
COMPUTERIZED AUTOMATIC SYSTEMS

NODE.JS PROJECT ARCHITECTURE WITH SHARED DEPENDENCIES
FOR MICROSERVICES

Oleh Chaplia, PhD Student, Halyna Klym, Dr.Sc., Prof.,
Lviv Polytechnic National University, Ukraine;

e-mails: halyna.i.klym@lpnu.ua

https://doi.org/10.23939/istcmtm2023.03.0

Abstract. Microservices is an architectural style in software development that involves constructing a big solu-
tion using small, self-contained services. A set of services are connected via well-defined APIs and work together like
a coherent system. The application of microservices architecture spans a wide range of domains, e.g., healthcare,
finance, government, military, gaming, and entertainment.

This article analyzes existing project architecture approaches for Node.js, and improves scalable project archi-
tecture for Node.js using shared dependencies. The proposed project architecture with shared module dependencies is
explicitly created for Node.js microservice. Also, the article shows the results obtained from a test project that was
created based on the proposed architecture.

Key words: Cloud Computing, Microservices, NodeJS, Project Architecture, Source Code, API Services

1. Introduction

Cloud computing is currently a widespread and
trending topic. Many prominent and small companies are
adopting cloud technologies to optimize their processes.
In today's landscape, cloud technologies have become
fundamental across various sectors, such as banking,
finance, government, healthcare, and military. To har-
ness cloud computing potential, businesses must trans-
form their software web service design. Leading industry
players like Netflix, Amazon, and Spotify set trends in
cloud computing.

Microservices [1] is an architectural approach in
software development where a solution comprises small,
independently deployable services that communicate
through well-defined APIs, allowing them to work to-
gether to deliver the overall application's functionality
[2]. The microservices approach is especially suitable for
complex and large-scale applications where flexibility,
scalability, and rapid development are essential [2].

While microservices offer numerous benefits like
scalability, agility, and resilience, they also demand
meticulous planning, effective communication, careful
orchestration, and clear project architecture [3, 4]. Any
software engineer or developer should weigh these fac-
tors to determine if the benefits of microservices align
with their specific needs and resources. Engineers may
use an evolutionary approach to build microservices
from a single service instance to many connected in-
stances.

The journey of developing microservices is ac-
companied by a set of challenges. Developing microser-
vices within a team requires careful consideration, coor-
dination, and strategy [3, 4].

Design consistency within a project or solution
scope becomes a concern when different teams work on
distinct microservices, making it vital to establish design
guidelines and encourage cross-team collaboration to
maintain coherence. Clear project architecture and docu-
mentation a key to successful development and support of
the microservice. The necessity of managing dependencies
between microservices for seamless deployment and sys-
tem stability calls for the use of dependency management
tools and version control practices. Ensuring compatibility
between evolving microservice versions is a concern that
can be addressed by implementing versioning strategies,
defining clear APIs, and conducting compatibility tests.
Ensuring the quality of each microservice through indi-
vidual testing and monitoring can lead to fragmented
oversight, which can be improved by implementing con-
tinuous integration and delivery pipelines and utilizing
automated testing tools, that are integrated into well-done
project architecture. Most of these challenges are directly
or indirectly related to the project architecture, and how it
is implemented and supported within the development
lifecycle [1-4].

2. Drawbacks

Node.js, based on the JavaScript programming
language, is a versatile application development frame-
work [5]. Especially conducive to microservices, Node.js
excels in efficiently managing asynchronous and non-
blocking I/O operations. Its lightweight runtime, scal-
ability, extensive JavaScript ecosystem, and support for
high-performance, event-driven architectures make it an
ideal choice. JavaScript, a prototype-based programming
language, avoids confinement to a single programming
paradigm. This versatility enables it to integrate features

Measuring equipment and metrology. Vol. 84, No. 3, 2023 54

from diverse programming languages, making it highly
adaptable for contemporary development needs.

While there is no universal standard for organiz-
ing project architecture in Node.js microservices, various
best practices, patterns, and recommendations exist for
structuring the source code base [6-7]. The architectural
approaches employed include:

1. Layered architecture – the server code is
compartmentalized into distinct layers, each carrying
specific responsibilities and interactions. This design
enhances modularity and separation of concerns.

2. MVC-like approaches – the server applica-
tion adopts an organization resembling the Model-View-
Controller (MVC) pattern. It entails categorizing the
application into models, views, and controllers. Models
represent data structures, views handle presentation lo-
gic, and controllers oversee business logic and request
management [6, 8].

3. Event-driven architecture – the server code ad-
heres to event-driven principles, employing event handlers
and emitters. This framework facilitates decoupled and
asynchronous communication via events [9].

