treatment is necessary to eliminate
the disease or to combat further complications. There is a group of treatment forms recommended by
World Health Organization, it depends on the patient’s age and also his health situation [2]. Many
mathematical models take into consideration the treatment or quarantine to describe the dynamics of
some diseases [39–41]. In this work, we suggest the following HCV fractional model with two modes
of transmission virus-to-cell and cell-to-cell in which we take into account the treatment of HCV:































Dαx = Λ− α1(1− u1)xv − α2(1− u2)xy − µ1x,

Dαy = α1(1− u1)xv + α2(1− u2)xy − σ1yz − µ2y,

Dαv = σ2y − γ1vw − µ3v,

Dαw = γ2vw − µ4w,

Dαz = σ3yz − µ5z.

(1)

x

y v

z wµ1x

µ3vµ2y

Λ

α1(1− u1)xv + α2(1− u2)xy

σ2y

µ5z µ4w

σ1yz

σ3yz

γ1vw

γ1vw

Fig. 1. The diagram of fractional HCV infection model.

In this model, all the parameters are defined in the previous paragraph and are displayed in the
diagram represented in Figure 1. Finally, we would like to mention that the fractional derivative models
have shown their great importance not only in biological systems but also in many other fields [42–44].

This paper consists of the following five sections. In Section 2, some definitions and properties of
fractional derivatives were given. In Section 3, the existence, positivity and boundedness of solutions
of system (1) were established. In Section 4, we will give the different theorems of the global stability
concerning the equilibrium points. Numerical simulation and some discussions are given in Section 5,
while the last section concludes the work.
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2. Preliminary results

Now we give some results of fractional order derivative which will help us to properly analyze our
model (1) later

Definition 1 (Ref. [45]). The fractional integral of order α > 0 of function G : R+ −→ R is defined
by

IαG(t) =
1

Γ(α)

∫ t

0
(t− s)α−1G(s) ds,

where Γ(z) =
∫∞

0 e−ttz−tdt.

Definition 2 (Ref. [46])). The Mittag–Leffler function of parameter α > 0, noted by Eα is defined
as

Eα(t) =

+∞
∑

i=0

ti

Γ(αi+ 1)
.

Let L : Rn → R
n, where n > 1. We consider the following fractional order system given by

DαY (t) = L(Y ), (2)

with Y (0) = Y0, Y0 ∈ R
n and 0 < α 6 1. To prove the uniqueness of solutions of system (2), we give

the following proposition.

Proposition 1. If the function L satisfies the two following conditions

1) L(Y ) and ∂L
∂Y

(Y ) are continuous on R
n;

2) ‖L(Y )‖ 6 T1 + T2‖Y ‖ for all Y ∈ R
n, with T1 and T2 are two positive constants.

Then, the system (2) has a unique solution defined on R
n
+.

Lemma 1 (LaSalle’s invariance principle). Let C be a compact set of Rn
+. Every solution of the

system (2), starting from a point in C and remains in C for all t, if there exists a C1 function V (x)
defined over C satisfies the following condition

DαV 6 0.

Let E be the set of all points in C, where DαV = 0, and M be the largest invariant set in E. Then,
every solution Y (t) starting in C approaches M as t → ∞.

3. Uniqueness, positivity, and boundedness of solutions

In order to analyze our proposed model (1), we will give the different theorems of existence, uniqueness,
and well-posedness of all model solutions.

Theorem 1. The model (1) has a positive and bounded solution for any initial positive condition.

Proof. From the different components of the system (1), we have






























Dαx|x=0 = Λ > 0,

Dαy|y=0 = α1(1− u1)xv > 0,

Dαv|v=0 = σ1y > 0,

Dαw|w=0 = 0 > 0,

Dαz|z=0 = 0 > 0.

So, the solutions of the system (1) remain positive. For the boundedness of this solution, let the total
population

N = x+ y +
µ2

2σ2
v +

µ2γ1

2γ2σ2
w +

σ1

σ3
z.
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By adding all the equations in system (1), we will have

DαN 6 Λ− µ1x−
µ2

2
y −

µ2µ3

2σ2
v −

µ2γ1µ4

2γ2σ2
w −

σ1µ5

σ3
z

6 Λ− θN ,

with θ = min
{

µ1,
µ2

2 , µ3, µ4, µ5

}

. Therefore,

N 6

(

−Λ

θ
+N (0)

)

Eα(−θtα) +
Λ

θ
,

here Eα(·) is Mittag–Leffler function.
So, H := {x+ y + µ2

2σ2
v + µ2γ1

2γ2σ2
w + σ1

σ3
z 6 Λ

θ
} is positively invariant for the system (1).

So, all solutions are positive and bounded. �

Theorem 2. For any positive initial condition in H, the system (1) has a unique solution.

