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In this paper, a generalized scheme for finding solutions of potential theory problems in
two-dimensional piecewise-homogeneous media containing local regions with coordinate-
dependent physical characteristics has been presented. To describe the additional influ-
ence of these local areas, along with the indirect methods of near-boundary and contact
elements, a non-classical finite-difference method based on asymmetric finite-difference re-
lations has been used. The software implementation of the developed approach for finding
the potential of the direct current electric field in a mountain heterogeneous ridge has been
carried out. Approaches to solving elliptic problems that simulate stationary processes in
piecewise-homogeneous media with ideal contact conditions at the interfaces and mixed
boundary conditions have been considered. They analytically take into account the con-
dition of continuity of the unknown functions (potential, temperature) and are based on
the combination of indirect methods of near-boundary and contact elements. Using the
software developed, computational experiments have been carried out for the problem of
exploration and forecasting of oil and gas deposits in a mountain range by the method of
electrical profiling.
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1. Introduction

When solving potential theory problems, real objects are often modeled with piecewise-homogeneous
or heterogeneous media. If the physical characteristics are constant within each zone, it is advisable to
use the methods of boundary integral equations [1,2], in particular, those created on its basis such as
boundary [3-8], near-boundary [9], partly-boundary [10] or contact elements [11|. They have a number
of indisputable advantages in modeling processes in piecewise-homogeneous media since they allow for
the accurate satisfaction of the initial equations of the model, clear description of unrestricted and
half-restricted objects, and require only the discretization of boundaries or outer near-boundary zones.
They can be considered as variants of the source method and can be attributed to indirect research
methods, since the unknown functions entered to solve the problem, are not physical variables.

For media whose physical characteristics depend on an unknown potential, the Kirchhoff transfor-
mation is often used [12,13]. For completely heterogeneous areas in which the physical characteristics
of the material continuously depend on the coordinates, researchers use differential methods, in par-
ticular, the finite difference method [14-16].

The main difference of the objects considered in this work is that the physical characteristics con-
tinuously depend on the coordinates only within some local area of material inhomogeneity (LAMI)
of each zone. When constructing a discrete-continuous model of the problem, the advantages of both
mentioned approaches have been combined. The differential operator has been split into three oper-
ators, the first of which describes a homogeneous environment, the second describes the influence of
the media interfaces, the third describes the influence of LAMI. Since the derivatives of the unknown
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potential along the coordinates are included in the third operator, they have been approximated by
non-classical finite differences at the nodes of the LAMI grid. The indirect method of near-boundary
and contact elements and the interpolation of the grid function in the LAMI have been used to con-
struct the integral representation of the solution of Laplace equation. The discrete-continuous model
for finding the intensities of unknown sources introduced in near-boundary and contact elements and
approximated by constants, and unknown values at grid nodes, is reduced to SLAE, formed as a result
of satisfying in the collocational sense of boundary conditions, conditions of ideal contact at the media
interfaces and at grid nodes.

The aim of our study is, firstly, to consider stationary processes in objects with inclusions of complex
geometric shape that are in ideal contact with the environment and contain LAMI; secondly, to apply
the high-precision numerical methods to create a mathematical model; and, thirdly, to estimate the
opportunities of the electrical profiling method for exploration and forecasting of conductive objects
or oil and gas deposits in mountain ridges.

2. Mathematical model for a piecewise-homogeneous medium with local area of ma-
terial inhomogeneity of each zone

Let us consider the object, which in the Cartesian coordinate system x1,xs occupies the domain 2,
which contains M — 1 inclusions 0 (s = 1,..., M — 1, Q\ UM, Q. = Q;, 001 N 9N, = 0014, 02 N
02 = &), which are in ideal contact with the medium €, and local areas of material inhomogeneity
Qg C Q. Here 09y, is a boundary of the domain Q,, (m =1,..., M).

