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This paper aims to prezent mathematical model for Viral infection which incorporates both
the cell-free and cell-to-cell transmission. The model includes four compartments, namely,
the susceptible, the infected ones, the viral load and the humoral immune response, which
is activated in the host to attack the virus. Firstly, we establish the well-posedness of
our mathematical model in terms of proving the existence, positivity and boundedness of
solutions. Moreover, we determine the different equilibrium of the problem. Also, we will
study the global stability of each equilibrium. Finally, we give some numerical simulation
in order to validate our theoretical findings, and to study the effect of different types of
treatments proposed by the model.
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1. Introduction

Nowadays infectious diseases threaten the life of millions of people on earth. Amongst the well known
viruses, one can cite the human papillomavirus (HPV) that infects the basal cells of the cervix [1, 2],
the human immunodeficiency virus (HIV) that attacks the healthy CD4+ immune system [3, 4], the
hepatitis B virus (HBV) and the hepatitis C virus (HCV) that attacks the uninfected liver cells [5–8] and
more recently the Coronavirus Disease 2019 (COVID-19) [9–11]. Therefore, mathematical modeling
has become very important to study how diseases spread, and also to predict the future trajectory
of an outbreak, which can help the public health authorities to take the necessary measures [12, 13].
In 1998 Neumann et al. proposed a model that describes the dynamics of transmission of HCV by
reference to a simple interaction between the susceptible cells, infected cells and virions [14]. Neumann
et al.’s model postulates that virus-to-cell transfer is responsible for the infection; in other words, the
infection occurs due to the contact between susceptible cells and free virions with a bilinear incidence
rate. Since disease can spread through the body through virus-to-cell infection or by direct virus
transfer from cell to cell [15], many research provided mathematical models by integrating two modes
of infection transmission [16–18]. To have a relevant mathematical modeling it is necessary to take
into consideration the effect of the humoral immunity of the human body indeed, immediately after
infection, the immune system of the host body acts against the virus by activating adaptive immunity,
which is called destroy pathogens. This system recognizes the different types of pathogens and calls
for the most effective form of adaptive immune response to destroy them [19,20]. Also, the treatment
can play an important role against the spread of different viral infections [21, 22].

This paper includes three treatments to decrease the production of virions from infected cells, and
to reduce the infection caused by virus-to-cell and cell-to-cell transmission, so the dynamics of virus
transmission can be described using the following model:
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dT

dt
= λ− (1− u1)β1TV − (1− u2)β2TI − d1T,

dI

dt
= (1− u1)β1TV + (1− u2)β2TI − d2I,

dV

dt
= (1− u3)kI − d3V − pV Z,

dZ

dt
= cV Z − d4Z,

(1)

where the initial data are (T (0), I(0), V (0), Z(0)) = (T0, I0, V0, Z0), with T (t), I(t), V (t), Z(t) popula-
tions of uninfected cells, infected cells, virus-free particles, and humoral immune response respectively,
sensitive cells are assumed to reproduce with a constant rate λ, the average lifespan of sensitive cells,
infected, free virus and immune cells are 1/d1, 1/d2, 1/d3, and 1/d4 respectively, cell-to-virus and
cell-to-cell infection occur with β1 and β2 rate respectively, free virions are produced at a rate of k
per infected cell, the coefficients u3, u1, and u2 represent three treatments to decrease the production
of virions from infected cells, and to reduce the infection caused by virus-to-cell and cell-to-cell trans-
mission, after entry of virions, the humoral immune response is activated at a rate c per virion, and
virions are neutralized at a rate p per virion.
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Fig. 1. Diagram describing the model.

The present work is organized as follows, the next section is dedicated to prove the non-negativity
and boundedness of solutions. Section 3 gives the mathematical results about existence and stability
of equilibria and finally in section 4 we represent numerical tests. The last section concludes the work.

2. Non-negativity and boundedness of solutions

Theorem 1. The system solutions (1) with the initial state in R
+
4 are positive and bounded. In

addition, there is a ε > 0 such as lim inf
t→+∞

T (t) > ε.

Proof. According to the system (1) we have

dT

dt

∣

∣

∣

∣

T=0

= λ+ αI,
dI

dt

∣

∣

∣

∣

I=0

= (1− u1)β1TV,
dV

dt

∣

∣

∣

∣

V=0

= (1− u3)kI.

