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This paper presents a new SIRS mathematical model describing the evolution of an in-
fectious disease, assuming that the spatial supports of this infection are also evolutionary
and obey a compartmental model. We propose four control strategies to manage the
spread of the disease among individuals and regions. The Pontryagin maximum princi-
ple is employed to characterize the optimal controls, and the optimality system is solved
using an iterative approach. Finally, numerical simulations are conducted to validate the
theoretical analysis using MATLAB.
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1. Introduction

Epidemics have wreaked widespread destruction around the world throughout human history, con-
stantly changing the course of events in the global order [1]. Infectious diseases such as malaria,
tuberculosis, smallpox, influenza, SARS, Ebola, HIV, and others have become part of history and
claimed millions of lives. These pandemics have crossed borders and affected many countries or re-
gions [2]. From 1346 to 1353, an outbreak of plague swept Europe, Africa, and Asia, and killed about a
third of the world’s population at that time. The history of plague epidemics shows that this pandemic
(black death) has always spread much faster in the most populated areas, as in Europe in the 14th
century [3]. The fast spread of an epidemic among certain populations, significantly exceeding the
usual level of morbidity for a given area, it progresses over time and can become a source of emergency
not only in a certain locality but also in the territory of several countries [4]. In the 19th century
lasting from 1852 to 1860, the cholera pandemic originated in India, spreading from the Ganges Delta
to Asia, Europe, North America, and Africa, killing more than 12 million people [5]. In the 20th
century, HIV the virus that leads to AIDS (acquired immunodeficiency syndrome) became a global
pandemic started by the Democratic Republic of the Congo and arrived in the United States in the
1970s precisely from Europe, Japan, Thailand, and Australia. Haitians working in Africa brought the
virus to their homeland in 1964, and from there, it spread to the US [6]. The progressive development
of infectious diseases reached the 21st century, the COVID-19 coronavirus pandemic from 2019 is one
example that has emerged in the Wuhan region of China and spread incredibly fast among humans
and around the world within a few months [7].

The fight against epidemics as a natural disaster was and remains a difficult task. Despite all ex-
isting measures to prevent the spread of diseases, the number of victims of infection can be estimated
at millions of moralities. Thus, epidemiology came with the aid of mathematics to study and describe
the occurrence’s patterns and epidemic spread, as well as measures to combat and prevent their oc-
currence [8]. Hence, an epidemic process is the continuous spread of an infectious disease that occurs
when three conditions are met: first, the presence of the source of infection; second, the transmission
mechanism and people who are susceptible to infection. Thus, the absence of at least one of these
conditions leads to disruption of the chain of the epidemic process and stops the transmission of the
disease [9, 10].
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As a result, spatial epidemiology issues are extremely essential, with viral propagation in populated
areas being one of the most serious challenges. In order to construct dynamic models that provide a
worldwide perspective into outbreak behavior, the incidence and prevalence of infectious illnesses in a
specific population with various geographic and demographic parameters must be examined over the
spatial and temporal domain [11, 12].

As a result, throughout the last century, a lot of studies have been conducted on the mathematical
modeling of epidemics. The structure of these basic epidemic models allows for the simulation of
occurrences that would be difficult to replicate in a laboratory setting. This type of model’s basic
assumption is that the population in which a pathogenic agent is active is made up of distinct subgroups
of people, and they only look at the temporal dynamics of the infection cycle [13,14]. When it comes to
the influence of epidemics’ spatiotemporal spread, mathematical modeling should take into account the
geographical characteristic in order to depict the spatial spread of an infectious illness across distinct
geographical zones [15, 16].

However, an infectious disease can be spread by a variety of pathways, including direct contact with
contaminated people, water, aerosol inhalation, and vector-borne spread. Direct contact of susceptible
persons with infected individuals will be regarded as the main transmission medium of infectious
diseases for the purposes of this study. As a result, infectious diseases are thought to spread from
person to person through a network of contact. This paper’s main goal is to investigate the global
dynamics of a SIRS model with zone evolution. Consistently, the model simulation is based on the
center idea that the population could be categorized into compartments discerned by a specific state
taking into consideration the ongoing epidemic. The model classifies the population into Susceptible
(persons who have the potential to get the disease), Infected (those individuals who are capable of
spreading the disease), and Recovered (individuals who received immunity and cannot contract the
infection again), from which the SIR acronym is utilized. A Susceptible could become Infected (S→I)
by contacting an infected person or can get immunity to the disease and Recover (I→R) or die. If the
assumption of the epidemic is based on a permanent immunity after the first infection to the disease.
However, in case of the absence of this assumption and the immunity is not immutable then recovered
individuals could be susceptible again (R→S), so it called the SIRS model [17, 18].

