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In this paper, a generalized scheme for finding solutions of potential theory problems in
two-dimensional piecewise-homogeneous media containing local regions with coordinate-
dependent physical characteristics has been presented. To describe the additional influ-
ence of these local areas, along with the indirect methods of near-boundary and contact
elements, a non-classical finite-difference method based on asymmetric finite-difference re-
lations has been used. The software implementation of the developed approach for finding
the potential of the direct current electric field in a mountain heterogeneous ridge has been
carried out. Approaches to solving elliptic problems that simulate stationary processes in
piecewise-homogeneous media with ideal contact conditions at the interfaces and mixed
boundary conditions have been considered. They analytically take into account the con-
dition of continuity of the unknown functions (potential, temperature) and are based on
the combination of indirect methods of near-boundary and contact elements. Using the
software developed, computational experiments have been carried out for the problem of
exploration and forecasting of oil and gas deposits in a mountain range by the method of
electrical profiling.
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1. Introduction

When solving potential theory problems, real objects are often modeled with piecewise-homogeneous
or heterogeneous media. If the physical characteristics are constant within each zone, it is advisable to
use the methods of boundary integral equations [1, 2], in particular, those created on its basis such as
boundary [3–8], near-boundary [9], partly-boundary [10] or contact elements [11]. They have a number
of indisputable advantages in modeling processes in piecewise-homogeneous media since they allow for
the accurate satisfaction of the initial equations of the model, clear description of unrestricted and
half-restricted objects, and require only the discretization of boundaries or outer near-boundary zones.
They can be considered as variants of the source method and can be attributed to indirect research
methods, since the unknown functions entered to solve the problem, are not physical variables.

For media whose physical characteristics depend on an unknown potential, the Kirchhoff transfor-
mation is often used [12,13]. For completely heterogeneous areas in which the physical characteristics
of the material continuously depend on the coordinates, researchers use differential methods, in par-
ticular, the finite difference method [14–16].

The main difference of the objects considered in this work is that the physical characteristics con-
tinuously depend on the coordinates only within some local area of material inhomogeneity (LAMI)
of each zone. When constructing a discrete-continuous model of the problem, the advantages of both
mentioned approaches have been combined. The differential operator has been split into three oper-
ators, the first of which describes a homogeneous environment, the second describes the influence of
the media interfaces, the third describes the influence of LAMI. Since the derivatives of the unknown
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potential along the coordinates are included in the third operator, they have been approximated by
non-classical finite differences at the nodes of the LAMI grid. The indirect method of near-boundary
and contact elements and the interpolation of the grid function in the LAMI have been used to con-
struct the integral representation of the solution of Laplace equation. The discrete-continuous model
for finding the intensities of unknown sources introduced in near-boundary and contact elements and
approximated by constants, and unknown values at grid nodes, is reduced to SLAE, formed as a result
of satisfying in the collocational sense of boundary conditions, conditions of ideal contact at the media
interfaces and at grid nodes.

The aim of our study is, firstly, to consider stationary processes in objects with inclusions of complex
geometric shape that are in ideal contact with the environment and contain LAMI; secondly, to apply
the high-precision numerical methods to create a mathematical model; and, thirdly, to estimate the
opportunities of the electrical profiling method for exploration and forecasting of conductive objects
or oil and gas deposits in mountain ridges.

2. Mathematical model for a piecewise-homogeneous medium with local area of ma-
terial inhomogeneity of each zone

Let us consider the object, which in the Cartesian coordinate system x1, x2 occupies the domain Ω,
which contains M − 1 inclusions Ωs (s = 1, . . . ,M − 1, Ω\ ∪Ms=2 Ωs = Ω1, ∂Ω1 ∩ ∂Ωs = ∂Ω1s, ∂Ωs ∩
∂Ω = ∅), which are in ideal contact with the medium Ω1, and local areas of material inhomogeneity
Ωmg ⊂ Ωm. Here ∂Ωm is a boundary of the domain Ωm (m = 1, . . . ,M).

The conductivity λ(x) of such an object, from the point of view of inhomogeneous medium, has
been representing:

λ(x) = λ1 +

M
∑

s=2

(λs − λ1)χ1s(x) +

M
∑

m=1

λmg(x)χmg, (1)

where χ1s(x) = 0 at x ∈ Ω1, χ1s(x) = 0.5 for x ∈ ∂Ωs, χ1s(x) = 1 for x ∈ Ωs; λmg is a continuous func-
tion of Cartesian coordinates x1, x2, which approaches zero as x = (x1, x2) approaches the boundary
∂Ωmg of the domain Ωmg, χmg is a characteristic function of the domain Ωmg.