4. Plugin architecture – the server is equipped
with the potential to incorporate plugins residing within
the repository, introducing supplementary functionality
dynamically. However, this architecture is less prevalent
in Node.js applications.

Several aspects should be highlighted in connec-
tion with MVC-like patterns [6, 8]. Initially designed for
earlier programming frameworks, these patterns exhibit
varied implementations across languages and frame-
works. They were tailored to accommodate the tradi-
tional n-tier architecture, featuring a solitary backend
server API. A subset of these patterns is stateful or man-
dates Server-Side Rendering (SSR). In contrast, contem-
porary architectural solutions often opt for autonomous
web applications leveraging React.js or Angular.js
frameworks for user interface delivery (UI). As seen in
Netflix's streaming platform, backend API services may
be constructed from a network of intricate microservices.
These microservices typically maintain a public API for
interfacing with other web services.

3. Goal

This research aims to analyze existing project ar-
chitecture approaches for Node.js and create improved
scalable project architecture for Node.js microservice.
The architecture should be designed to support a modu-
lar structure, minimizing dependencies between modules
and using shared dependencies between Node.js ser-
vices. It should facilitate the effortless addition or re-
moval of modules for improved scalability.

4. Recommended approaches for Node.js
microservices

The considered architecture must be flexible
enough to accommodate evolving requirements and
future enhancements without causing substantial disrup-
tions. It should adhere to clean coding principles and
embrace the separation of concerns to promote maintain-
ability. Extensibility is critical, allowing for the seamless
integration of new features and future modifications
without extensive changes. Finally, comprehensive
documentation is essential, offering clear guidelines for
the system's structure and its various components. This
study portrays the project's architecture as a dependency
graph, with each node representing a component. A
component corresponds to a source code file with a ".js"
extension. The analysis of the project's architecture fo-
cuses solely on components and their interconnections
without delving into specific business logic implementa-
tions. Every programming language has its paradigms,
best ways, patterns, and approaches to the logical or-
ganization of the source code. Also, it is essential to note
that code structure depends on the business domain for
which the application is built. Node.js is a framework for
building applications using JavaScript programming
language [5]. JavaScript is a prototype-based program-
ming language not locked to one specific programming
paradigm. It supports many features from different pro-
gramming languages, making it very usable in the mod-
ern world. Therefore, it can be said that JavaScript sup-
ports OOP (Object-Oriented Programming), FP (Func-
tional Programming), and procedural programming.
Object-oriented programming is a programming para-
digm based on the concept of objects, which contain
specific data and logic of its domain. Each object may
represent some entity, its actions, and data. Classes are
definitions of the objects, and objects are instances of
those classes created by invoking a constructor com-
mand. Objects may have private data and provide a pub-
lic API interface for other objects. A good way is to use
encapsulation to hide all implementation details and
provide a minimal public API interface for other users. It
also helps to hold objects as an easily upgradable and
replaceable component. The main fundamental things in
OOP are abstraction, encapsulation, inheritance, and
polymorphism. After introducing ES6 classes in
JavaScript, we can describe classes more clearly, like in
C++ or Java.

5. Proposed Node.js project architecture
with shared modules

The foundation of the proposed project architec-
ture rests upon layers and components. Layers serve as
the logical structure for organizing components; each

Measuring equipment and metrology. Vol. 84, No. 3, 2023 55

layer can contain one or more components. Components
implement various elements such as system libraries,
tools, and business logic. The module is a JavaScript file
containing the component's implementation and may be
imported into another file.

We try to cleanly organize source code for the
Node.js microservice using layers and reduce cross-
dependencies between components and modules as much
as possible.

It is known that cloud solutions consisting of
many microservices often use the same source code or a
similar one. Similar source codes may appear when
different teams must implement their solutions for the
same problems. Alternatively, when communication
between multiple teams is poorly organized or impossi-
ble. There are many causes why duplicated or similar
source codes appear. Engineers and developers should
have approaches and tools to solve their issues well.

The proposed solution also involves sharing foun-
dational source code, which has the potential to be ap-
plied by multiple services across all teams. This shared
codebase may be hosted on NPM (Node Package Man-
ager) as one or multiple private or public packages. NPM
stands for "Node Package Manager." It is a software
package manager for the Node.js runtime environment.
NPM allows developers to quickly discover, install, and
manage external packages or libraries, also known as
"packages in Node.js projects. These packages often
contain reusable code modules that help streamline de-
velopment by providing ready-made functionality for
various tasks. Development teams should select the type
of hosting. It just impacts the visibility and privacy of
the packages. The other microservices only need to re-
trieve and use this shared source code.

The graphical representation of this layer-based
arrangement is depicted in Figure 1.