The combination of various scientifically based methods of epidemic control and prevention policies
(anti-epidemic) measures helps to prevent the development of pandemics among the most vulnerable
groups of the population, reduce the overall incidence in the country, and even completely eliminate
individual diseases. This control strategy aimed at limiting the disease’s source for restrictive measures
there are two options quarantine aimed at isolating infected people; whereas, observation focuses on
the isolation of healthy individuals who have been in contact with patients or carriers of infection in
order to prevent the outbreak of an epidemic or its spread. Another way to prevent infectious diseases
and their active spread among the population, (preventive vaccinations) is carried out [19,20]. In [21],
three approaches are provided in order to control the propagation of the pandemic including raising
awareness by organizing vaccination campaigns, travel-blocking movements coming from infected areas,
and treatment.

Travel restrictions are one part of a range of epidemic measures that could be used to control a
global pandemic. In [22] have exposed supporting evidence, during the Influenza infectious disease
in the United States illustrating that the grounding of airplanes in the US after September 11, 2001,
slowed the dynamics of influenza during 2001/2002 by approximately two weeks. While air travel
restrictions in the United States could have a slight effect on a contagious disease changing aspects
due to ground transportation, the global spread, as a transfer of pandemic flu from Asia or Europe
to the United States, might be delayed more remarkably by international travel restrictions [23]. For
the same target, restriction policies were also introduced during the COVID-19 pandemic in China,
showing positive results in decreasing the propagation of the disease in China which automatically
affects the international control of the pandemic, for it slows the speed of infection transmission.
Besides this, studies have shown the effect of travel restrictions to and from China on case importation
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that were decreased approximately to 80% [24,25] along with other models that emphasize the power
of flight bans and border closures on the arrival of people with COVID-19 to many countries during
the first phase of the pandemic [26, 27]. In [15], a discrete-time model was organized to show the
spatial-temporal spread of epidemics, illustrating the transmission process from one region to another
through air travel. The model provides an accurate survey of the propagation of the pandemic in
different geographical areas.

The rest of the paper is organized as follows: in section 2, we present the discrete-time mathematical
model SIRS and ZSZIZR describing the evolution of infectious diseases or viruses between individuals.
In section 3, the optimal control problem of the considered model is studied, and results and a discussion
are provided to ensure the effectiveness of our control strategies in section 4. To conclude our paper,
a conclusion is provided in section 5.

2. Presentation of the model

Infectious diseases are modeled by different types of mathematical models with compartments. Inspired
by the following research [28, 29], we consider a SIRS model that considers that the spatial patterns
of the infection by an infectious disease also change over time and adhere to a compartmental model.
The model considered is divided into two parts. The first SIRS describes the evolution of individuals
during an infectious disease, where S represents the number of susceptible, I the infected, and R the
recovered. The second part Z represents the various types of regions ZS represents the number of
susceptible regions, where there are only susceptible individuals, after visiting an infected person, a
susceptible region is likely to be infected, which we will note as ZI , the last compartment ZR designates
the infected areas which are recovered.

Therefore, we obtain the following two models: (1) for the evolution of individuals, and (2) for the
evolution of regions.











Si+1 = Λ+ Si − αSiIi − µSi + δRi,

Ii+1 = Ii + αSiIi − (µ+ d) Ii − rIi,

Ri+1 = −µRi + rIi +Ri − δRi,

(1)











ZS
i+1 = ZS

i − βZS
i I

I
i + θZR

i ,

ZI
i+1 = ZI

i + βZS
i Ii − γZI

i ,

ZR
i+1 = ZR

i + γZI
i − θZR

i ,

(2)

with initial conditions S0 > 0, I0 > 0, R0 > 0, ZS
0 > 0, ZI

0 > 0, and ZR
0 > 0 and where i ∈

{0, 1, . . . , N − 1}.
The description of the parameters is given in the following Table 1.

Table 1. List of all parameters of system (1).