Suppose there is t > 0 such as dV (t)
dt

∣

∣

∣

V (t)=0
< 0, we note

tv = inf

{

t > 0/V (t) = 0 and
dV (t)

dt

∣

∣

∣

∣

V (t)=0

< 0

}

.
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Therefore dV (tv)
dt

∣

∣

∣

V (tv)=0
= (1− u3)kI(tv) < 0 now let define

tI = inf

{

t > 0/I(t) = 0 and
dI(t)

dt

∣

∣

∣

∣

I(t)=0

< 0

}

.

We deduce that tI < tv, therefore dI(tI )
dt

∣

∣

∣

I(tI )=0
= (1−u1)β1T (tI)V (tI) < 0 which implies that T (tI) < 0

since V (tI) > 0. Let us define

tT = inf

{

t > 0/T (t) = 0 and
dT (t)

dt

∣

∣

∣

∣

T (t)=0

< 0

}

.

We have tT < tI < tV and dT (tT )
dt

∣

∣

∣

T (tT )=0
= λ + αI(tT ) > 0 since I(tT ) > 0 which contradicts the

definition of tT .
Therefore dV

dt

∣

∣

V=0
> 0 thus V (t) > 0, ∀t > 0 consequently I(t) > 0, T (t) > 0, ∀t > 0.

Finally according to the last equation of the system (1) we find

Z(t) = Z(0) exp

{
∫ t

0

[

cV (s)− d4
]

ds

}

> 0 ∀t > 0.

Therefore, the non-negativity of the solutions with the initial condition in R
+
4 is guaranteed.

To prove the boundfulness of the system solutions (1), we define two new variables X(t) = T (t)+I(t)

and Y (t) = V (t)+pcZ(t). From the first two equations of (1), we obtain dX(t)
dt

= λ−d1T (t)−d2I(t) 6

λ− dxX(t) such as dx = min{d1, d2}. Therefore lim supt→+∞X(t) 6 λ
dx

.

Moreover according to the last equations of the system (1) (1) dY (t)
dt

= (1 − u3)kI(t) − d3V (t) −
d4P
c
Z(t) 6 (1− u3)kI(t)− dY Y (t) such as, dY = min{d3, d4} therefore, lim supt→+∞ Y (t) 6 λ(1−u3)k

dxdY
.

Thus, the solutions of system (1) with non-negative initial conditions are bounded by the set

D =

{

(T (t), I(t), V (t), Z(t)) ∈ R
4
+ : 0 6 T (t), I(t) 6

λ

dx
;

0 6 V (t) 6
λ(1− u3)k

dxdy
; 0 6 Z(t) 6

cλ(1− u3)k

pdxdy

}

.

Moreover, from the first equation of the system (1), we obtain

dT (t)

dt
> λ− (1− u1)β1T (t)V (t)− (1− u2)β2T (t)I(t)− d1T (t)

> λ− (d1 + (1− u1)β1Vu + (1− u2)β2Iu)T (t) for t big enough

where Iu = λ
dx

and Vu = λ(1−u3)k
dxdy

are two upper limits of I(t) and V (t), respectively . Therefore

lim inf
t→+∞

T (t) > λ
d1+(1−u1)β1Vu+(1−u2)β2Iu

. It follows that there is a ε > 0 such as lim inf
t→+∞

T (t) > ε. �

3. Existence and stability of equilibria

3.1. Existence of equilibria

The system (1) accepts three points of equilibrium:

— The point of equilibrium with no disease E0 = (T0, I0, V0, Z0) where: T0 =
λ
d1

and I0 = V0 = Z0 = 0.

— Free immune equilibrium E1 = (T1, I1, V1, Z1) where: T1 = d3d2
(1−u1)β1(1−u3)k+(1−u2)β2d3

and I1 =

d1T1

d2

[

λ((1−u1)β1(1−u3)k+(1−u2)β2d3)
d1d3d2

− 1
]

and V1 =
(1−u3)k

d3
I1, Z1 = 0.

— Infected equilibrium with immune response E2 = (T ∗, I∗, V ∗, Z∗),

T ∗ =
d2I

∗

(1− u2)β2V ∗ + (1− u2)β2I∗
, I∗ =

−m2 +
√

m2
2 + 4m1m3

2m1
,
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V ∗ =
d4
c
, Z∗ =

d3
p

(

c(1− u3)k

d3d4
I∗ − 1

)

where: m1 = (1− u2)β2cd2, m2 = (1− u1)β1d2d4 + cd1d2 − λ(1− u2)β2c, m3 = λ(1− u1)β1d4.