The unknown functions u(x) have been describing by equations
2
∑

i=1

∂

∂xi

(

λ(x)
∂u(x)

∂xi

)

= −ψ(x)χ1(x), x ∈ Ω, (2)

boundary conditions of the first and second kinds

u(x) = f
(1)
Γ (x), x ∈ ∂Ω(1), −λ1

∂u(x)

∂n(x)
= f

(2)
Γ (x), x ∈ ∂Ω(2), (3)

and conditions of ideal contact at the media interfaces
u(x)|x−0→∂Ω1s = u(x)|x+0→∂Ω1s ,

λ(x)
∂u(x)

∂n1s(x)

∣

∣

∣

∣

x−0→∂Ω1s

= λ(x)
∂u(x)

∂n1s(x)

∣

∣

∣

∣

x+0→∂Ω1s

, x ∈ ∂Ω1s, s = 2, . . . ,M,
(4)

where n(x) = (n1(x), n2(x)), n
1s(x) = (n1s1 (x), . . . , n1sk (x)) are uniquely defined unit normal vectors to

∂Ω and ∂Ω1s, respectively, when taken ∂Ω1s as a part of the boundary ∂Ω1, the records x− 0 → ∂Ω1s,
x + 0 → ∂Ω1s indicate that x is directed to ∂Ω1 from the domains Ω1, Ωs, i.e. from left and right;
∂Ω(1)∪∂Ω(2) = ∂Ω, χ1(x) is the characteristic function of the domain Ω1, that is χ1(x) = 0 for x /∈ Ω1,
χ1(x) = 1 for x ∈ Ω1.

Substituting expression (1) into equation (2) and dividing the latter one by λ(x), we obtain the
equation for a medium with a conductivity equal to 1 and with sources focused on ∂Ωs and in Ωmg,
whose intensity is determined by unknown functions qj(x) = ∂u(x)/∂xj , j = 1, 2:

∆u(x) = −

M
∑

s=2

Ds

2
∑

j=1

qj(x)n
1s
j (x)δ (x− x|∂Ω1s)−

M
∑

m=1

Pmg(x, u(x)) − ψ̃(x)χ1(x), x ∈ Ω, (5)
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where Ds = 2λ1−λsλ1+λs
, Pmg(x, u(x)) =

1
λ(x)

∑2
j=1

∂λmg(x)
∂xj

qj(x)χmg, ψ̃(x) =
ψ(x)
λ(x) , ∆ is the Laplace opera-

tor.

3. Integral representation of the solution

According to the indirect near-boundary element method (INBEM) [9] and indirect contact element

methods [11], we introduce “fictitious” sources of unknown intensity ϕ(G)(x), ϕ
(s)
j (x), respectively,

within the outer, near-boundary to the boundary ∂Ω, zone G and within the interfaces ∂Ω1s, s =
2, . . . ,M , and describe the unknown function instead of (5) by the equation

∆u(x) = −ϕ(G)(x)χG(x)−

M
∑

s=2

Ds

2
∑

j=1

ϕ
(s)
j (x)n1sj (x)χ1s(x)

−
M
∑

m=1

Pmg(x, u(x)) − ψ̃(x)χ1(x), x ∈ R
2, (6)

where χG(x), χ1s(x) are the characteristic functions of the domains G and interface ∂Ω1s.
As we can see from (6), such a model automatically ensures the continuity of the potential at an

arbitrary point x ∈ ∂Ω1s during the transition through the boundary ∂Ω1, that is, the fulfillment of
the first of conditions (4). Thus, we have reduced the problem for solving equation (6) taking into
account the boundary conditions (3) and the second one of the contact conditions (4).

Since there is also a well-known fundamental solution (FS) U(x, ξ) for the Laplace operator, we
write integral representation of the solution of equation (6) and its coordinate and normal derivatives:

u(x) = F
GΓ(x,U) + Fg(x,U, u) + C + Fψ(x,U),

qj(x) = F
GΓ(x,Qj) + Fg(x,Qj , u) + Fψ(x,Qj),

q(x) = −λ1
∂u(x)

∂n(x)
= F

GΓ(x,Q) + Fg(x,Q, u) + Fψ(x,Q), (7)

where

F
GΓ(x,Φ) =

∫

G
Φ(x, ξ)ϕ(G)(ξ) dG(ξ) +

M
∑

s=2

Ds

2
∑

j=1

∫

∂Ω1s

Φ(x, ξ)ϕ
(s)
j (ξ)n1sj (ξ) d∂Ω1s(ξ), ξ = (ξ1, ξ2) ∈ R

2,

Fg(x,Φ, u) =
M
∑

m=1

Fmg(x,Φ, u), Fmg(x,Φ, u) =

∫

Ωmg

Pmg(ξ, u(ξ))Φ(x, ξ) dΩmg(ξ),

Fψ(x,Φ) =

∫

Ω1

Φ(x, ξ)ψ̃(ξ) dΩ1(ξ),

Qj(x, ξ) =
∂U(x,ξ)
∂xj

, Q(x, ξ) = −λ1
∑2

j=1Qj(x, ξ)nj(x), Φ ∈ {U,Qj , Q}, the constant C appeared as a

result of the logarithmic behavior of FS at an infinitely distant point.
Going in (7) x from the middle of the domain Ω to the outer boundary ∂Ω and to the interfaces

∂Ω1s to satisfy the boundary conditions (3), we obtain the boundary integral equations (BIE) that

connect the unknowns ϕ(G)(ξ), ϕ
(s)
j (x) with the given values onto the boundary uΓ(x) and qΓ(x):

F
GΓ(x,U) + Fg(x,U, u) + C = uΓ(x), x ∈ ∂Ω(1),

F
GΓ(x,Q) + Fg(x,Q, u) = qΓ(x), x ∈ ∂Ω(2),

F
GΓ(1, 1) = 0.