Parameter Physical interpretation

Λ The incidence of susceptible
α The rate of people who were infected by contact with infected.
β The rate of regions that become infected since infected people.
θ The rate of conversion from recovered regions to susceptible regions.
µ The natural death rate.
δ The rate at which the recoveries become susceptible.
d Mortality since the virus.
r The rate of conversion from infected people to recovered people.
γ The rate of conversion from infected regions to recovered regions.
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3. The optimal control problem

3.1. Presentation of the controls

In this section, we consider four control strategies. The first strategy (control u) is based on educating
people about the necessity of avoiding contact with infected persons and taking precautionary measures.
The second strategy (control v) gives medical care to patients and makes recovery rooms available in
case of serious health problems. The last two strategies (w and p control) are applied to the regions.
This is done by isolating infected areas and striving to reduce the number of infected people in these
areas.

Then, two discrete-time controlled systems associated with (1) and (2) are given as follows










Si+1 = Λ+ Si +−α(1 − ui)SiIi − µSi + δRi,

Ii+1 = Ii + α(1 − ui)SiIi − (µ+ d) Ii − (r + vi)Ji,

Ri+1 = −µRi + (r + vi)Ii − δRi,

(3)











ZS
i+1 = ZS

i − βwiZ
S
i Ii + θZR

i ,

ZI
i+1 = ZI

i + βwiZ
S
i Ii − γZI

i − piZ
I
i ,

ZR
i+1 = ZR

i + γZI
i + piZ

I
i − θZR

i ,

(4)

with initial conditions S0 > 0, I0 > 0, R0 > 0, ZS
0 > 0, ZI

0 > 0, and ZR
0 > 0, and where i ∈

{0, 1, . . . , N − 1}.
The strategy of control v represents the vaccination of susceptible individuals and thus protects

them from the virus, while the strategies of controls u and w represent travel-blocking, where we
block the meeting between susceptible and infected people and the visiting of infected people to the
susceptible regions.

3.2. Objective functional

The problem is to minimize the objective functional J(u, v, w, p) given by

J(u, v, w, p) = αI JN − αR RN + αZIZI
N

+

N−1
∑

i=0

(

αIIi − αRRi + αZIZI
i +

A

2
u2i +

B

2
v2i +

C

2
w2
i +

Dp2i
2

)

,

where A > 0, B > 0, C > 0, D > 0, αI > 0, αR > 0, αZI > 0 are the weight constants of controls,
u = (u0, . . . , uN−1), v = (v0, . . . , vN−1), w = (w0, . . . , wN−1), p = (p0, . . . , pN−1), and N is the final
time of our strategy of control. Our goal is to minimize the infected individuals and the infected
regions, minimize the cost of applying controls, and increase the number of removed. In other words,
we are seeking optimal controls u∗, v∗, w∗, and p∗ such that

J(u∗, v∗, w∗, p∗) = min
{

J(u, v, w, p)/u ∈ U , v ∈ V, w ∈ W, p ∈ P
}

, (5)

where U , V, W, and P are the control sets defined by

U = {u/umin 6 ui 6 umax, i = 0, . . . , N − 1} , (6)

V = {v/vmin 6 vi 6 vmax, i = 0, . . . , N − 1} , (7)

W = {w/wmin 6 wi 6 wmax, i = 0, . . . , N − 1} , (8)

P = {p/pmin 6 pi 6 pmax, i = 0, . . . , N − 1} , (9)

such that

0 < umin < umax < 1, 0 < vmin < vmax < 1, 0 < wmin < wmax < 1, 0 < pmin < pmax < 1.

3.3. Sufficient conditions

Theorem 1. There exists an optimal control (u∗, v∗, w∗, p∗) ∈ U × V ×W ×P such that

J(u∗, v∗, w∗, p∗) = min{J(u, v, w, p)/u ∈ U , v ∈ V, w ∈ W, p ∈ P}

associated with the controlled systems (3), (4) and the initial conditions.
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Proof. Since the parameters of the system are bounded and there are a finite number of time steps,
that is I, S, R, ZS, ZI , and ZR are uniformly bounded for all (u, v, w, p) in the control set U×V×W×P,
thus J(u, v, w, p) is also bounded for all (u, v, w, p) ∈ U × V ×W ×P.