The conductivity A(x) of such an object, from the point of view of inhomogeneous medium, has
been representing:

M M
AMz) = A1 + Z()‘s — An)xis(z) + Z Amg (T)Xmyg, (1)
s=2 m=1

where x15(z) = 0 at z € Qy, x15(z) = 0.5 for x € 08, x15(x) =1 for x € Q; Apyyg is a continuous func-
tion of Cartesian coordinates z1, 2, which approaches zero as © = (x1,x2) approaches the boundary
Oy of the domain €,,,4, Xmg is a characteristic function of the domain €,,,.

The unknown functions u(z) have been describing by equations

2
Z (}\(x)au(a:)> = —Y(z)x1(z), =z €, (2)
i=1

0

boundary conditions of the first and second kinds

0
we) = (@), zeo0®, MIUD = (P, 2 con )

and conditions of ideal contact at the media interfaces
u(2)]z—0-00, = U(T)]z4+0-09. >

4
)\(x)auligw) :)\(ac)a?iiix) , €O s=2,...,M, )
(@) |, 000, It (2) |, 105500,
where n(z) = (n1(z), na(z)), n'*(z) = (ni*(z),...,n}*(x)) are uniquely defined unit normal vectors to

09 and 0¥y, respectively, when taken 0€2;5 as a part of the boundary 02y, the records z — 0 — 0y,
x + 0 — 004, indicate that x is directed to 9€2; from the domains €2y, €, i.e. from left and right;
QM UIN?) = 90, x1(x) is the characteristic function of the domain Qy, that is x1(z) = 0 for z ¢ Q,
x1(x) =1 for x € Q.

Substituting expression (1) into equation (2) and dividing the latter one by A(z), we obtain the
equation for a medium with a conductivity equal to 1 and with sources focused on 92 and in €24,
whose intensity is determined by unknown functions g;(x) = du(x)/0x;, j = 1,2:

M 2 M
Au(w) == Dy > gi(@)n}* ()8 (v — xlo,,) = >, Pmg(a,u(@)) —(z)xi(z), z€Q, (5
s=2 j=1 m=1
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where D, 2§1+>\ , Prg(z,u(x))
tor.

ﬁ Z§:1 w‘gbigf;@qj(x)xmg, U(z) = fg)), A is the Laplace opera-

3. Integral representation of the solution

According to the indirect near-boundary element method (INBEM) [9] and indirect contact element
methods [11], we introduce “fictitious” sources of unknown intensity ¢(©(x), gp&s) (x), respectively,
within the outer, near-boundary to the boundary 92, zone G and within the interfaces 9, s =
2,..., M, and describe the unknown function instead of (5) by the equation

Au(z) = — ) ZD Z%S ) X1s()

M
- Z ng(:L',’LL(l’)) - ?z(ﬂf) Xl(gj)v WS R27 (6)
=1

where x¢ (), x1s(x) are the characteristic functions of the domains G and interface 9.

As we can see from (6), such a model automatically ensures the continuity of the potential at an
arbitrary point x € 05 during the transition through the boundary 0y, that is, the fulfillment of
the first of conditions (4). Thus, we have reduced the problem for solving equation (6) taking into
account the boundary conditions (3) and the second one of the contact conditions (4).

Since there is also a well-known fundamental solution (FS) U(x,&) for the Laplace operator, we
write integral representation of the solution of equation (6) and its coordinate and normal derivatives:

u(z) = F(x,U) + Fy(z,U,u) + C + Fy(z,U),
qj(x) = FGF(‘Tij) + Fg(x7Qj7u) + Fw(x7Qj)7
ou(x)

a(@) = —hg s = FO@.Q) + Fy(e, Q) + Fy(2, Q). (7)
where
Fa,9) = [0(.0¢ 96 + ZD Z /a ) (E)nk*(€) dOR, (€), € = (61,6) € R?,

(2, @, ) Z Fong(2,®,10),  Fyng (2, D, 1) / Prg (€, u())(, €) d g (€),

Qm, g

Fy(z,®) = /Q Bz, €)0(E) d (€),

Qj(x,€) = %, Q(x,&) = =\ Z?:l Qj(x,&)nj(x), ¢ € {U,Q;,Q}, the constant C' appeared as a
result of the logj;arithmic behavior of FS at an infinitely distant point.