In order to determine the expression of the basic reproduction number, we apply the next generation
matrix approach [23]. Accordingly, the equations associated with infection are:











dI

dt
= (1− u1)β1TV + (1− u2)β2TI − d2I,

dV

dt
= (1− u3)kI − d3V − pV Z.

(2)

So, the matrices describing the speed of infection in the compartments, and the speed of virus
transfer out of compartments are

F =

(

(1− u1)β1TV + (1− u2)β2TI
0

)

, V =

(

d2I
−(1− u3)kI + d3V + pV Z

)

.

Therefore

F = JF (Q0) =

(

λ(1−u2)β2

d1

λ(1−u1)β1

d1

0 0

)

and

V = JV(Q0) =

(

d2 0
−(1− u3)k d3

)

.

We have

V −1 =
1

d2d3

(

d3 0
(1− u3)k d2

)

.

Finally

R0 = ρ(FV −1) =
λ((1− u1)β1(1− u3)k + (1− u2)β2d3)

d1d3d2

=
(1− u3)k(1− u1)β1T0

d3d2
+

(1− u2)β2T0

d2
= R01 +R02,

where R01 =
(1−u3)k(1−u1)β1T0

d3d2
and R02 =

(1−u2)β2T0

d2
are the basic reproductive numbers for virus-to-cell

and cell-to-cell infections (resp), [24].

We define a new threshold parameter R1 =
c(1−u3)k

d3d4
I∗, representing the number of viral reproduc-

tion in the chronic stage of infection without the effect of the humoral immune response to virions.
We also define the humoral immune reproduction number as follows:

RH =
c(1− u3)kλ((1 − u1)β1(1− u3)k + (1− u2)β2d3)

c(1− u3)kd1d3d2 + d2d3d4((1− u1)β1(1− u3)k + (1− u2)β2d3)
.

Which represents the average number of infected secondary cells produced in the presence of a humoral
immune response.

Lemma 1. (i) R1 > 1 ⇐⇒ RH > 1; (ii) R1 = 1 ⇐⇒ RH = 1; (iii) R1 < 1 ⇐⇒ RH < 1.

Proof. For (i) we have

R1 > 1 ⇐⇒ I∗ >
d3d4

c(1− u3)k
,

⇐⇒
−m2 +

√

m2
2 + 4m1m3

2m1
>

d3d4
c(1− u3)k

,

⇐⇒ (m2
2 + 4m1m3)−

(

2m1d3d4
c(1 − u3)k

+m2

)2

> 0.

By simplifying we find that
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R1 > 1 ⇐⇒

4(1− u1)β1d2d4
(1− u3)k2

[c(1 − u3)kd1d3d2 + d2d3d4((1 − u1)β1(1− u3)k + (1− u2)β2d3)](RH − 1) > 0,

therefore R1 > 1 ⇐⇒ RH > 1, similarly we show (ii) and (iii).
And since RH < R0 we have R0 < 1 =⇒ R1 < 1 and, R1 > 1 =⇒ R0 > 1. �

4. Stability of equilibria

To discuss the global behavior of the system (1), we adopt the method of Lyapunov functionals and
use the Lyapunov–LaSalle invariance principle [25].

Theorem 2. The disease-free equilibrium E0 is globally asymptotically stable when R0 6 1.

Proof. Considering the following Lyapunov function

L1(T, I, V, Z) = T0

(

T

T0
− 1− ln

T

T0

)

+ I +
(1− u1)β1T0

d3
V +

(1− u1)β1pT0

cd3
Z.

Its derivative is
dL1

dt
= T0d1

(

2−
T

T0
−

T0

T

)

+ (1− u2)β2T0I − d2I +
(1− u1)β1T0(1− u3)kI

d3
−

(1− u1)β1pT0d4Z

cd3

= T0d1

(

2−
T

T0
−

T0

T

)

+ d2I(R0 − 1)−
(1− u1)β1pT0d4Z

cd3
.

Note Ma and Mg the arithmetic and geometric means (resp) of two numbers T
T0

and T0

T
, we have

Mg < Ma thus (2− (T/T0 + T0/T )) 6 0.

Therefore dL1

dt
6 0 when R0 6 1. Let M0 be the largest invariant set M0 =

{

(T, I, V, Z)/dL1

dt
= 0
}

we note that dL1

dt
= 0 if and only if T = T0 and I = 0 and Z = 0 and V = 0, thus M0 = E0, based on

LaSalle’s invariance principle, E0 is globally asymptotically stable if R0 6 1. �

Theorem 3. The immune free equilibrium E1 is globally asymptotically stable when R1 6 1 < R0.