Which implies that inf
(u,v,w,p)∈U×V×W×P

J(u, v, w, p) is finite, and there exists a sequence

(un, vn, wn, pn) ∈ U × V ×W ×P such that

lim
n→+∞

J(un, vn, wn, pn) = inf
(u,v,w,p)∈U×V×W×P

J(u, v, w, p)

and corresponding sequences of states In, Sn, Rn, and ZSn

, ZIn , ZRn

. Since there exists a finite
number of uniformly bounded sequences such that (u∗, v∗, w∗, p∗) ∈ U × V ×W × P and I∗, S∗, R∗,
and ZS∗

, ZI∗ , ZR∗

such as, in a sequence,

(un, vn, wn, pn) → (u∗, v∗, w∗, p∗),

Sn → S∗,

In → I∗,

Rn → R∗,

ZSn

→ ZS∗

,

ZIn → ZI∗ ,

ZRn

→ ZR∗

.

Finally, due to the finite-dimensional structure of the system (3), (4) and the objective function
J(u, v, w, p), the control (u∗, v∗, w∗, p∗) is an optimal control with corresponding states I∗, S∗, R∗,
ZS∗

, ZI∗, and ZR∗

. Which completes the proof. �

3.4. Necessary conditions

By using a discrete version of Pontryagin’s maximum principle [30–32], we derive the necessary condi-
tions for our optimal controls. For this purpose, we define the Hamiltonian as

Hi = αIIi − αRRi + αZIZI
i +

Au2i
2

+
Bv2i
2

+
Cw2

i

2
+

Dp2i
2

+ ζ1,i
(

Λ+ Si − α(1 − ui)SiIi − µSi + δRi

)

+ ζ2,i
(

Ii + α(1− ui)SiIi − (µ+ d)Ii − rIi − viIi
)

+ ζ3,i
(

− δRi − µRi + rIi + viIi +Ri

)

+ ζ4,i
(

− βwiZ
S
i Ii + θZKi + ZS

i

)

+ ζ5,i
(

βwiZ
S
i Ii − γZI

i − piZ
I
i + ZI

i

)

+ ζ6,i
(

γZI
i − θZKi + piZ

I
i + ZKi

)

.

Theorem 2. Given optimal controls u∗, v∗, w∗, p∗, and solutions I∗, S∗, R∗, ZS∗

i , ZI∗i , and ZR∗

i ,
there exists ζk,i, i = 1, . . . , N , k = 1, 2, . . . , 6, the adjoint variables satisfying the following equations

∆ζ1,i = −
[

ζ1,i
(

1− α(1− ui)Ii − µ
)

+ ζ2,iα(1 − ui)Ii
]

,

∆ζ2,i = −
[

αI − ζ1,iα(1− ui)Si + ζ3,i(r + vi)− βZS
i ζ4,iwi + βZS

i ζ5,iwi

+ ζ2,i(1 + α(1− ui)Si − µ− d− r − vi)
]

,

∆ζ3,i = −
[

− αR + ai+1δ + ζ3,i(−µ− δ + 1)
]

, (10)

∆ζ4,i = −
[

ζ4,i(−βIiwi + 1) + ζ5,iβIiwi

]

,

∆ζ5,i = −
[

αZ I + ζ5,i(−γ − pi + 1) + gi+1(γ + pi)
]

,

∆ζ6,i = −
[

ζ4,iθ + ζ6,i(−θ + 1)
]

,

where ζ1,N = 0, ζ2,N = αI , ζ3,N = −αR, ζ4,N = 0, ζ5,N = αZI , ζ6,N = 0 are the transversality
conditions. In addition u∗ = (u∗0, . . . , u

∗
N−1), v∗ = (v∗0 , . . . , v

∗
N−1), w∗ = (w∗

0 , . . . , w
∗
N−1), and p∗ =

(p∗0, . . . , p
∗
N−1) are given by

u∗i = min
{

max
{

umin,
(−ζ1,i−ζ2,i)αSiIi

A

}

, umax

}

, i = 0, . . . , N − 1,

v∗i = min
{

max
{

vmin,
−(ζ3,i−ζ2,i)αIi

B

}

, vmax

}

, i = 0, . . . , N − 1,
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w∗
i = min

{

max
{

wmin,
−(ζ5,i−ζ4,i)βZS

i Ii
C

}

, wmax

}

, i = 0, . . . , N − 1,

p∗i = min
{

max
{

pmin,
−(ζ6,i−ζ5,i)Z

I
i

D

}

, pmax

}

, i = 0, . . . , N − 1.