Proof. We can rewrite the system (1) as follow

DαY (t) = L(t, Y (t)),

with

Y (0) = (x(0), y(0), v(0), w(0), z(0))

and

L(t, Y (t)) =













Λ− α1(1− u1)xv − α2(1− u2)xy − µ1x

α1(1− u1)xv + α2(1− u2)xy − σ1yz − µ2y

σ2y − γ1vw − µ3v

γ2vw − µ4w

σ3yz − µ5z













.

The function L satisfies the first condition of the Theorem 1. For the condition 2 of this theorem, after
some calculation, we have

‖L(t,X(t))‖ 6 Λ + ξ‖Y (t)‖, (3)

where ξ = max
{

µ2, µ1, α1(1− u1), α2(1− u2), σ1, σ2γ1, µ4, γ2, σ3,
σ1Λ
µ1

, qγ
µ1
, γ2Λ

µ1
, σ3Λ

µ

}

.

Therefore, L satisfies two conditions of the Theorem 1. Therefore, the model (1) has a unique
solution. �

4. Global stability of equilibria

In this section, we will show that the model (1) has one free-equilibrium point and four endemic
equilibria. Some results of global stability will be given in this section by using some Lyapunov
functional as in [45] and using LaSalle’s invariant principle as given in Lemma 1.

4.1. The basic reproduction number

The basic reproduction number R0 is defined biologically as the number of newly infected individuals
generated by one typical infected individual in a population constituted only by susceptible persons.
Mathematically this number is defined as the spectral radius of the next generation matrix FV −1 with
F designs the matrix of new infections and V is the transfer matrix of infected individuals. Let

F =

(

α1(1− u1) α2(1− u2)
0 0

)

and

V =

(

µ2 0
−σ2 µ3

)

.
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So,

FV −1 =

(

α2(1−u2)µ3+α1(1−u1)σ2

µ2µ3

α1(1−u1)
µ3

0 0

)

.

Then,

R0 =
α2(1− u2)µ3 + α1(1− u1)σ2

µ2µ3
.

4.2. Equilibrium points

The system (1) has a free-equilibrium point other four steady states are given as follows

1. The disease-free equilibrium: E1 =
(

Λ
µ1
, 0, 0, 0, 0

)

.

2. If R0 > 1, then there exists an equilibrium point without immune: E1 = (x1, y1, v1, 0, 0),

x1 =
−B1 +

√

B2
1 + 4A1C1

2A1
, y1 =

Λ− µ1x1

µ2
, v1 =

σ2

µ3
y1.

Here, A1 =
α1(1−u1)µ1σ2

µ3µ2
+ α2(1−u2)µ1

µ2
, B1 =

−α1(1−u1)Λσ2

µ3µ2
− α2(1−u2)Λ

µ2
− µ1, and C = Λ.

3. The endemic equilibrium point with CTL response: E2 = (x2, y2, v2, 0, z2), where

x2 =
Λµ3

α1(1− u1)σ2 + µ3(α2(1− u2) + µ1)
, y2 =

µ5

σ3
, v2 =

σ2

µ3
y2, z2 =

Λ− µ1x2 − µ2y2

σ1y2
.

4. The endemic equilibrium point with antibodies response: E3 = (x3, y3, v3, w3, 0), where

x3 =
−B3 +

√

B2
3 + 4A3C3

2A3
, y3 =

Λ− µ1x3

µ2
, v3 =

µ4

γ2
, w3 =

σ2y3 − µ3v3

γ1v3
.

Here, A3 =
α2(1−u2)µ1

µ2
, B3 = µ1 −

α2(1−u2)Λ
µ2

, and C3 = Λ.
5. The endemic equilibrium point with CTL response and antibodies response:

E4 = (x4, y4, v4, w4, z4), where

x4 =
σ3Λγ2

α1(1− u1)σ3µ4 + α2(1− u2)γ2µ2 + µ1γ2σ3
, y4 =

µ2

σ3
,

v4 =
µ4

γ2
, w4 =

σ2y4 − µ3v4

γ1v4
, z4 =

Λ− µ1x4 − µ2y4

σ1y4
.

To show the existence of these equilibria. Let the following numbers:

RCTLs =
σ3y1

µ5
, RW =

γ2v1

µ4
, R

CTLs,W
1 =

γ2v2

µ4
, R

CTLs,W
2 =

σ3y3

µ5
.