Proof. Considering the following Lyapunov function

L2(T, I, V, Z) = T1

(

T

T1
− 1− ln

T

T1

)

+ I1

(

I

I1
− 1− ln

I

I1

)

+
(1− u1)β1T1V

2
1

(1− u3)kI1

(

V

V1
− 1− ln

V

V1

)

+
(1− u1)β1pT1V1

c(1 − u3)kI1
Z.

Its time derivative is

dL2

dt
= −d1T1

(T − T1)
2

TT1
− (1− u1)β1T1V1

(

T1

T
+

IV1

I1V
+

TI1V

T1IV1
− 3

)

= −(1− u2)β2T1I1

(

T

T1
+

T1

T
− 2

)

+
λ(1− u1)β1(1− u3)kpT1Z

d2d
2
3RH

(RH − 1).

Since arithmetic mean is greater than geometric mean we have, dL2

dt
6 0 when RH 6 1 thus R1 6 1

according to the lemma. Let be M1 the largest invariant set such as

M1 =

{

(T, I, V, Z)/
dL2

dt
= 0

}

.

We have dL2

dt
= 0 if and only if T = T1, I = I1, Z = Z1 and V = V1, thus M1 = {E1}, so based

on LaSalle’s invariance principle, E1 is globally asymptotically stable if R1 6 1. And as E1 exists
whenever R0 > 1, we find the result of the theorem. �

Theorem 4. The infected equilibrium with humoral immune response E2 is locally asymptotically
stable when R1 > 1.
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Proof. Considering the following Lyapunov function

L3(T, I, V, Z) = T ∗

(

T

T ∗
− 1− ln

T

T ∗

)

+ I∗
(

I

I∗
− 1− ln

I

I∗

)

+
(1− u1)β1T

∗V ∗2

(1− u3)kI∗

(

V

V ∗
− 1− ln

V

V ∗

)

+
(1− u1)β1pT

∗V ∗Z∗

c(1 − u3)kI∗

(

Z

Z∗
− 1− ln

Z

Z∗

)

.

Its time derivative is

dL3

dt
= −d1T

∗ (T − T ∗)2

TT ∗
−(1−u1)β1T

∗V ∗

[

T ∗

T
+

IV ∗

I∗V
+

TI∗V

T ∗IV ∗
− 3

]

−(1−u2)β2T
∗I∗
[

T

T ∗
+

T ∗

T
− 2

]

.

Let be M∗ the largest invariant set such as

M∗ =

{

(T, I, V, Z)/
dL3

dt
= 0

}

.

We have dL3

dt
= 0 if and only if T = T ∗, I = I∗, Z = Z∗ and V = V ∗, thus M∗ = E2, and since E2

exists whenever R1 > 1, so based on the invariance principle of LaSalle E2 is globally asymptotically
stable if R1 > 1. �

5. Numerical simulations

In this section, we present several numerical illustrations for the model (1) in order to validate our
theoretical findings, and also to study the effectiveness of different therapys offered by the model.
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Fig. 2. The dynamics of the infection when λ = 6,
β1 = 0.01, β2 = 0.01, d1 = 0.5, d2 = 0.5, d3 = 0.8,

d4 = 0.9, k = 0.9, p = 0.006, and c = 0.005.

Fig. 3. The behavior of the infection when λ = 60,
β1 = 0.01, β2 = 0.01, d1 = 0.5, d2 = 0.5, d3 = 0.8,

d4 = 0.9, k = 0.9, p = 0.006, and c = 0.005.
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Fig. 4. The dynamics of the infection when λ =
60, β1 = 0.01, β2 = 0.01, d1 = 0.5, d2 = 0.5, d3 =
0.8, d4 = 0.9, k = 0.9, p = 0.006, and c = 0.05.

Figure 2 represents the behavior of the infection
when λ = 6, β1 = 0.01, β2 = 0.01, d1 = 0.5, d2 = 0.5,
d3 = 0.8, d4 = 0.9, k = 0.9, p = 0.006, and c = 0.005,
that is implies that R0 = 0.51 < 1 and R1 = 0.05 <
1. We observe that the studied population converges
to the free equilibrium E0 = (12, 0, 0, 0), then these
results validate our theoretical finding.