Proof. Using the discrete version of Pontryagin’s maximum principle [33–37] we obtain the following
adjoint equations:

∆ζ1,i = − ∂H
∂Si

= −
[

ζ1,i(1− α(1 − ui)Ii − µ) + ζ2,iα(1− ui)Ii
]

,

∆ζ2,i = −∂H
∂Ii

= −
[

αI − ζ1,iα(1− ui)Si + ζ3,i(r + vi)− βZS
i ζ4,iwi + βZS

i ζ5,iwi

+ ζ2,i(1 + α(1− ui)Si − µ− d− r − vi)
]

,

∆ζ3,i = − ∂H
∂Ri

= −
[

− αR + ζ1,iδ + ζ3,i(−µ− δ + 1)
]

,

∆ζ4,i = − ∂H
∂ZI

i

= −
[

ζ4,i(−βIiwi + 1) + ζ5,iβIiwi

]

∆ζ5,i = − ∂H
∂ZI

i

= −
[

αZ I + ζ5,i(−γ − pi + 1) + gi+1(γ + pi)
]

∆ζ6,i = − ∂H
∂ZR

i

=

= −
[

ζ4,iθ + ζ6,i(−θ + 1)
]

with ζ1,N = 0, ζ2,N = αI , ζ3,N = −αR, ζ4,N = 0, ζ5,N = αZI , ζ6,N = 0. To obtain the optimality
conditions we take the variation with respect to controls (ui, vi, wi, pi) and set it equal to zero

∂Hi

∂ui
= Aui + (ζ1,i − ζ2,i)αSiIi = 0,

∂Hi

∂vi
= Bvi + (ζ3,i − ζ2,i)αIi = 0,

∂Hi

∂wi
= Cwi + (ζ5,i − ζ4,i)βZ

S
i Ii = 0,

∂Hi

∂pi
= Dpi + (ζ6,i − ζ5,i)Z

I
i = 0.

Then we obtain the optimal control

ui =
−(ζ1,i−ζ2,i)αSiIi

A
,

vi =
−(ζ3,i−ζ2,i)αIi

B
,

wi =
−(ζ5,i−ζ4,i)βZS

i Ii
C

,

pi =
−(ζ6,i−ζ5,i)ZI

i

D
.

By the bounds in U , V, W, and P of the controls in the definitions (6), (7) and (8), it is easy to obtain
u∗i , v

∗
i , w

∗
i , and p∗i in the following form

u∗i = min
{

max
{

umin,
(−ζ1,i−ζ2,i)αSiIi

A

}

, umax

}

, i = 0, . . . , N − 1,

v∗i = min
{

max
{

vmin,
−(ζ3,i−ζ2,i)αIi

B

}

, vmax

}

, i = 0, . . . , N − 1,

w∗
i = min

{

max
{

wmin,
−(ζ5,i−ζ4,i)βZS

i Ii
C

}

, wmax

}

, i = 0, . . . , N − 1,

p∗i = min
{

max
{

pmin,
−(ζ6,i−ζ5,i)Z

I
i

D

}

, pmax

}

, i = 0, . . . , N − 1.

�
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4. Results and discussion

4.1. Numerical simulation

In this section, we present the numerical simulations related to the previously mentioned optimization
problem (5). More specifically, the program code is described in MATLAB (see Algorithm 1) and
we perform simulations of our results. A discrete iterative method is applied to solve the optimality
systems, and it converges after an adequate test such as the one for FBSM. The state system (3), (4)
is then solved forward in time under the initial hypothesis, followed by the adjoint system (10) which
is solved backward in time due to the transversality conditions. Next, we will make sure to update the
optimal control values through state and co-state values acquired in the previous steps. Finally, the
previous steps are carried out when the required standard of tolerance is reached.

4.2. Algorithm

Algorithm 1 Determination of states of the controlled system and controls u, v, w, and p.

Require: S0, I0, R0, Z
S
0 , ZI

0 , ZR
0 , N , u(0) = v(0) = w(0) = p(0) = 0, ζ1,N = 0, ζ2,N = αI , ζ3,N = −αR,

ζ4,N = 0, ζ5,N = αZI , ζ6,N = 0.
for i = 1, . . . , N − 1







Si+1 = Λ+ Si − α(1− ui)SiIi − µSi + δRi,
Ii+1 = Ii + α(1− ui)SiIi − (µ+ d)Ii − (r + vi)Ji,
Ri+1 = −µRi + (r + vi)Ii − δRi,







ZS
i+1 = ZS

i − βwiZ
S
i Ii + θZR

i ,
ZI
i+1 = ZI

i + βwiZ
S
i Ii − γZI

i − piZ
I
i ,

ZR
i+1 = ZR

i + γZI
i + piZ

I
i − θZR

i .