Fig. 1. Layer diagram of the components
of the Node.js project architecture.

• API Controllers – functions that are attached

to REST API endpoints. They import one or many Ac-
tions and execute them. Controllers also may have addi-
tional JSON validations, error handling, and logging.

• Actions – bundles business logic by combin-
ing entities, services, and libraries and providing a pub-
licly accessible controller interface.

• Entities – maps the data from the database to
the microservice. The developer can define how he
wants to represent the data.

• Services – contains API calls to third-party
services.

• Libs – a set of tools precisely needed for the
current project. These tools are not intended to be shared
between microservices.

• System Classes – Provide interface and im-
plementation of the core functionality for Entities, Ser-
vices, labs, Actions, and Controllers. These classes may
have different implementations between microservices;
therefore, developers can implement them as they need.

• Base Class – consolidates core libraries into
one package and provides one entry point for other com-
ponents. It is needed to prevent the direct import of NPM
packages and reduce dependencies.

• Core Libraries – provide essential functional-
ity for the system framework. The shared code is
downloaded from NPM.

Fig. 2. represents the relations between the com-
ponents based on the proposed layer diagram in Fig. 1.
Arrows represent the relationship between the compo-
nents.

The diagram has two types of relations. “Extends”
means that the child class extends the parent class. “Im-
ports” means that the component is imported via “require
()” or “import” methods. “#1” or “#N” means having
multiple components of such type is possible. For exam-
ple, “Entity #1” and “Entity #N” mean that in the current
diagram, we have from 1 to N components of the class
Entity. “N” can be any number. There is no upper limit,
and it is based on the business requirements. It is rec-
ommended to use an object-oriented approach with
JavaScript or TypeScript if possible because it provides
inheritance and composition, which is very useful for
organizing components.

6. Proof-of-concept implementation

A test project was created to demonstrate the
practical results of the proposed Node.js project architec-
ture. A layered structure was replicated. Also, additional
items were added – ai-commands, files, security, health,
and users – just for testing purposes. The application
contains no business logic, external API requests, or
database connections. The project structure is repre-
sented in Fig. 3. Dependency Cruiser visualizes Node.js
project dependencies through import statements. All
system library packages are downloaded from NPM
[10]. NPM packages are stored within the “node_
modules” folder. Using NPM or other package manager
for Node.js is encouraged to provide shared packages

Measuring equipment and metrology. Vol. 84, No. 3, 2023 56

within the solution architecture. All NPM packages are
connected to the Base class within the module interface.
Also, it is possible to directly import NPM packages to

the Base class without needing a separate interface.
Anyway, developers should choose what way is better
for them.

Fig. 2. Relations between components of the Node.js project architecture.

Fig. 3. File structure representation within IDE of the Node.js project architecture

Measuring equipment and metrology. Vol. 84, No. 3, 2023 57

7. Results

The outcomes were collected for further evalua-
tion after successful implementation and testing of a
proof-of-concept. A visual representation, Fig. 4, depicts
a dependency graph showcasing the relationships within
the implemented solution.

The visual representation of the test concept repli-
cates the proposed architectural layers of the project solu-
tion. Action, Controller, Entity, Lib, and Service classes
extend the core Base Class interface. They are accessible
through the "app/classes/index.js" file. By using this file, a
clear demarcation is established between system-specific
classes and customized business logic.

The Core Libs layer, Base Class, and the sub-
classes (Action, Controller, Entity, Lib, and Service) are
clearly defined within the system. The system acquires a
well-defined layered arrangement that maintains loose
coupling. This structural attribute persists even when
new components are introduced into the system. This
flexibility empowers contributors to make decisions
aligned with their specific needs. This division of respon-

sibilities can enhance developer focus, allowing them to
prioritize the development of custom business logic
while minimizing the requirement to support generic
system tools and libraries.

The business logic crafted by users within custom
Actions, Controllers, Entities, Libs, and Services embod-
ies modularity, scalability, and flexibility. Only a spe-
cific portion of the project architecture is affected when
modifications are made to these components – whether
through additions, removals, updates, or deletions. This
targeted adjustment minimizes overall complexity and
streamlines maintaining and evolving the system.

Documenting the implemented system compo-
nents is achievable through automated tools or manual
documentation practices. The project's proposed archi-
tecture includes clear guidelines that assist in structuring
and organizing these components.

This methodology incorporates models (entities)
and controllers like MVC-style design patterns. Addi-
tionally, it introduces an additional layer called actions.
Also, shared packages are attached to the libs layer
within this design.