Figure 3 represents the dynamics of the infection
when λ = 60, β1 = 0.01, β2 = 0.01, d1 = 0.5,
d2 = 0.5, d3 = 0.8, d4 = 0.9, k = 0.9, p = 0.006,
and c = 0.005, that is implies that R0 = 05.1 > 1
and R1 = 0.49 < 1. We observe that the studied
population converges to the free equilibrium E1 =
(23.5, 96.47, 108.52, 0), then these results validate our
theoretical finding.
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In Figure 4, we show the interaction between the studied population when λ = 60, β1 = 0.01,
β2 = 0.01, d1 = 0.5, d2 = 0.5, d3 = 0.8, d4 = 0.9, k = 0.9, p = 0.006, and c = 0.05, that is implies
that R0 = 06.3 > 1 and R1 = 5.1 > 1. We observe that the studied population converges to the free
equilibrium E2 = (40.74, 79.85, 18, 527.11), then these results validate our theoretical finding.

5.1. Effect of therapy u1

This subsection will study the effect of therapy parameters u1 on the dynamics of the model system
for each equilibrium.
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Fig. 5. Infection dynamics showing around the free equilibrium E0 for different values of u1.

0 5 10 15 20

20

25

30

35

40

45

50

55

60

65

70

t

T

u
1
=0

u
1
=0.3

u
1
=0.8

0 5 10 15 20

20

30

40

50

60

70

80

90

100

t

I

u
1
=0

u
1
=0.3

u
1
=0.8

0 5 10 15 20

10

20

30

40

50

60

70

80

90

100

110

t

V

u
1
=0

u
1
=0.3

u
1
=0.8

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

t

Z

u
1
=0

u
1
=0.3

u
1
=0.8

Fig. 6. Infection dynamics showing the stability of the E1 for different values of u1.
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Figures 5 represent the effect of the therapy u1 around the free equilibrium, we remark that when
30% and 80% on the first 5 days of treatment the uninfected cells decrease, after this period the
uninfected cells increase to reach their equilibrium.

Figures 6 represent the effect of the therapy u1 around the free immune endemic equilibrium E1,
we remark that when 30% and 80% the number of the uninfected cells increase on the contrary the
number of the infected cells and the free virus decreases, that proves the efficiency of the therapy u1.
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Fig. 7. Infection dynamics showing the stability of the E2 for different values of u1.

Figures 7 represent the effect of the therapy u1 around the immune endemic equilibrium E2, we
remark that when 30% and 80% the number of the infected cells and the free virus decreases on the
other hand we observe that the number of the uninfected cells increase, that proves the efficiency of
the therapy u1.

5.2. Effect of therapy u2

In this subsection, we will study the effect of therapy parameters u2 on the dynamics of the model
system for each equilibrium.

Figures 8 represent the effect of the therapy u2 around the free equilibrium, we remark that when
30% and 80% on the first days of treatment the uninfected cells decrease, after this period the uninfected
cells increase to reach their equilibrium.

Figures 9 represent the effect of the therapy u2 around the free immune endemic equilibrium E1,
we remark that when 30% and 80% the number of the uninfected cells increase on the contrary the
number of the infected cells and the free virus decreases, that proves the efficiency of the therapy u2.

Figures 10 represent the effect of the therapy u2 around the immune endemic equilibrium E2, we
remark that when 30% and 80% the number of the infected cells and the free virus decreases on the
other hand we observe that the number of the uninfected cells increase, that proves the efficiency of
the therapy u2.
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Fig. 8. Infection dynamics showing the stability of the E0 for different values of u2.
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Fig. 9. Infection dynamics showing the stability of the E1 for different values of u2.
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Fig. 10. Infection dynamics showing the stability of the E2 for different values of u2.
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5.3. Effect of therapy u3

In this subsection, we will study the effect of therapy parameters u3 on the dynamics of the model
system for each equilibrium.
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Fig. 11. Infection dynamics showing the stability of the E0 for different values of u3.

Figures 11 represent the effect of the therapy u3 around the free equilibrium, we remark that
when 30% and 80% on the first days of treatment the uninfected cells decrease, after this period the
uninfected cells increase to reach their equilibrium.
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Fig. 12. Infection dynamics showing the stability of the E1 for different values of u3.

Figures 12 represent the effect of the therapy u3 around the free immune endemic equilibrium E1,
we remark that when 30% and 80% the number of the uninfected cells increase on the contrary the
number of the infected cells and the free virus decreases, that proves the efficiency of the therapy u3.