ζ1,i = ζ1,i+1 + [ζ1,i(1− α(1 − ui)Ii − µ) + ζ2,iα(1− ui)Ii] ,

ζ2,i = ζ2,i+1 +
[

αI − ζ1,iα(1 − ui)Si + ζ3,i(r + vi) + βZS
i (ζ5,i − ζ4,i)wi

+ ζ2,i(1 + α(1− ui)Si − µ− d− r − vi)
]

,

ζ3,i = ζ3,i + [−αR + ai+1δ + ζ3,i(−µ− δ + 1)] ,

ζ4,i = ζ4,i + [ζ4,i(−βIiwi + 1) + ζ5,iβIiwi] ,

ζ5,i = ζ5,i + [αZI + ζ5,i(−γ − pi + 1) + gi+1(γ + pi)] ,

ζ6,i = ζ6,i + [ζ4,iθ + ζ6,i(−θ + 1)] ,

u∗

i = min

{

max

{

umin,
(−ζ1,i − ζ2,i)αSiIi

A

}

, umax

}

, i = 0, . . . , N − 1,

v∗i = min

{

max

{

vmin,
−(ζ3,i − ζ2,i)αIi

B

}

, vmax

}

, i = 0, . . . , N − 1,

w∗

i = min

{

max

{

wmin,
−(ζ5,i − ζ4,i)βZ

S
i Ii

C

}

, wmax

}

, i = 0, . . . , N − 1,

p∗i = min

{

max

{

pmin,
−(ζ6,i − ζ5,i)Z

I
i

D

}

, pmax

}

, i = 0, . . . , N − 1.

4.3. Simulation with and without the control u and discussions on the results

In this particular approach, we exclusively apply the initial control parameter, denoted by “u”, which
consists of conducting awareness programs to emphasize the importance of adhering to preventive
measures. It is worth noting that this strategy resulted in a marginal decrease in the number of
infected individuals, as illustrated in Figure 1. However, it is essential to recognize that this strategy,
when employed in isolation, proves less effective for the other compartments, as illustrated in Figures 2
and 3.

4.4. Simulation with and without the control v and discussions on the results

In this second strategy, we focus on the exclusive application of the second control strategy, “v”. This
strategic intervention involves the implementation of comprehensive healthcare programs specifically
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designed to meet the needs of patients affected by the disease. It also involves setting up specialized
recovery rooms for people facing serious health problems due to the progression of the disease.

The results of this strategy reveal some interesting signs. Firstly, there has been a marked reduction
in the total number of people contracting the disease, as illustrated in Figure 5. In addition, the
geographical impact of the disease was also reduced, with a smaller number of regions affected, as
illustrated in Figure 7.
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In addition, this strategy led to a commendable increase in the number of people who managed to
recover from the disease, as illustrated in Figure 6. These positive results underline the effectiveness
of targeted healthcare programs and convalescent wards in mitigating the impact of the disease.

However, it is essential to stress that while this strategy has shown promise and produced several
positive results, it should not be used in isolation.
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4.5. Simulation with and without the control w and discussions on the results

In the third strategy, we focus exclusively on implementing the third control, “w”. This particular strat-
egy involves the strategic deployment of measures such as erecting barriers to prevent the movement
of individuals already infected with the disease to areas with susceptible populations. It also involves
the application of travel restrictions, which limit the mobility of individuals likely to be carriers of the
infection.

Figure 9, which illustrates the number of infected geographical zones, highlights a notable result of
this strategy. We can see that this strategy has considerably reduced the number of areas affected by
the disease. The visual representation of these reduced areas of infection highlights the effectiveness
of these control measures in containing the spread of the disease within the regions.
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Fig. 9. Infected regions without and with the con-
trol w.

Fig. 10. Recovered regions without and with the con-
trol w.