(8)

Note that the last equation reflects the total zero of all sources in Ω.
We supplement them by equations onto ∂Ω1s and into LAMI:

F
GΓ(x,Qj) + Fg(x,Qj , u)− qj(x) = 0, x ∈ ∂Ω1s, (9)

F
GΓ(x,U) + Fg(x,U, u) + C − u(x) = 0, x ∈ Ωmg. (10)

Since it is practically impossible to integrate analytically integrals in system (8)–(10) for the applied

problems due to the arbitrary form of domains Ωm and functions ϕ(G)(x), ϕ
(s)
j (x), we can perform
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spatial discretization using the following steps. We divide the domains G and ∂Ω1s into the near-
boundary elements of dimension 2 Gv (v = 1, . . . , V ) and the contact elements of dimension 1 Γsl
(l = 1, . . . , Ls) and approximate unknown functions ϕ(G)(x), ϕ

(s)
j (x) into them by quadratic functions

ϕ
(G)
v (x), ϕ

(s)
jl (x), which look like [4]:

ϕ(G)
v (ξ(Gv)) =

3
∑

i=1

divfi(η), ϕ
(s)
jl (ξ

(sl)) =

3
∑

i=1

dsijlfi(ζ), (11)

where f1(ηi) = 0.5ηi(ηi − 1), f2(ηi) = 1− η2i , f3(ηi) = 0.5ηi(ηi + 1).
It is clear that ∪Vv=1Gv = G, ∪Ls

l=1Γ
s
l = ∂Ω1s, the intensity of the unknown source into the thickness

and height of the near-boundary element does not change, the same is into the thickness of the contact
element. We used Lagrangian elements because the extra internal nodes significantly improve the
results.

After spatial discretization, taking into account (11), instead of (7) we have:

u(x) =

V
∑

v=1

3
∑

i=1

AGiv (x,U)div +

M
∑

s=2

Ds

Ls
∑

l=1

3
∑

i=1

Asil (x,U)

2
∑

b=1

dsibln
1si
bl + Fg(x,U, u) + C + Fψ(x,U),

qj(x) =

V
∑

v=1

3
∑

i=1

AGiv (x,Qj)d
i
v +

M
∑

s=2

Ds

Ls
∑

l=1

3
∑

i=1

Asil (x,Qj)

2
∑

b=1

dsibln
1si
bl + Fg(x,Qj , u) + Fψ(x,Qj),

q(x) =

V
∑

v=1

3
∑

i=1

AGiv (x,Q)div +

M
∑

s=2

Ds

Ls
∑

l=1

3
∑

i=1

Asil (x,Q)

k
∑

b=1

dsibln
1si
bl + Fg(x,Q, u) + Fψ(x,Q), (12)

where

AGiv (x,Φ) =

∫ +1

−1

∫ +1

−1
Φ
(

x, ξ(Gv)
)
∣

∣J2
(

ξ(Gv), η
)
∣

∣ fi(η) dη1 dη2,

Asil (x,Φ) = Ds

∫ +1

−1
Φ
(

x, ξ(sl)
)
∣

∣J1
(

ξ(sl), ζ
)
∣

∣ fi(ζ) dζ,

J2(ξ, η) and J1(ξ, ζ) are Jacobians of transition from variables ξ to η and from ξ to ζ, respectively;
n1sijl is the value of the normal in i-th node of l-th contact element, which belongs to ∂Ω1s. Note that

the integrals AGiv (x,U), AGiv (x,Qj), A
Gi
v (x,Q), Asil (x,U) for ξ = x contain a singular feature, and the

integrals Asil (x,Qj), A
si
l (x,Q) are calculated in the Cauchy sense.

4. Approximation of derivatives of the unknown potential into LAMI

Fig. 1. The grid into LAMI.

Since the operator Fmg(x,Φ, u)
includes unknown first deriva-
tives of the coordinates of the
potential, in the regions Ωmg we
use classical and non-classical fi-
nite differences and interpolation
of unknown functions.

In each region Ωmg we will
draw lines Lm2

h2
, Lm1

h1
(hi =

1, . . . ,Hmi, i = 1, 2, Hmi are odd
numbers), parallel to the axes
x1, x2, with steps H̄m2, H̄m1,
that will cover it with an uneven
grid (Figure 1).

Grid nodes are defined by
pairs of numbers (h1, h2), in particular, for internal M

m = {Lmh1h2 : hi = 1, . . . ,Hmi} and for
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boundary (Lmh1h2 ∈ ∂Mm = ∪2
i=1 ∪

2
t=1 ∂M

mt
i ) one of these numbers is equal to 0 or Hmi+1, and the

other two ones change from 1 to Hmi:

∂Mm1
1 =

{

Lm0h2
}

, ∂Mm2
1 =

{

Lm(Hm1+1)h2
}

, h2 = 1, . . . ,Hm2,

∂Mm1
2 =

{

Lmh10
}

, ∂Mm2
2 =

{

Lmh1(Hm2+1)
}

, h1 = 1, . . . ,Hm1.