With RCTLs means the reproductive number of CTL immune, biologically is the number of CTL cells
triggered by contaminated cells when the infection is successful and when the immune response is
absent. RW the reproductive number of humoral immune design the number of CTL cells triggered by
the virus the infection is successful and when the immune response is absent. RCTLs,W

1 the competitive
number of humoral, means the number of antibodies triggered by the virus when the CTL and the
immune response exist, and R

CTLs,W
2 the competitive number of CTL immune, design biologically the

number of CTL cells activated by infected cells when CTL immune exist. Now, we show the existence
conditions of equilibrium points. For E0 and E1 always exist. For E2 exist when Λ − µ1x2 − µ2y2
positive, which mean RCTLs > 1. For E3 exist when σ2y3−µ3v3 > 0, which means RW > 1. In another
way, w3 = µ3

γ1

(

RCTLsR
CTLs,W
1 − 1

)

. Finally, this equilibrium point exists for RW > 1, RCTLs,W
1 > 1,

and R
CTLs,W
2 > 1. For E4 exist when w4 > 0 and z4 > 0, this means

w4 =
σ2y4 − µ3v4

γ1v4
=

µ3

γ1

(

R
CTLs,W
1 − 1

)
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and

z4 =
Λ− µ1x4 − µ2y4

σ1y4
=

µ2

σ1

(

R
CTLs,W
2 − 1

)

.

Then, E4 exist only for R
CTLs,W
1 > 1 and R

CTLs,W
2 > 1.

4.3. Global stability of steady states

In this subsection, we will give some results of the global stability of the steady states.

Theorem 3. If R0 6 1, the disease-free E0 equilibrium is globally asymptotically stable.

Proof. Let the following Lyapunov function L0

L0 = y +
α1(1− u1)

µ3
v +

σ1

σ3
z.

The α derivative of L0 is given by

DαL0 6 α1(1− u1)xv + α2(1− u2)xy − σ1yz − µ2y +
α1(1− u1)σ2

µ3
y −

α1(1− u1)γ1
µ3

vw

− α1(1− u1)v + σ1yz −
σ1µ5

σ3
z

6 α1(1− u1)v(x− 1) + µ2y

(

α1(1− u1)

µ2µ3
+

α2(1− u2)x

µ2
− 1

)

6 α1(1− u1)v(x− 1) + µ2y (R0 − 1) .

Then, when α1(1 − u1)v(x − 1) 6 1, and if R0 < 1, we will have DαL0 6 1. Let P0 =
{(x, y, v, w, z)|DαL0 = 0}, then the largest positivity invariant set of P0 is the singleton E0. Therefore,
from the Lemma 1 we can deduce that the equilibrium point E0 is globally asymptotically stable. �

For the global stability of the equilibrium point E1, we assume the following conditions
(

v

v1
−

x1

x

)

(

1−
v1

v

)

6 0, ∀x, v > 0 (H1)

and
(

y

y1
−

x1

x

)(

1−
y1

y

)

6 0, ∀x, y > 0. (H2)

Theorem 4. If R0 > 1, RCTLs < 1, and RW < 1, then the equilibrium point E1 is globally asymp-
totically stable.

Proof. Let the following Lyapunov function L1

L1 = x1

(

x

x1
− ln

x

x1
− 1

)

+ y1

(

y

y1
− ln

y

y1
− 1

)

+
µ2

σ2
v1x1

(

v

v1
− ln

v

v1
− 1

)

+
σ1

σ3
z +

µ2γ1

γ2σ2
w.

The α derivative of L1 is given by

DαL1 6

(

1−
x1

x

)

Dαx+

(

1−
y1

y

)

Dαy +
µ2

σ2

(

1−
v1

v

)

Dαv +
σ1

σ3
Dαz +

µ2γ1

γ2σ2
Dαw

6 Λ− µ1x−
x1

x
Λ+ µ1x1 + α1(1− u1)x1v + α2(1− u2)x1y − α1(1− u1)xv

y1

y

− α2(1− u2)xy
y1

y
+ µ2y1 + σ1y1z −

µ2µ3

σ2
v − µ2y

v1

v

µ2µ3

σ2
v1 −

σ1µ5

σ3
z +

µ2γ1v1

σ2
w −

µ2γ1µ4

γ2σ2
w.

As






Λ = µ1x1 + α1(1− u1)x1v1 + α2(1− u2)x1y1 = µ1x1 + µ2y1,

y1

v1
=

µ3

σ2
.
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Therefore,

DαL1 6 µ1x1

(

2−
x1

x
−

x

x1
− 1

)

+ α1(1− u1)x1v1

(

4−
xvy1

x1v1y
−

yv1

y1v
−

v

v1
−

x1v1

xv

)

+ α2(1− u2)x1y1

(

4−
x

x1
−

yv1

y1v
−

v

v1
−

x1y1

xy

)

+ α1(1− u1)x1v1

(

v

v1
−

x1

x

)

(

1−
v1

v

)

+ α2(1− u2)x1y1

(

y

y1
−

x1

x

)(

1−
y1

y

)

+
σ1σ3

µ5

(

RCTLs − 1
)

+
µ2γ1µ4

γ2σ2

(

RW − 1
)

.