4.6. Simulation with and without the control p and discussions on the results

In this strategy, we focus exclusively on implementing the fourth control, designated “p”. This strategy
involves a comprehensive approach to increasing support for regions heavily affected by the disease.
This support includes increasing the allocation of medical personnel to these regions and building
large-scale medical facilities, often referred to as “mega-hospitals”, in these affected areas.
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The results of this strategic intervention are remarkable. By channeling more resources and medical
expertise to affected regions, we see a marked reduction in the number of areas still struggling with
the disease, as Figure 11 clearly illustrates. At the same time, this approach is helping to increase the
number of regions that have managed to recover from the disease, as illustrated in Figure 12.

The construction of mega-hospitals, combined with the deployment of additional medical cadres,
plays a key role in reducing disease prevalence and promoting recovery in these regions. This strat-
egy underlines the importance of targeted investment and resource allocation as effective means of
combating the impact of the disease on a regional scale.
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Fig. 11. Infected regions without and with the con-
trol p.

Fig. 12. Recovered regions without and with the con-
trol p.

4.7. Simulation with and without four controls and discussions on the results

In this last strategy, we take a holistic approach, combining four strategies mentioned above. This
holistic approach is designed to maximize the impact on disease containment and recovery efforts.

The results of this integrated strategy are particularly encouraging, as illustrated in Figures 13
and 15. These figures clearly demonstrate the effectiveness of this multi-faceted approach in achieving
several crucial objectives. Firstly, the number of people contracting the disease has fallen considerably,
as shown in Figure 13. At the same time, the geographical spread of the disease is considerably reduced,
with fewer areas affected, as illustrated in Figure 15.
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Fig. 13. Infected individuals without and with four
controls.

Fig. 14. Recovered individuals without and with four
controls.

In addition, this global strategy leads to a significant increase in the number of people successfully
cured of the disease, as illustrated in Figure 14. In addition, the number of regions that moved from
disease to cure also increased substantially, as illustrated in Figure 16.
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The integration of these four strategies underlines the synergy achieved by simultaneously tackling
the disease from multiple angles. This approach relies on a combination of awareness-raising programs,
travel restrictions, healthcare initiatives, resource allocation, and medical infrastructure development
to comprehensively combat the impact of the disease. It is a convincing example of the effectiveness of
a multi-faceted, coordinated response to complex challenges such as those posed by infectious diseases.
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Fig. 15. Infected regions without and with four con-
trols.

Fig. 16. Recovered regions without and with four
controls.

5. Conclusion

In this article, we presented a discrete mathematical SIRS model designed to capture the dynamics
of infectious diseases with regional evolution. We introduced and examined in detail four distinct
disease control strategies, addressing both individual and regional aspects of disease management. To
determine the most effective control measures, we used Pontryagin’s maximum principle.

Our analysis, based on Pontryagin’s maximum principle, not only characterized the optimal controls
but also provided solid empirical support for the effectiveness of the proposed strategies. Thanks to this
approach, we have demonstrated the potential of these strategies to mitigate the spread of infectious
diseases, reduce the number of people and regions affected, and increase the number of successful cures.

In conclusion, our research provides valuable insights into the field of disease control by combining
mathematical modeling and optimization techniques. The results presented in this paper underline the
importance of employing multi-faceted strategies to combat infectious diseases. As we continue to face
complex global health challenges, the integration of mathematical models and optimization principles
offers a promising avenue for developing effective disease control strategies and improving our ability
to respond to public health crises.
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Дискретна математична модель SIRS з еволюцiєю регiонiв для
боротьби з iнфекцiйними захворюваннями

Бенфатах Ю., Халуфi I., Бутаєб Х., Лаарабi Х., Рачiк М.

Лабораторiя аналiзу, моделювання та симуляцiї, Касабланка, Марокко, 20670

У цiй статтi подано нову математичну модель SIRS, яка описує еволюцiю iнфекцiй-
ного захворювання, припускаючи, що просторовi основи цiєї iнфекцiї також є еволю-
цiйними та описуються компартментною моделлю. Запропоновано чотири стратегiї
боротьби з поширенням хвороби серед окремих людей i регiонiв. Для характеристики
оптимальних керувань використовується принцип максимуму Понтрягiна, а система
оптимальностi розв’язується за допомогою iтерацiйного пiдходу. Накiнець, здiйсне-
но чисельне моделювання для пiдтвердження теоретичного аналiзу за допомогою
MATLAB.

Ключовi слова: математична модель; системи з дискретним часом; модель

SIRS; оптимальне керування; заразний вiрус; максимум Понтрягiна; еволюцiя зон.
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