To write the grid function of the operator Pmg(ξ, u(ξ, ξ4)), we approximate ∂u(ξ)/∂xi by umh1h2 =

u(ξLm) (ξLm = ξmh1h2 = (ξmh1h21 , ξmh1h22 ) are the coordinates of grid nodes), applying non-classical
and classical finite differences. Therefore, umh1h2 corresponds to the value of the desired function at
the point Lmh1h2 .

To find the values of the derivatives in the internal nodes, we use the central differences:

∂u(ξmh1h2)

∂x1
=
um(h1+1)h2 − um(h1−1)h2

2H̄m1
, h1 = 2, . . . ,Hm1 − 1,

∂u(ξmh1h2)

∂x2
=
umh1(h2+1) − umh1(h2−1)

2H̄m2
, h2 = 2, . . . ,Hm2 − 1,

∂u(ξm1h2)

∂x1
=

1

2

(

um1h2 − um0h2

lm0h2
1

+
um2h2 − um1h2

H̄m1

)

,

∂u(ξmH1h2)

∂x1
=

1

2

(

um(Hm1+1)h2 − umHm1h2

l
m(Hm1+1)h2
1

+
um(Hm1+1)h2 − umHm1h2

H̄m1

)

,

∂u(ξmh11)

∂x2
=

1

2

(

umh11 − umh10

lmh102

+
umh12 − umh11

H̄m2

)

,

∂u(ξmh1Hm2)

∂x2
=

1

2

(

umh1(Hm2+1) − umh1Hm2

l
mh1(Hm2+1)
2

+
umh1(Hm2+1) − umh1Hm2

H̄m2

)

,

where lm0h2
1 = xm1h2

1 − xm0h2
1 , l

m(Hm1+1)h2
1 = x

m(Hm1+1)h2
1 − xmHm1h2

1 , lmh102 = xmh112 − xmh102 ,

l
mh1(Hm2+1)
2 = x

mh1(Hm2+1)
2 − xmh1Hm2

2 .
For boundary nodes belonging to ∂Mmt

i , the value of the i-th derivative is determined by right or
left differences, respectively:

∂u(ξm0h2)

∂x1
=
um1h2 − um0h2

lm0h2
1

,
∂u(ξm(Hm1+1)h2)

∂x1
=
um(Hm1+1)h2 − umHm1h2

l
m(Hm1+1)h2
1

,

∂u(ξmh10)

∂x2
=
umh11 − umh10

lmh102

,
∂u(ξmh1(Hm2+1))

∂x2
=
umh1(Hm2+1) − umh1Hm2

l
mh1(Hm2+1)
2

.

The value of the j-th derivative (j 6= i) is expressed in terms of the value at this node and at the
two boundary nodes Sm2, Sm1 closest to it in the positive and negative directions of the axis Oxj :

∂u(ξmh1h2)

∂xj
=

1

2

(

(

umSm2 − umh1h2
)

Hmih1h2
jSm2

+
(

umh1h2 − umSm1
)

Hmih1h2
jSm1

)

, ξmh1h2 ∈ ∂Mm1
i ∪∂Mm2

i ,

where

Hmih1h2
jSmk

= HmjSmk

ih1h2
= Hmih1h2

j =
H̄mj

H̄2
mj + (ξmSmk

i − ξmh1h2i )2
for Smk ∈ ∂Mmt

i , k = 1, 2,

Sm2 =

{

0
Hm1 + 1

}

(h2 + 1), Sm1 =

{

0
Hm1 + 1

}

(h2 − 1) for i = 1, j = 2, t =

{

1
2
,

Sm2 = (h1 + 1)

{

0
Hm2 + 1

}

, Sm1 = (h1 − 1)

{

0
Hm2 + 1

}

for i = 2, j = 1, t =

{

1
2
,

Hmih1h2
jSmk

=
|ξmh1h2j − ξmSmk

j |

(ξmh1h2j − ξmSmk

j )2 + (ξmh1h2i − ξmSmk

i )2
for Smk ∈ ∂Mmz

j ,
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Sm2 = Hm1

{

0
Hm2 + 1

}

, Sm1 = 1

{

0
Hm2 + 1

}

for i = 1, j = 2, z =

{

1
2
,

Sm2 =

{

0
Hm1 + 1

}

Hm2, Sm1 =

{

0
Hm1 + 1

}

1 for i = 2, j = 1, z =

{

1
2
.

Using classical and non-classical finite differences in the operator Pmg(ξ, u
(m)(ξ)), we obtain the

grid function

ψ(m)
g (ξmM ) =

1

2

∑

h1h2∈Mm∪∂Mm

γmh1h2umh1h2 , (13)

where γmh1h2 =γh1h21 (Λmh1h21 )+γh1h22 (Λmh1h22 ), ξmM ∈Mm ∪ ∂Mm, Λmh1h2i = 1
λ(m)(ξmh1h2 )

∂λmg(ξmh1h2)
∂xi

.