Going in (7) z from the middle of the domain €2 to the outer boundary 99 and to the interfaces
0045 to satisfy the boundary conditions (3), we obtain the boundary integral equations (BIE) that

connect the unknowns (@) (), gp&s) (z) with the given values onto the boundary ur(z) and ¢r(x):
FOU(2,U) + Fy(z,U,u) + C = up(z), ¢ oW,
FOl(2,Q) + Fy(,Q.u) = qr(), = €00, (8)
FOT(1,1) =0.
Note that the last equation reflects the total zero of all sources in 2.
We supplement them by equations onto 0215 and into LAMI:

F(2,Q)) + Fy(2,Qj,u) — q;(x) =0, x € 04, (9)
F(2,U) + Fy(x,U,u) + C —u(x) =0, =€ Qppy. (10)
Since it is practically impossible to integrate analytically integrals in system (8)—(10) for the applied

problems due to the arbitrary form of domains €, and functions (&) (z), <p§-s) (z), we can perform
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spatial discretization using the following steps. We divide the domains G and 9, into the near-
boundary elements of dimension 2 G, (v = 1,...,V) and the contact elements of dimension 1 I'}

(l=1,...,Ls) and approximate unknown functions (@ (x), gpg.s) (x) into them by quadratic functions
oS¥ (), ¢ (), which look like [4]:

3
@) =S dfim), ) Z a3 £ilC (11)
i=1

where fi(1:) = 0.5mi(m; — 1), fa(mi) = 1 —n7, fa(m:) = 0.5m;(mi + 1)-

It is clear that UXZle =G, UlL:SlFls = 0215, the intensity of the unknown source into the thickness
and height of the near-boundary element does not change, the same is into the thickness of the contact
element. We used Lagrangian elements because the extra internal nodes significantly improve the
results.

After spatial discretization taking into account (11), instead of (7) we have:

ZZAGZ (z,U)d], +ZD ZZA“ (z,U ng;n;wa (z,U,u) + C + Fy(z,U),

v=1 i=1 s=2 =1 i=1
ZZAGZ (z,Q))d, +ZD ZZA‘” (z, Q) Z diingi’ + Fy(z, Qj,u) + Fy(z, Q;),
v=1 i=1 s=2 =1 i=1
=ZZA§i(x,Q)d§,+ZDsijAl (z,Q) Zdif b+ Fylz,Qu) + Fy(z,Q),  (12)
v=1 i=1 s=2 =1 i=1

where

, 14l
AS (z,®) :/ / O (2,6 9) | (€9 )| f:(n) dm dnpa,

A (z, D) D/ (2, €6D) |71 (€59, Q)| £i(¢) dg,

Jg(f n) and Ji(&,¢) are Jacobians of transition from variables £ to n and from £ to ¢, respectively;
njll is the value of the normal in i-th node of [-th contact element, which belongs to 02;5. Note that
the integrals AG!(x,U), AS(z,Q;), A5 (z,Q), Asi(z,U) for £ = x contain a singular feature, and the

integrals A7 (z,Q;), A(z,Q) are calculated in the Cauchy sense.

4. Approximation of derivatives of the unknown potential into LAMI

Since the operator Fyq(z, ®,u)
includes unknown first deriva-
tives of the coordinates of the
potential, in the regions €,,, we
use classical and non-classical fi-
nite differences and interpolation
ayr2 of unknown functions.
In each region £, we will
hy =2 draw lines Ly, L7 (h; =
1,...,Hy, i =1,2, Hy,; are odd
numbers), parallel to the axes
x1, T, with steps Hpo, Hpi,
that will cover it with an uneven
grid (Figure 1).