Fig. 4. Visual representation of the dependencies of project modules
for Node.js project architecture generated by Dependency Cruiser.E

Measuring equipment and metrology. Vol. 84, No. 3, 2023 58

These actions function as composite components,
intermediaries between entities and controllers to exe-
cute business logic. Consequently, the shift of business
logic from controllers to actions enhances the modularity
and loose coupling of the system. The services layer is
responsible for interactions with external third-party
services. The proposed approach emphasizes distinct
layers that shield custom business logic from system
libraries, tools, and classes, promoting separation.

The architecture can be adapted to accommodate
database changes, third-party APIs, and external ser-
vices. Its versatility makes it applicable to various pro-
gramming languages, frameworks, and tools employed
in microservices development.

8. Conclusions

In the suggested approach, the source code for a
Node.js project's architecture can be well-defined and
organized to build either a single microservice or a group
of microservices. Connections between the logical layers
are clear and cohesive. Shared modules with generic
source code and tools (NPM packages stored inside the
"node_modules" folder) may be easily added, updated,
replaced, or removed within the system. Other custom
components have a defined place within the source code
structure according to the logical layers. System tools
and business logic are placed distinctly within the pro-
posed project architecture. This separation of compo-
nents enables convenient updates, replacements, mainte-
nance, or refinements of system or business logic com-
ponents by different members of the same team or vari-
ous software development teams.

9. Gratitude

The authors express their gratitude to the Depart-
ment of Specialized Computer Systems and the Ministry
of Education and Science of Ukraine for their support
(Project for Young Scientists No 0122U000807).

10. Conflict of Interest

The authors state that there are no financial or
other potential conflicts regarding this work.

References
[1] A. S. Abdelfattah, T. Cerny, Roadmap to Reasoning in Mi-
croservice Systems: A Rapid Review [J]. Applied Sciences, 13(3),
1838 (2023), DOI: 10.3390/app13031838,
https://www.mdpi.com/2076-3417/13/3/1838
[2] G. Blinowski, A. Ojdowska, A. Przybyłek, Monolithic vs.
Microservice Architecture: A Performance and Scalability Evalua-
tion [J]. IEEE Access, 10, 20357-20374 (2022), DOI:
10.1109/ACCESS.2022.3152803,
https://ieeexplore.ieee.org/abstract/document/9717259
[3] M. E. Gortney et al., Visualizing Microservice Architecture
in the Dynamic Perspective: A Systematic Mapping Study [J].
IEEE Access, 10, 119999-120012 (2022), DOI:
10.1109/ACCESS.2022.3221130,
https://ieeexplore.ieee.org/abstract/document/9944666
[4] A. Baabad, H. B. Zulzalil, S. Hassan, S. B. Baharom, Soft-
ware Architecture Degradation in Open Source Software: A Sys-
tematic Literature Review [J]. IEEE Access, 8, 173681-173709
(2020), DOI: 10.1109/ACCESS.2020.3024671, https://ieeexplore.
ieee.org/document/9200327
[5] H. Shah, Node.Js challenges in implementation [J], Global
Journal of Computer Science and Technology, 17(2), 76
(2017), https://computerresearch.org/index.php/computer/ arti-
cle/download/1735/1719
[6] Aniche, M., Bavota, G., Treude, C. et al. Code smells for
Model-View-Controller architectures [J]. Empir Software Eng 23,
2121–2157 (2018). DOI: 10.1007/s10664-017-9540-2,
https://link.springer.com/article/10.1007/s10664-017-9540-2
[7] F. Kaimer, P. Brune, Return of the JS: Towards a Node. js-
Based Software Architecture for Combined CMS/CRM Applica-
tions [J]. Procedia Computer Science, 141, 454-459 (2018), DOI:
10.1016/j.procs.2018.10.143, https://www.sciencedirect.
com/science/article/pii/S1877050918317927
[8] A. Sunardi, Suharjito, MVC Architecture: A Comparative
Study Between Laravel Framework and Slim Framework in Free-
lancer Project Monitoring System Web Based [J]. Procedia Com-
puter Science, 157, 134-141 (2019), DOI:
10.1016/j.procs.2019.08.150, https://www.sciencedirect.com/ sci-
ence/article/pii/S1877050919310683
[9] K. Farias, L. Lazzari, Event-driven Architecture and REST
Architectural Style: An Exploratory Study on Modularity [J]. Journal
of Applied Research and Technology, 21(3), 338-351 (2023), DOI:
10.22201/icat.24486736e.2023.21.3.1764,
https://jart.icat.unam.mx/index.php/jart/article/view/1764
[10] R. G. Kula, A. Ouni, D. M. German, K. Inoue, On the impact
of micro-packages: An empirical study of the npm javascript
ecosystem, arXiv preprint, arXiv:1709.04638 (2017), DOI:
10.48550/arXiv.1709.04638, https://arxiv.org/abs/ 1709. 04638