As E1 satisfies the both conditions (H1) and (H2), we have
(

v

v1
−

x1

x

)

(

1−
v1

v

)

6 0

and
(

y

y1
−

x1

x

)(

1−
y1

y

)

6 0.

As the arithmetic mean is greater than or equal to the geometric mean, we will have

2−
x1

x
−

x

x1
6 0,

4−
xvy1

x1v1y
−

yv1

y1v
−

v

v1
−

x1v1

xv
6 0,

and

4−
x

x1
−

yv1

y1v
−

v

v1
−

x1y1

xy
6 0.

Then, if RCTLs 6 1 and RW 6 1, we will have DαL1 6 0. Let P1 = {(x, y, v, w, z) |DαL1 = 0}, then
the largest positivity invariant set of P1 is the singleton E1. Therefore, from the Lemma 1 we can
deduce that the equilibrium point E1 is globally asymptotically stable. �

For the global stability of the equilibrium point E2, we assume the following conditions
(

v

v2
−

x2

x

)

(

1−
v2

v

)

6 0, ∀x, v > 0, (H3)

(

y

y2
−

x2

x

)(

1−
y2

y

)

6 0, ∀x, y > 0, (H4)

and
(

v

v2
−

y

y2

)

(

1−
v2

v

)

6 0, ∀x, y > 0. (H5)

Theorem 5. If RCTLs > 1 and R
CTLs,W
1 < 1, then the equilibrium point E2 is globally asymptoti-

cally stable.

Proof. Let the following Lyapunov function L2

L2 = x2

(

x

x2
− ln

x

x2
− 1

)

+ y2

(

y

y2
− ln

y

y2
− 1

)

+
µ2

σ2
v2

(

v

v2
− ln

v

v2
− 1

)

+
σ1

σ3
z2

(

z

z2
− ln

z

z2
− 1

)

+
µ2γ1

γ2σ2
w.

The α derivative of L2 is given by

DαL2 6

(

1−
x2

x

)

Dαx+

(

1−
y2

y

)

Dαy +
µ2

σ2

(

1−
v2

v

)

Dαv +
σ1

σ3
Dαz +

µ2γ1

γ2σ2
Dαw

6 Λ−µ1x−
x2

x
Λ + µ1x2 + α1(1− u1)x2v + α2(1− u2)x2y − α1(1− u1)xv

y2

y
− α2(1− u2)xy

y2

y

+ µ2y2 + σ1y2z −
µ2µ3

σ2
v − µ2y

v2

v
+

µ2µ3

σ2
v2 −

σ1µ5

σ3
z +

µ2γ1v2

σ2
w −

µ2γ1µ4

γ2σ2
w − σ1yz2 +

σ1µ5

σ3
z2.
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As






Λ = µ1x2 + α1(1− u1)x2v2 + α2(1− u2)x2y2 = µ1x2 + µ2y2 + σ1y2z2,

v2 =
σ2µ5

µ3σ3
.

Therefore,

DαL2 6 µ1x2

(

2−
x2

x
−

x

x2

)

+ α1(1− u1)x2v2

(

4−
xvy2

x2v2y
−

yv2

y2v
−

v

v2
−

x2v2

xv

)

+ α1(1− u1)x2v2

(

−1−
x2

x
−

yv2

y2v
−

v

v2
−

x2y2

xy

)

+ α2(1− u2)x2y2

(

4−
x

x2
−

yv2

y2v
−

v

v2
−

xy2

xy

)

+ α2(1− u2)x2y2

(

−1−
x2

x
+

y

y2
+

x2y2

xy

)

+ σ1y2z2

(

−1−
y

y2
+

yv2

y2v
+

v

v2

)

+
µ2γ1

σ2
w

(

v2 −
µ4

γ2

)

6 µ1x2

(

2−
x2

x
−

x

x2

)

+ α1(1− u1)x2v2

(

4−
xvy2

x2v2y
−

yv2

y2v
−

v

v2
−

x2v2

xv

)

+ α2(1− u2)x2y2

(

4−
x

x2
−

yv2

y2v
−

v

v2
−

xy2

xy

)

+ α1(1− u1)x2v2

(

v

v2
−

x2

x

)

(

1−
v2

v

)

+ α2(1− u2)x2y2

(

y

y2
−

x2

x

)(

1−
y2

y

)

+ σ1y2z2

(

v

v2
−

y

y2

)

(

1−
v2

v

)

+
µ2γ1µ4

γ2σ2

(

R
CTLs,W
1 − 1

)

.

As E2 satisfies the conditions (H3), (H4), and (H5), then
(

v

v2
−

x2

x

)

(

1−
v2

v

)

6 0,

(

y

y2
−

x2

x

)(

1−
y2

y

)

6 0,

and
(

v

v2
−

y

y2

)

(

1−
v2

v

)

6 0.