For the points of the sets ∂Mm1
2 (h2 = 0, i = 2), ∂Mm2

2 (h2 = Hm2 + 1, i = 2) the functions
γmh1h21 (Λm) have the form






















−Hm21h2
1

(

Λm1h2 + Λm2h2
)

+Hm21h2
10(h2±1)Λ

m1h2 , h1 = 1,

H
m2(h1−1)h2
1

(

Λm(h1−1)h2 + Λmh1h2
)

−Hm2h1h2
1

(

Λm(h1+1)h2 + Λmh1h2
)

, h1 = 2, . . . ,Hm1 − 1,

H
m2(H1−1)h2
1

(

ΛmH1h2 + Λm(H1−1)h2
)

− ΛmH1h2 , h1 = Hm1,
(

Hm21h2
10(h2±1) −Hm21h2

12(h2±1)

)

Λm1h2 , Hm1 = 1,

and the functions γmh1h22 (Λm) for nodes of ∂Mm1
1 (h1 = 0, i = 1), ∂Mm2

1 (h1 = Hm1 +1, i = 1) are as
follows:






















−Hm1h11
2

(

Λmh11 + Λmh12
)

+Hm1h11
2(h1±1)0Λ

mh11, h2 = 1,

H
m1h1(h2−1)
2

(

Λmh1h2 + Λmh1(h2−1)
)

−Hm1h1h2
2

(

Λmh1h2 + Λmh1(h2+1)
)

, h2 = 2, . . . ,Hm2 − 1,

H
m1h1(H2−1)
2

(

Λmh1H2 + Λmh1(H2−1)
)

−Hm1h1H2

2(h1±1)(H2+1)Λ
mh1H2 , h2 = Hm2,

(

Hm1h11
2(h1±1)0 −Hm1h11

2(h1±1)2

)

Λmh11, Hm2 = 1,

here the sign “+” in the expressions hi ± 1 is chosen for the points of the sets ∂Mm1
i and the sign “−”

— for the points of the sets ∂Mm2
i .

For the points of the sets ∂Mm1
i , ∂Mm2

i , we obtain the functions γmh1h2i (Λ) in the form:

γm0h2
1 (Λ) = −

2Λ0h2 + Λ1h2

lm0h2
1

− δ1h2H
210
101Λ

10 − δH2h2H
21(H2+1)
10H2

Λ1(H2+1), Lm ∈ ∂Mm1
1 ,

γ
m(H1+1)h2
1 (Λm) =

2Λm(H1+1)h2 + ΛmH1h2

l
m(H1+1)h2
1

+ δ1h2H
m2H10
1(H1+1)1Λ

mH10

+ δH2h2H
m2H1(H2+1)
1(H1+1)H2

ΛmH1(H2+1), Lm ∈ ∂Mm2
1 ,

γmh102 (Λm) = −
2Λmh10 + Λmh11

lmh102

− δ1h1H
m101
210 Λm01 − δH1h1H

m1(H1+1)1
2H10

Λm(H1+1)1, Lm ∈ ∂Mm1
2 ,

γ
mh1(H2+1)
2 (Λm) =

2Λmh1(H2+1) + Λmh1H2

l
mh1(H2+1)
2

+ δ1h1H
m10H2
210 Λm0H2

+ δH1h1H
m1(H1+1)H2

2H1(H2+1) Λm(H1+1)H2 , Lm ∈ ∂Mm2
2 .

For the central points (Lm ∈Mm) the functions have the form:

γh1h21 (Λ) =



















































−
Λ1h2 + Λ2h2

H̄m1
+

2Λ0h2 + Λ1h2

lm0h2
1

, h1 = 1,

Λ(h1−1)h2 − Λ(h1+1)h2

H̄m1
, h1 = 2, . . . ,Hm1 − 1,

ΛH1h2 + Λ(Hm1−1)h2

H̄m1
−

2Λ(Hm1+1)h2 + ΛHm1h2

l
m(Hm1+1)h2
1

, h1 = Hm1,

2Λ0h2 + Λ1h2

lm0h2
1

−
2Λ2h2 + Λ1h2

lm2h2
1

, Hm1 = 1,
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γh1h22 (Λ) =



















































−
Λh11 + Λh12

H̄m2
+

2Λh10 + Λh11

lmh102

, h2 = 1,

Λh1(h2−1) − Λh1(h2+1)

H̄m2
, h2 = 2, . . . ,Hm2 − 1,

Λh1H2 + Λh1(Hm2−1)

H̄m2
−

2Λh1(Hm2+1) + Λh1Hm2

l
mh1(Hm2+1)
2

, h2 = Hm2,

2Λh10 + Λh11

lmh102

−
2Λh12 + Λh11

lmh122

, Hm2 = 1.