Grid nodes are defined by
pairs of numbers (hy, hy), in particular, for internal M™ = {L™Mh2: p, = 1,... H,,;} and for

OM3™

lmhl(Hmz+1)
2

(H|
l;ﬂ

Fig.1. The grid into LAMI.
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boundary (L™Mh2 ¢ 9M™ = U?_, U?_; OM™) one of these numbers is equal to 0 or H,,; + 1, and the
other two ones change from 1 to H,;:

aM{rLl — {Lm0h2}7 aM{rLQ — {‘L?’ﬂ(lfml-l-l)hz}7 h2 — 17 . 7Hm27
aMé’rLl — {Lmhlo}, aMé’rLQ — {Lmhl(HmZ‘l'l)}’ h‘l — 1’ .. ,Hml-
To write the grid function of the operator Pp,q(§, u(&,&4)), we approximate du(§)/0x; by umhihe —

u(Ebm) (gbm = gmmhz — ( {”hth, ;nhlhz) are the coordinates of grid nodes), applying non-classical
and classical finite differences. Therefore, u™"172 corresponds to the value of the desired function at
the point L™h2,

To find the values of the derivatives in the internal nodes, we use the central differences:
8U é’mhth um(h1+1)h2 _ um(hl—l)hg
( ): 5 h1:2,...,Hm1—1,

8331 2Hm1
8u(£mh1h2) umhl(hg-i-l) _ umhl(hz—l)
- = 5 h2:2,...,Hm2—1,
8ZE2 2Hm2
8u(§m1h2) 1 umlhz o umth N um2h2 o umlhz
0z 2 linOhZ ﬁml ’
8u(§mH1hz) B 1 [ ymHmit1)ha _ o mHmihe N umHm1+Dhe _ mHmiho
ox 2 lgn(Her1+1)h2 ];_Iml ’
8u(§mh11) 1 umhll o umhlo N umh12 o umhll
- = = = )
Oy 2 1o Hypo
8u(§mh1H7”2) B 1 [ ymh(Hma+1) _ o mhiHmo N w1 (Hma+1) _  mhiHmo
8;1;2 2 lgnhl(Hm2+1) _F_Im2 ’
Hp1+1)h Hp1+1)h m
where (102 — gimthe _ gmbOhe - pe(Hmthe el tlhe_ymtlha gm0 pmil_pmhi0,
mhy (Hpma+1 mhy (Hpa+1 mh1 H,
l =2z — gl im2
2 - &2 2 :

For boundary nodes belonging to dM™, the value of the i-th derivative is determined by right or

left differences, respectively:
au(£m0h2) ’I,Lmlh2 _ umth au(fm(Hml +1)h2) um(Hm1+1)h2 _ ’LLmHmlh2

- 9 7

au(fmhlo) umhal _ g mhi0 au(fmhl(ngJ,-l)) wmh (Hma+1) _ ™ Hme

oxy a0 ’ e JP (o 1)
2

The value of the j-th derivative (j # i) is expressed in terms of the value at this node and at the
two boundary nodes Sy,2, Sy closest to it in the positive and negative directions of the axis Ox;:

au mhihso 1 . .
(6 ) —— ((umsz _ umhth)H;giiL;hQ + (umh1h2 _ umSml)HmZhlhz) ’ émhlhz c aMZWlanMZWlQ,

ax] 2 JSm1
where B
Hihihe — gridos — prmitihe — g for Sy € OMI™, k—=1,2,
JSmk thihg J ngj + (meSmk _ éimh1h2)2 m i
Sma2 = 0 (h2+1) Sm1 = 0 (h2—1) for i=1,57=2 = 1
m. Hm1 + 1 b m Hml + 1 ) 9 2 Y
ng(hl—l—l) 0 Slz(hl—l) 0 for i=2,j=1 = 1
m. Hm2 + 1 9 m Hm2 + 1 9 ) 2 )
‘gmhlhz _ Smsmk‘
mihiho __ J J mz
s = (gt —gmsmey ¢ (gpinte —gsmy (O Sk € OMT
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Sm2=Hm1{Hg+1}, smlzl{HfH} for i=1,j=2, z:{z,