As the arithmetic mean is greater than or equal to the geometric mean, we will have

2−
x2

x
−

x

x2
6 0,

4−
xvy2

x2v2y
−

yv2

y2v
−

v

v2
−

x2v2

xv
6 0,

and

4−
x

x2
−

yv2

y2v
−

v

v2
−

x2y2

xy
6 0.

Then, if RCTLs,W
1 6 1, we will have DαL2 6 0. Let P2 = {(x, y, v, w, z) |DαL2 = 0}, then the largest

positivity invariant set of P2 is the singleton E2. Therefore, from the Lemma 1 we can deduce that
the equilibrium point E2 is globally asymptotically stable. �

For the global stability of the equilibrium point E3, we assume the following conditions
(

v

v3
−

x3

x

)

(

1−
v3

v

)

6 0, ∀x, v > 0 (H6)

and
(

y

y3
−

x3

x

)(

1−
y3

y

)

6 0, ∀x, y > 0. (H7)

Theorem 6. If RW > 1, RCTLs,W
2 < 1 and RW > 1

R
CTLs,W
2

, then the equilibrium point E3 is globally

asymptotically stable.

Proof. Let the following Lyapunov function L3
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L3 = x3

(

x

x3
− ln

x

x3
− 1

)

+ y3

(

y

y3
− ln

y

y3
− 1

)

+
µ2

σ2
v3

(

v

v3
− ln

v

v3
− 1

)

+
σ1

σ3
z +

µ2γ1µ4

γ2σ2

(

w

w3
− ln

w

w3
− 1

)

.

The α derivative of L3 is given by

DαL3 6

(

1−
x3

x

)

Dαx+

(

1−
y3

y

)

Dαy +
µ2

σ2

(

1−
v3

v

)

Dαv +
σ1

σ3
Dαz +

µ2γ1

γ2σ2

(

1−
w3

v

)

Dαw

6 Λ− µ1x−
x3

x
Λ+ µ1x3 + α1(1− u1)x3v + α2(1− u2)x3y − α1(1− u1)xv

y3

y

− α2(1− u2)xy
y3

y
+ µ2y3 + σ1y3z −

µ2µ3

σ2
v − µ2y

v3

v
+

µ2µ3

σ2
v3 +

µ2γ1µ4

γ2σ2
w −

σ1µ5

σ3
z

−
µ2γ1µ4

γ2σ2
w −

µ2γ1v

σ2
w3 +

µ2γ1µ4

γ2σ2
w3.

As






Λ = µ1x3 + α1(1− u1)x3v3 + α2(1− u2)x3y3 = µ1x3 + µ2y3,

v3 =
µ4

γ2
, w3 =

σ2y3 − µ3v3

γ1v3
.

Therefore,

DαL3 6 µ1x3

(

2−
x3

x
−

x

x3

)

+ α1(1− u1)x3v3

(

4−
xvy3

x3v3y
−

yv3

y3v
−

v

v3
−

x3v3

xv

)

+ α1(1− u1)x3v3

(

−1−
x3

x
−

v

v3
+

x3v3

xv

)

+ α2(1− u2)x3y3

(

4−
x

x3
−

yv3

y3v
−

v

v3
−

x3y3

xy

)

+ α2(1− u2)x2y3

(

−1−
x3

x
+

y

y3
+

x3y3

xy

)

+ σ1z

(

y3 −
µ5

σ3

)

6 µ1x3

(

2−
x3

x
−

x

x3

)

+ α1(1− u1)x3v3

(

4−
xvy3

x3v3y
−

yv3

y3v
−

v

v3
−

x3v3

xv

)

+ α2(1− u2)x3y3

(

4−
x

x3
−

yv3

y3v
−

v

v3
−

xy3

xy

)

+ α1(1− u1)x3v3

(

v

v3
−

x3

x

)

(

1−
v3

v

)

+ α2(1− u2)x3y3

(

y

y3
−

x3

x

)(

1−
y3

y

)

+ σ1y3z3

(

v

v3
−

y

y3

)

(

1−
v3

v

)

+
µ2γ1µ4

γ2σ2

(

R
CTLs,W
2 − 1

)

.

As E3 satisfies the both conditions (H6) and (H7), then
(

v

v3
−

x3

x

)

(

1−
v3

v

)

6 0,

(

y

y3
−

x3

x

)(

1−
y3

y

)

6 0.

As the arithmetic mean is greater than or equal to the geometric mean, we will have

2−
x3

x
−

x

x3
6 0,

4−
xvy3

x3v3y
−

yv3

y3v
−

v

v3
−

x3v3

xv
6 0,

4−
x

x3
−

yv3

y3v
−

v

v3
−

x3y3

xy
6 0.