5. The SLAE construction for finding unknown values entered in near-boundary ele-
ments, contact elements and in grid nodes

To interpolate the operator Fmg(x,Φ, u) according to its grid function (13) by quadratic Lagrangian
quadrilateral elements with 9 nodes, we introduce on ∂Ωmg four additional points (0, 0), (Hm1 +1, 0),
(Hm1+1,Hm2+1), (0,Hm2+1) respectively between the boundary nodes of the grid with numbers (0, 1)
and (1, 0), (Hm1, 0) and (Hm1 +1, 1), (Hm1,Hm2 +1) and (Hm1 +1,Hm2), (0,Hm2) and (1,Hm2 +1).
This will allow us to distinguish in the region Ωmg ∪ ∂Ωmg curvilinear subregions Ωl1l2mg such that

Ωmg ∪ ∂Ωmg = ∪Lm2
l2

∪Lm1
l1

Ωl1l2mg . Here li = [hi/2] + 1 for hi = 0, 1, (2),Hmi , li = hi/2 for hi =
2, (2),Hmi +1, Li = [Hmi/2] + 1, i = 1, 2. The record hi = a, (2), b means that hi changes from a to b
with a step of 2, [a] is integer part of a.

Next, we will use 3× 3 nodes of the extended grid to describe the geometry of the subdomain Ωl1l2mg

and for interpolation in it, and we will move from the global coordinate system to the local coordinate
system η1, η2 within Ωl1l2mg . Then instead Fmg(x,Φ, u) we get

I
(m)
g (x,Φ, umM ) =

1

2

Hm1+1
∑

h1=0

Hm2+1
∑

h2=0

βmh1h2(x,Φ)γmh1h2umh1h2 ,

where the appearance of the function βmh1h2(Φ) depends on the location of the node h1h2.
In boundary nodes with one odd index and additional ones, as well as internal nodes with two odd

indices, the function has one term: βmh1h2(x,Φ) = αml1l2b1b2
(x,Φ), bi = 2 for hi = 1, (2),Hmi, bi = 1 for

hi = 0, M ∈ ∂M1
i , bi = 3 for hi = Hmi + 1, M ∈ ∂M2

i .
For boundary and internal nodes with one even index the function has two terms: βmh1h2(x,Φ) =

α
m(h1/2)l2
3b2

(x,Φ)+α
m((h1+1)/2)l2
1b2

(x,Φ), h2 is odd number, 0 orHm2+1, βmh1h2(x,Φ) = α
ml1(h2/2)
b13

(x,Φ)+

α
ml1((h2+1)/2)
b11

(x,Φ), h1 is odd number, 0 or Hm1 + 1.
For internal nodes with two even indices the function has four terms:

βmh1h2(x,Φ) = α
m(h1/2)(h2/2)
33 (x,Φ) + α

m((h1+1)/2)(h2/2)
13 (x,Φ)

+ α
m(h1/2)((h2+1)/2)
31 (x,Φ) + α

m((h1+1)/2)((h2+1)/2)
11 (x,Φ).

Here αml1l2b1b2
(x,Φ) = Φ(x, ξml1l2(η1, η2))φb1b2(η1, η2) |J2(ξ

ml1l2 , η)|, −1 6 ηi 6 1, φb1b2(η1, η2) =
fb1(η1)fb2(η2), bi = 1, 2, 3, i = 1, 2.

We construct a system of linear algebraic equations (SLAE) to determine the nodal values using
the weighted residuals method for boundary conditions and for conditions at the interface. We satisfy
the BIE (8) at the collocation points belonging to the boundary elements and add the conditions of
coincidence of the unknown constants dsijl with qj(x

t), calculated by the second of formulas (12), at the
nodes of the contact elements. We also use the collocation method to satisfy the coincidence conditions
umt (t = (t1, t2)) with u(xmt) at the nodes of the extended grid. The collocation points were chosen
as the beginning, the center of mass, and the end of the boundary or contact element.

After finding the unknown constants div, d
si
bl , u

mt from the SLAE, we determine the potential u(x)
and the flow q(x) by formulas (12) at the points of observation inside the object, at the interfaces and
at the outer boundary.
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6. Finding the potential of the DC electric field in a mountain ridge with LAMI

Suppose that Ω ⊂ ΩM , where the domain ΩM is an unbounded right angle, which we describe with
two rays P1 = {(x1, x2) : 0 6 x1 <∞, x2 = 0} and P2 = {(x1, x2) : −∞ < x2 < 0, x1 = 0} (Figure 2).
We denote the parts of the boundary ∂Ω coinciding with P1, P2, respectively, N1, N2. We describe the
part of the boundary N3 = ∂Ω\(∪2

i=1Ni) by the known curve x2 = f(x1). The boundary conditions
were set as follows:

−σ1
∂u(x)

∂n(x)
= q(i)(x), x ∈ Ni, i = 1, 2, 3, u(1)(x) = 0, x ∈ N4, (14)

moreover,
∑3

i=1

∫

Ni
q(i)(x) dNi(x) = 0. Note that the choice of sources on the rays P1, P2 in the form

ψ̃(x) = 2
σ1
(q(1)(x) + q(2)(x)) ensures that conditions (14) are satisfied on N1, N2.