0 0 ) . 1

Using classical and non-classical finite differences in the operator ng(g,u(m) (£)), we obtain the

grid function 1
wrEm =5 > i, (13)
hi1haeM™UOM™
mhyh
where th1h2 :7?1h2 (Agnhth)_i_,yghhz (A;nh1h2)’ gmM eM™UJoM™, Almh1h2 = (gnhth) 3)\mg(afmi 1 2).

For the points of the sets M (hg = 0, i = 2), OMJ*? (hy = Hpe + 1, i = 2) the functions
~ymhihz (A™) have the form
—HE (AR g AmRhe) - HEGR AT,y =1,
(Am(h1—1)h2 4 Amhlhz) . H{n2h1h2 (Am(h1+l)h2 + Amh1h2), hi=2,...,Hp — 1,
H{n2(H1—1)h2 (Amthg +Am(H1—1)h2) _ Amthz, hi = Hpm,

21h 21h 1h B
(HIZ(M:QH) N Hg(hQ:Qtl))Am 2, Hm =1,

and the functions ~5"""2(A™) for nodes of 9MJ™ (hy = 0,7 = 1), IM"? (hy = Hypy + 1, i = 1) are as

follows:

H;n2(h1—1)h2

he = 1,

Y

—H;nlhll (Amh11 + Amh12) + H;Z}llit:ltll)oAmhll

H;n1h1(h2—1) Amh1h2 + Amh1(h2—1)) . H;nl}uhg (Amh1h2 4 Amhl(h2+1))7 h2 _ 27 . 7Hm2 B 17
by (H2=1) ( Am mhy (Ha— milhy H m
H, 1(Ha >(A th::lA hi(Hz 11}))1_ Hymf A MHy  hy —
m m mh o
(H2(h1i1)0 o H2(h1:1t1)2)A 1 Hpo =1,

here the sign “4” in the expressions h; £ 1 is chosen for the points of the sets 8Miml and the sign “—”

— for the points of the sets E?Mim2.
For the points of the sets OM™!, 9M™?, we obtain the functions o hihs (A) in the form:

21(H2+1)A1(H2+1)7 L, € aM{“,

2A0h2 + A1h2

0h

’7{71 (A)=— [m0hs - 51h2H126?A10 - 5H2h2H10H2
1

(H1 —I—l)hz + AmH1h2
lm(Hl -‘rl)hg

1
m2H1(Ha+1) A\ m m
+ 6H2h2H1(H1-1i-(1)I2{2 )A Hl(H2+1)’ Lm € 8M1 27

m2H10 mH;10
Hj A

+ 51h2 (Hy+1)

,VIn(Hl"Fl)hQ (Am) _ 2A

2Amh10 Amh11
,anhlo(Am) _ lm}—:() _ 61h1H£r1L(1)01Am01 _ 5H1h1H;E1(é{1+1)1Am(H1+1)17 L, € 8]\4-27)117
2
hi(Hz+1) | AmhiHp
mhi (Ha+1) _2A™ + 10H> y mOH.
v 1(H2 (Am) _ lmh1(H2+1) + 51h1H;}0 2 AmOH2
2

m1(Hy1+1)Hs s m "
+ 6H1h1H2H1((Hl;_1)) L\ (Hl+1)H2, L, € 8M2 2,

For the central points (L,, € M"™) the functions have the form:
Alhg +A2h2 2A0h2 +A1h2
_(h {;)]_}Tl _— lin()hz ) hl = 17
A 1— 2 A 1 2
hi=2,...,Hpu —1,