Then, if RCTLs,W
2 6 1, we will have DαL3 6 0. Let P3 = {(x, y, v, w, z) |DαL3 = 0}, then the largest

positivity invariant set of P3 is the singleton E3. Therefore, from the Lemma 1. We can deduce that
the equilibrium point E3 is globally asymptotically stable. �
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For the global stability of the equilibrium point E4, we assume the following conditions
(

v

v4
−

x4

x

)

(

1−
v4

v

)

6 0, ∀x, v > 0, (H8)

(

y

y4
−

x4

x

)(

1−
y4

y

)

6 0, ∀x, y > 0, (H9)

and
(

v

v2
−

y

y2

)

(

1−
v2

v

)

6 0, ∀v, y > 0. (H10)

Theorem 7. If RCTLs,W
1 > 1 and R

CTLs,W
2 > 1, then the equilibrium point E4 is globally asymp-

totically stable.

Proof. Let the following Lyapunov function L4

V4 = x4

(

x

x4
− ln

x

x4
− 1

)

+ y4

(

y

y4
− ln

y

y4
− 1

)

+
µ2

σ2
v4

(

v

v4
− ln

v

v4
− 1

)

+
σ1

σ3
z4

(

z

z4
− ln

z

z4
− 1

)

+
µ2γ1

γ2σ2
w4

(

w

w4
− ln

w

w4
− 1

)

.

The α derivative of L4 is given by

DαL4 6

(

1−
x4

x

)

Dαx+

(

1−
y4

y

)

Dαy +
µ2

σ2

(

1−
v4

v

)

Dαv

+
σ1

σ3

(

1−
z4

z

)

Dαz +
µ2γ1

γ2σ2

(

1−
w4

x

)

Dαw

6 Λ− µ1x−
x4

x
Λ+ µ1x4 + α1(1− u1)x4v + α2(1− u2)x4y − α1(1− u1)xv

y4

y

− α2(1− u2)xy
y4

y
+ µ2y4 + σ1y4z −

µ2µ3

σ2
v +

µ2γ1v4

σ2
w −

σ1µ5

σ3
z − σ1yz4 +

σ1µ5

σ3
z4

−
µ2γ1µ4

γ2σ2
w −

µ2γ1v

σ2
w4 +

µ2γ1µ4

γ2σ2
w4 − µ2y

v4

v
+

µ2µ3

σ2
v4.

As






Λ = µ1x4 + α1(1− u1)x4v4 + α2(1 − u2)x4y4 = µ1x4 + µ2y4 + σ1y4z4,

y4 =
µ5

σ3
, v4 =

µ4

γ2
, w4 =

σ2y4 − µ3v4

γ1v4
.

Therefore,

DαV4 6 µ1x4

(

2−
x4

x
−

x

x4

)

+ α1(1− u1)x4v4

(

4−
xvy4

x4v4y
−

yv4

y4v
−

v

v4
−

x4v4

xv

)

+ α1(1− u1)x4v4

(

−1−
x4

x
+

v

v4
+

x4v4

xv

)

+ α2(1− u2)x4y4

(

4−
x

x4
−

yv4

y4v
−

v

v4
−

x4y4

xy

)

+ α2(1− u2)x2y2

(

−1−
x4

x
+

y

y4
+

x4y4

xy

)

+ σ1y4z4

(

−1−
y

y4
+

yv4

y4v
+

v

v4

)

6 µ1x4

(

2−
x4

x
−

x

x4

)

+ α1(1− u1)x4v4

(

4−
xvy4

x4v4y
−

yv4

y4v
−

v

v4
−

x4v4

xv

)

+ α2(1− u2)x4y4

(

4−
x

x4
−

yv4

y4v
−

v

v4
−

x4y4

xy

)

+ α1(1− u1)x4v4

(

v

v4
−

x4

x

)

(

1−
v4

v

)

+ α2(1− u2)x4y4

(

y

y4
−

x4

x

)(

1−
y4

y

)

+ σ1y4z4

(

v

v4
−

y

y4

)

(

1−
v4

v

)

.

As E4 satisfies the conditions (H8), (H9), and (H10), then
(

v

v4
−

x4

x

)

(

1−
v4

v

)

6 0,
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(

y

y4
−

x4

x

)(

1−
y4

y

)

6 0,

(

v

v4
−

y

y4

)

(

1−
v4

v

)

6 0.

As the arithmetic mean is greater than or equal to the geometric mean, we will have

2−
x4

x
−

x

x4
6 0,

4−
xvy4

x4v4y
−

yv4

y4v
−

v

v4
−

x4v4

xv
6 0,

4−
x

x4
−

yv4

y4v
−

v

v4
−

x4y4

xy
6 0.