Figures 13 represent the effect of the therapy u3 around the immune endemic equilibrium E2, we
remark that when 30% and 80% the number of the infected cells and the free virus decreases on the
other hand we observe that the number of the uninfected cells increase, that proves the efficiency of
the therapy u3.
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Fig. 13. Infection dynamics showing the stability of the E2 for different values of u3.

5.4. Effect of three therapies

In this subsection, we will study the effect of therapy parameters u1, u2 and u3 used simultaneously,
on the dynamics of the model system for each equilibrium.

Figures 14 and 15 show the behavior of the infection for the case of the free-equilibrium E0 and
endemic-equilibrium E1 respectively, in the presence of therapy an increase of uninfected cells during
is observed. However, a decrease of the infected cells and the virus load are observed.

Figures 16 confirm the result of the previous figure but also a significant decrease of the adaptive
immune response is also observed. It is evident that higher doses of the medication lead to better
results. It is worth noting that despite the theoretical effectiveness of these treatments, selecting the
most suitable dosage for each patient is crucial to minimize potential adverse effects. For further
insight, [26].
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Fig. 14. Infection dynamics showing the stability of the equilibrium point E0 for different values of u1, u2 and
u3 used simultaneously.
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Fig. 15. Infection dynamics showing the stability of the equilibrium point E1 for different values of u1, u2 and
u3 used simultaneously.
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Fig. 16. Infection dynamics showing the stability of the equilibrium point E2 for different values of u1, u2 and
u3 used simultaneously.

6. Conclusion

This paper is devoted to modeling the viral infection dynamics by the the ordinary differential equa-
tions describing the uninfected cells, infected cells, free virus and the humoral immune response, also
the model under consideration includes the transmission between free virus to uninfected cells and
other form of the transmission is by infected cells to uninfected cells namely cell-to-cell which incor-
porates both the cell-free and cell-to-cell transmission. Firstly, we have proven the Well-posedness of
our mathematical model in terms of showing the existence, positivity and boundedness of solutions.
Moreover, we determine the different equilibrium of the problem. Also, we studied the global stability
of each equilibrium. Finally, we presented some numerical simulation in order to validate our theoret-
ical findings, in the last part of our paper we gave some numerical recommendation of three therapies
introduced to model, and we show that if the efficiency of the treatment reaches a 80%, we will maxi-
mize the number of the uninfected cells and minimize the number of the infected cells, the free virus
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and the humoral immunity, that proves the crucial role of the treatment of the various viral infection
and this can help a patient to increase the chance of the surviving. In the future work, we will study
the effect of the memory infection on the treatment strategy, generated by the fractional derivative
model [27–30]. Moreover, we will introduce on the studied model the stochastic perturbations in order
to try the cases of the extinction and the persistence of the infection [31, 32].
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Модель вiрусної iнфекцiї з мiжклiтинною передачею та терапiєю
за наявностi гуморального iмунiтету: глобальний аналiз

Ель Акраа Н.1, Лахбi М.1, Данане Дж.2

1Лабораторiя математики та прикладних програм, Унiверситет Хасана II,

Вища педагогiчна школа Касабланки, Касабланка, Марокко
2Лабораторiя систем, моделювання та аналiзу для пiдтримки прийняття рiшень,

Нацiональна школа прикладних наук, Перший унiверситет Хасана, Берречид, Марокко

Ця стаття спрямована на моделювання математичної моделi вiрусної iнфекцiї, яка
включає як безклiтинну передачу, так i мiжклiтинну передачу. Модель включає чо-
тири вiддiли, а саме: чутливi, iнфiкованi, вiрусне навантаження та гуморальну iмун-
ну вiдповiдь, яка активується в господаря для атаки на вiрус. Спершу встановлено
коректнiсть запропонованої математичної моделi з точки зору доведення iснування,
додатностi та обмеженостi розв’язкiв. Крiм того, визначено рiзнi рiвноваги задачi. Та-
кож дослiджено глобальну стiйкiсть кожної рiвноваги. Накiнець, проведено чисельне
моделювання, щоб пiдтвердити теоретичнi висновки та дослiдити ефект рiзних типiв
лiкування, якi пропонуються в моделi.

Ключовi слова: глобальна стiйкiсть; вiд клiтини до клiтини; гуморальна iмунна

вiдповiдь; терапiя; базовий номер вiдтворення; чисельне моделювання.
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