According to INBEM, we consider the domain B ⊃ Ω, B ⊂ R
2, ∂Ω ∩ ∂B = ∪2

i=1Ni. Assume that
the distance between the curves ∂B and N3 is sufficient to accommodate the near-boundary elements.
We define the potential and its coordinates and normal derivatives by formulas similar to (12) without
addition with unknown C, taking into account a special fundamental solution Uz for a right angle
instead of FS for a plane and such an expression for

Fψ(x,Φ) =
2

σ1

2
∑

i=1

∫

Ni

q(i)(x)Φ(x, ξ) dNi(ξ), Φz(x, ξ) =

2
∑

i=1

(

Φ(x, ξ(i)) + Φ(x, ξ′(i))
)

,

ξ(1) = (ξ1, ξ2), ξ′(1) = (ξ1,−ξ2), ξ(2) = (−ξ1, ξ2), ξ′(2) = (−ξ1,−ξ2).

The peculiarity of the proposed approach is that we satisfy boundary conditions (14) only on N3, N4

and on N1, N2 they are fulfilled automatically.
The functions in boundary conditions (14) were as follows:

q(1)(x) = 0.5
(

δ(x1 − 16) − δ(x1 − 20)
)

, q(2)(x) = 0, q(3)(x) = 0,

N3 =
{

(x1, x2) : 0 < x1 < 2.5, x2 = f(x1)
}

, N4 =
{

(x1, x2) : 2.5 6 x1 < 3, x2 = f(x1)
}

,

f(x1) = 2x21/3− 11x1/3 + 5 for 0 < x1 < 3.
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Fig. 2. The model of a mountain ridge with LAMI.

Electrical conductivities were specified
by formulas

σ(1)(ξ) = σ1 + σg(ξ)χg, σ1 = 1,

σ(2)(ξ) = σ2 = 1.5,

in which σg(ξ) was a function of two pa-
rameters

σg(ξ1, ξ2) =
(

1− ξ21
)(

1− ξ22
)

kσ.

At the same time, the relationship be-
tween the coordinates ξ1, ξ2 and η1, η2
was written by the formula

ξl1l2i (η1, η2) =
3
∑

b1=1

3
∑

b2=1

φb1b2(η1, η2) ξ
b1b2
i ,

where ξ111 = 17.2, ξ211 = ξ221 = ξ321 = 18, ξ311 = 19.35, ξ121 = 16.75, ξ131 = 16.65, ξ231 = 19.25, ξ331 = 18.8,
ξ112 = −ξ332 = −0.8, ξ212 = −ξ322 = −1.25, ξ312 = −ξ132 = −1.35, ξ122 = ξ222 = ξ232 = 0, here the index
m = 1 is omitted.

The potential and its derivative along the normal were determined by formulas similar to (12),
taking into account the Green’s function Uz for a right angle instead of the FS:

u(x) =

V
∑

v=1

3
∑

i=1

AGiv (x,Uz)d
i
v +

M
∑

s=2

Ds

Ls
∑

l=1

3
∑

i=1

Asil (x,Uz)

2
∑

b=1

dsibln
1si
bl

+
1

2

H1+1
∑

h1=0

H2+1
∑

h2=0

βh(x,Uz)γ
huh + I2(x,Uz),
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qj(x) =

V
∑

v=1

3
∑

i=1

AGiv (x,Qzj)d
i
v +

M
∑

s=2

Ds

Ls
∑

l=1

3
∑

i=1

Asil (x,Qzj)

2
∑

b=1

dsibln
1si
bl

+
1

2

H1+1
∑

h1=0

H2+1
∑

h2=0

βh(x,Qzj)γ
huh + I2(x,Qzj),

q(x) =
V
∑

v=1

3
∑

i=1

AGiv (x,Q)div +
M
∑

s=2

Ds

Ls
∑

l=1

3
∑

i=1

Asil (x,Q)
k
∑

b=1

dsibln
1si
bl

+
1

2

H1+1
∑

h1=0

H2+1
∑

h2=0

βh(x,Uz)γ
huh + I2(x,Uz),

where

I2(x,Φ) =
2

σ1

2
∑

i=1

∫

Ni

q(i)(ξ)Φ(x, ξ) dNi(ξ).

The required accuracy was achieved for 21 grid nodes, i.e. for H1 = H2 = 3. The accuracy of the
numerical integration on the near-boundary elements and on the discretization elements of the domains
Ωgl was controlled as follows: the value of the integral on the element was compared with the sum of
the values of the integrals on its four components.

Since one of the main types of field observations for direct current methods is electrical profiling by
the method of removing median gradients, we will calculate the apparent resistivity ρ1 of the medium
(the value reversed to its conductivity σ1) by the formula: ρa = ku|u(xN ) − u(xM )|, where ku is

the normal gradient setting factor: ku = π
(

ln RAMRBN

RANRBM

)−1
for a half space, ku = 1/Uz(xM , xA) −

1/Uz(xM , xB) + 1/Uz(xN , xB) − 1/Uz(xN , xA) for a right angle, M and N are moving observation
points on ∂Ω, between which the potential difference was determined, A and B are the points at which
fixed real power sources with intensity δ(x− xA) and (−1)δ(x − xB) were placed.

In the Table 1 we compared the apparent resistivity, calculated using contact elements and analyt-
ically, for a conventional gradient installation over a vertical contact of two media in a half space for
ρ0 = 4, ρ1 = 1, xA = (−5; 0), xB = (5; 0).