Then, if RCTLs,W
1 > 1 and R

CTLs,W
2 > 1, we will have DαV4 6 0. Let P4 = {(x, y, v, w, z) |DαV4 = 0},

then the largest positivity invariant set of P4 is the singleton E4. Therefore, from the Lemma 1 we can
deduce that the equilibrium point E4 is globally asymptotically stable. �

5. Numerical simulations

In this section, we will present some numerical simulations to confirm the results found in the theoretical
part concerning the global stability of the equilibrium points, to demonstrate the effect of fractional
derivatives and also the effect of the treatment on the infection.

To improve our theoretical results, will present two kinds of numerical simulations, the first one for
showing the effect of fractional derivative order on the convergence toward equilibria and the second
stand for proving the effectiveness of the parameters of treatment on the HCV infection.

5.1. Effect of fractional order derivative

In this subsection, we present some numerical simulations that value our theoretical results concerning
the global stability of equilibria and show the effectiveness of fractional order derivative on the stability
of equilibrium points using the value of the different parameters presented in Table 1 with the value
of fractional derivative order between 1 and 0.4. We are using Matlab to perform this numerical
simulation and using also the following schema like in [47]:

Y (tj) =
hα

Γ(α+ 2)

(

(j − 1)α+1 − (j − α− 1)jα
)

G(Y (t0)) + Y (t0)

+
hα

Γ(α+ 2)

j−1
∑

i=1

(

(j − i+ 1)α+1 − 2(j − i)α+1 + (j − i− 1)α+1
)

G(Y (ti))

+
hα

Γ(α+ 2)
G

(

Y (tj−1) +
hα

Γ(α+ 1)
G(Y (tj−1))

)

,

where tj = t(j−1)+h, for j = 0, 1, . . . , N−1, with the following initial condition Y0 = (12, 10, 8, 7, 5)T .
Figure 2 shows the evolution of the infection of the different compartments. We can observe that

all curves represent the compartments x, y, v, w, and z converge to the point (20, 0, 0, 0, 0) for the
different values of fractional derivative order parameter. The value of the basic reproduction number
with the value of different parameters given in column two of Table 1 is given by R0 = 0.775 (see
Table 2). This value verified the conditions of global stability of this free equilibrium point E0 given
in Theorem 3.

In Figure 3, we can notice that all curves representing the different variables of our model converge to
the point (0.715, 39.285, 78.200, 0, 0) for the different values of the fractional order derivative parameter.
The value of basic reproduction number R0, the CTL immune reproductive number RCTLs and the
humoral immune reproductive number RW are given by R0 = 1.4, RCTLs = 0.24, and RW = 0.22 (see
the second column of Table 2). These values check the Theorem 4 conditions of global stability of E1.
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Table 1. Values of the model (1) parameters.

Parameters Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7
Λ 4 4 4 4 4 4
u1 0.5 0.8 0.8 0.8 0.8 −
u2 0.6 0.85 0.85 0.85 0.85 −
α1 0.3 0.2 0.2 0.2 0.2 0.2
α2 0.4 0.4 0.4 0.4 0.4 0.4
µ1 0.1 0.1 0.1 0.1 0.1 0.1
µ2 0.0.15 0.1 0.1 0.1 0.1 0.1
µ3 0.2 0.1 0.1 0.1 0.1 0.1
µ4 0.35 0.7 0.7 0.7 0.3 0.3
µ5 0.4 0.8 0.3 0.15 0.3 0.3
σ1 0.1 0.1 0.1 0.1 0.1 0.1
σ2 0.2 0.2 0.2 0.2 0.2 0.2
σ3 0.15 0.005 0.09 0.003 0.03 0.03
γ1 0.15 0.15 0.15 0.1 0.15 0.15
γ2 0.2 0.002 0.002 0.002 0.2 0.2

Table 2. Values of the model (1) reproductive numbers.

E0 E1 E2 E3 E4

R0 = 0.775 R0 = 1.4 RCTLs = 1.5 RW = 2.24 R
CTLs,W
1

= 1.33

RCTLs = 0.24 R
CTL,W
1

= 0.02 R
CTLs,W
2

= 0.78 R
CTLs,W
2

= 2
RW = 0.22
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Fig. 2. Global stability of E0 with the different value of fractional derivative order.

The Figure 4 describes the dynamics of HCV infection, and we can notice that all curves converge
toward the point (3.3648, 6.4706, 9.7059, 0, 0). The CTL immune reproductive number RCTL and the
humoral immune reproductive number R

CTL,HUM
1 in this case are given in column three of Table 2 by

RCTL = 1.5 and R
CTLs,W
1 = 0.02, these values coincide with the conditions of Theorem 6 concerning

the global stability of E2.
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Fig. 3. Global stability of E1 with the different value of fractional derivative order.
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Fig. 4. Global stability of E2 with the different value of fractional derivative order.
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Fig. 5. Global stability of E3 with the different value of fractional derivative order.
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Fig. 6. Global stability of E4 with the different value of fractional derivative order.
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We observe the same thing in Figure 5, all curves converge toward the point (1.042, 38.957, 35, 0.818, 0)
for the different values of the fractional order derivative parameter. The value of the humoral immune
reproductive number RW and the CTL immune competitive number RCTLs,W

2 are given by RW = 2.24,

R
CTLs,W
2 = 0.78 (see the fourth column of Table 2). These values satisfy the conditions of the Theo-

rem 6 concerning the global stability of E3.
The last Figure 6 shows the behavior of HCV infection. In this figure, we can see that all curves

converge toward the point (5.263, 10, 1.5, 8.22, 2.473) for the different values of the fractional order
derivative parameter. The humoral immune reproductive number R

CTLs,W
1 and he CTL immune

competitive number R
CTLs,W
2 are given by R

CTLs,W
1 = 1.33 and R

CTLs,W
2 = 2 (see the column four

of Table 2). These value check the Theorem 7 conditions concerning the global stability of E4. All
previous numerical findings confirm our theoretical results about the global stability of steady states.
We can deduce that for a smaller value of fractional derivative order the curves representing the
variables of the model converge more quickly to the equilibria and for a higher value α, the variables of
the model converge more slowly to the steady states. So, the fractional order derivative has no effect
on the global stability but on the speed of the convergence toward the equilibrium points.

6. Effect of the treatment parameters on HCV infection

In this subsection, we show the effect of the parameters of the treatment u1 and u2 to reduce de HCV
infection using the value of the parameter presented in Table 1.
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Fig. 7. Effect of u1 and u2 on the HCV infection.

This figure shows the effect of the parameters of the treatment u1 and u2 to eliminate HCV infection.
In this figure, we can notice that in the existence of the treatment the number of infected cells and
the number of free viruses diminished, also we can see that the number of susceptible cells increased.
Moreover, we also note the absence of an adaptive immune response because the existence of treatment
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helps fight the infection. Otherwise, we can notice a reduction of susceptible cells and an increase in
infected cells, free viruses, and the adaptive immune.

7. Conclusion

In this work, we have analyzed a fractional order HCV model cell-to-cell and virus-to-cell and treat-
ment. In our suggested model, the antibody and cytotoxic T-lymphocyte immune responses are taken
into consideration. The presented model has one basic reproduction number R0 that was obtained
by using the next generation matrix method and other four basic reproductive numbers are RCTLs

the CTL immune reproductive number, Rw the humoral immune reproductive number, RCTLs,W
1 the

humoral competitive number and RW
2 the CTL immune competitive number. These reproductive num-

bers depend on the chosen parameters of treatment. By using Lyapunov’s functional and LaSalle’s
invariance principle, we gave the theorems of global stability of the equilibria, this stability depends on
the different reproductive numbers. Finally, some numerical simulations are given in the last part of
this paper to value our theoretical results concerning the global stability of steady states, and to show
the effect of fractional derivative order and the parameters of treatment on the stability. We notice
that the values of the fractional derivative have no effect on the stability of steady States but only on
the speed of the convergence toward the corresponding equilibrium points, for the effect of parameters
of treatment we deduce that in the presence of these parameters, the infection diminished.
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Дробова модель HCV-iнфекцiї з адаптивним
iмунiтетом i лiкуванням

Ягуб З., Аллалi К.

Лабораторiя математики, iнформатики та прикладних програм,

факультет наук i технологiй,

Унiверситет Хасана II Касабланки, п.с. 146, Мохаммедiя 20650, Марокко

У цiй статтi запропоновано та дослiджено дробову модель HCV-iнфекцiї з адаптивним
iмунiтетом i лiкуванням. Адаптивний iмунiтет включає вiдповiдь CTL й антитiла. Ця
модель мiстить п’ять звичайних диференцiальних рiвнянь. Дослiдження починають-
ся з доведення iснування, єдиностi та обмеженостi додатних розв’язкiв. Модель має
точки вiльної рiвноваги та iншi ендемiчнi рiвноваги. Використовуючи функцiю Ля-
пунова та принцип iнварiантностi ЛаСаля, показано глобальну стiйкiсть цих точок
рiвноваги. Пiд кiнець, проведено декiлька чисельних симуляцiй, щоб перевiрити отри-
манi теоретичнi результати та показати вплив параметра порядку дробової похiдної
та iнших параметрiв лiкування.

Ключовi слова: дробовий порядок; HCV; вiд клiтини до клiтини; вiд вiрусу до

клiтини; глобальна стiйкiсть; чисельне моделювання.
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