Table 1.

x1
Analytical Contact

x1
Analytical Contact

x1
Analytical Contact

solution elements solution elements solution elements
−4.00 3.999 3.999 −1.25 4.000 3.991 1.50 0.999 1.009
−3.75 4.000 3.993 −1.00 4.000 3.991 1.75 1.001 1.009
−3.50 4.005 3.989 −0.75 4.001 3.990 2.00 1.001 1.009
−3.25 4.005 3.996 −0.50 4.001 3.992 2.25 1.000 1.009
−3.00 3.994 3.994 −0.25 4.000 3.930 2.50 1.000 1.008
−2.75 3.997 3.997 0.00 2.500 2.499 2.75 1.000 1.007
−2.50 4.007 3.995 0.25 1.000 1.070 3.00 1.000 1.006
−2.25 4.000 3.988 0.50 1.000 1.010 3.25 0.999 1.006
−2.00 3.996 3.991 0.75 1.000 1.010 3.50 1.000 1.005
−1.75 4.002 3.993 1.00 1.000 1.009 3.75 1.000 1.004
−1.50 4.000 3.990 1.25 0.999 1.009 4.00 1.000 1.003

Numerical results showed (Figure 3) that with a given location of inhomogeneity, source and drain
at the boundary ∂ΩM , in Ωg and in the area adjacent to it, there is concentration of equipotential lines
when electrical conductivity increases in Ωg.

We have the opposite effect with low-impedance LAMI, in this case equipotential lines are located
less often. The effect of torsion of the specified lines is also observed, the direction of which depends on
the sign of the value kσ , but it is visually manifested somewhat worse than thickening or rarefaction.
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Fig. 3. Dependence of the electric potential u on the coordinate x1 for different values x2: 1 — −2.0, 2 — −1.5,
3 — −1.0, 4 — −0.5, 5 — 0 (a, c) and on the coordinate x2 for of different x1: 1 — 16.25, 2 — 16.75, 3 — 17.5,

4 — 18.5, 5 — 19.25, 6 — 19.75 (b, d) at xσ = 1 (a, b) and kσ = −0.9 (c, d).

7. Conclusion

An effective approach has been developed for inclusions with characteristics that are continuously
dependent on the coordinates. This approach allows us to calculate the potential and its normal
derivative in inhomogeneous media with curvilinear media interfaces. It is based on the combined use
of the advantages of analytical and numerical methods and includes the FS (or Green function) of
Laplace equations, the non-classical finite difference method only in the area of local inhomogeneity.
The main ideas of such methods: splitting, near-boundary elements, contact elements and collocation.

The high accuracy of the obtained solutions within homogeneous zones is achieved by using funda-
mental solutions or Green functions, and at the media interfaces and in the area of local heterogeneity is
ensured by numerical algorithms based on the proposed approach. The latter use the approximation of
curvilinear boundaries by quadratic or cubic elements; non-uniform patterns of a finite-difference grid
only in the area of inhomogeneity and interpolation of the unknown functions by high-order splines.

The effects of “compression–tension” and torsion observed as a result of the computational exper-
iment can be used when solving inverse problems of geoelectrical prospecting to choose the correct
initial approximations.

Mathematical modeling of potential fields by the developed approach is advisable and promising
to use for the choice of a rational complex of electrometric observations and its successful application
for the study of complex geological media, in particular, oil and gas deposits. The use of the contact
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elements on the interface instead of boundary or near-boundary elements made it possible to automat-
ically satisfy the first contact condition (potential equality) and consequently to increase the accuracy
of calculations.

Numerical experiments were conducted to testify to the feasibility of the developed approach for the
detection of alien inclusions in the objects using potential fields. It can be used to solve direct problems
in various applied fields of mathematical physics: geophysics, materials science and defectoscopy. In
particular, when it is necessary to know the distribution of temperature or electric fields in objects,
when searching for minerals or to ensure the reliable operation of structures, made from materials
with different characteristics. The proposed approach can be the basis for solving inverse problems
of geophysics and technical diagnostics, that is, to create methods for recognizing alien inclusions, to
determine their thermal or electrical conductivity, and magnetic permeability, size and location.
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Моделювання потенцiального поля поєднанням приграничних та
контактних елементiв з некласичними скiнченними рiзницями в

неоднорiдному середовищi

Журавчак Л. М.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

У статтi наведено узагальнену схему для знаходження розв’язкiв задач теорiї по-
тенцiалу в двовимiрних кусково-однорiдних середовищах, якi мiстять локальнi об-
ластi з залежними вiд координат фiзичними характеристиками. Для опису додат-
кового впливу цих локальних областей, поряд з непрямими методами приграничних
i контактних елементiв, використано некласичний метод скiнченних рiзниць, який
базується на асиметричних скiнченно-рiзницевих спiввiдношеннях. Проведено про-
грамну реалiзацiю розробленого пiдходу для знаходження потенцiалу електричного
поля постiйного струму в гiрському неоднорiдному хребтi.

Ключовi слова: непрямий метод приграничних елементiв; непрямий метод кон-

тактних елементiв; кусково-однорiдний об’єкт; локальна область неоднорiдностi

матерiалу; некласичнi скiнченнi рiзницi; електричне профiлювання; двовимiрна за-

дача теорiї потенцiалу.
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