9

H
N8 =0 pHihe Aok gAGHmat DR g Hke
Hpp L T

2A0h2 +A1h2 2A2h2 +A1h21
- 17177'2h2 ) Hml = 17

mOhso
ll
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Ah11 +Ah12 2Ah10+Ah11

o gre o Tl
Aha(he=1) _ Ahi(he+1)
— , ho=2,...,Hpo — 1,
hiha Hm2
b (A) = AhiH2 + A1 (Hm2-1) NP1 (Hm2+1) + AP1Hm2
Hpna - (i (Hinz+1)  he = Hina,
2Ah10 —I—Ahll 2Ah12 —I—Ah112
lmh10 - lmh12 ) ng = 1.
2 2

5. The SLAE construction for finding unknown values entered in near-boundary ele-
ments, contact elements and in grid nodes

To interpolate the operator Fp,q(x, ®,u) according to its grid function (13) by quadratic Lagrangian
quadrilateral elements with 9 nodes, we introduce on 0€,,, four additional points (0,0), (Hp1 +1,0),
(Hpm1+1, Hypo+1), (0, Hypo+1) respectively between the boundary nodes of the grid with numbers (0, 1)
and (1,0), (Hn1,0) and (Hp1 +1,1), (Hpmy, Hyme +1) and (Hypy + 1, Hp2), (0, Hpo) and (1, Hypo +1).
This will allow us to distinguish in the region €,,, U 0,4 curvilinear subregions Qﬁlnl; such that
Qng U 0ng = UL U™ QL2 Here I; = [hi/2] + 1 for hy = 0,1,(2), Hyi, li = hy/2 for h; =
2,(2),Hpi +1, Ly = [Hpi /2] + 1, i = 1,2. The record h; = a, (2),b means that h; changes from a to b
with a step of 2, [a] is integer part of a.

Next, we will use 3 x 3 nodes of the extended grid to describe the geometry of the subdomain QlllQ
and for interpolation in it, and we will move from the global coordinate system to the local coordlnate
system 71,72 within Qi#; Then instead F,q(x, ®,u) we get

Hm1+1Hm2+1
I(m)(IL‘ q) umM Z Z 5mh1h2 ZE q>) mh1ho mh1h2
h1=0 h2=0

where the appearance of the function f™""2(®) depends on the location of the node hyhy.

In boundary nodes with one odd index and additional ones, as well as internal nodes with two odd
indices, the function has one term: gmMh2(z, @) = ozgnéllz( , @), b; =2 for hy =1,(2), Hp;, by =1 for
h; =0, M € OM}, b; =3 for hy = Hypy + 1, M € OM?.

For boundary and internal nodes with one even index the function has two terms: g™"12(z, @) =

ag’Z(hl/Q)lz (.’L’ q))_’_aﬁg(hl-i-l)/mlz (JZ, CI)), h2 is odd number, 0 or Hm2+17 ,Bmhth(J}, (I)) — a;:lllsl(hz/”(x, (I))+

azlll((hﬁl)/z) (x,®), hy is odd number, 0 or H,,; + 1.
For internal nodes with two even indices the function has four terms:

Bmhmz(x’q)) _ ag';’(hl/2)(h2/2)(w7 D) + ag((h1+1)/2)(h2/2)(x,<1))
+ a3m1(h1/2)((h2+1)/2) (z,®) + aﬁ((h1+1)/2)((h2+1)/2) (z,®).

Here a2 (2, ®) = ®(x,&™1%2(n1,m2)) Gbybs (01, 72) [ 2(€™02,m)|, =1 < i < 1, @y (m,m2) =
Jor (M) foo (m2), b5 = 1,2,3, i =1,2.

We construct a system of linear algebraic equations (SLAE) to determine the nodal values using
the weighted residuals method for boundary conditions and for conditions at the interface. We satisfy
the BIE (8) at the collocation points belonging to the boundary elements and add the conditions of
coincidence of the unknown constants dsf with ¢;j(z'), calculated by the second of formulas (12), at the
nodes of the contact elements. We also use the collocation method to satisfy the coincidence conditions

M (= (ty,ta)) with u(z™) at the nodes of the extended grid. The collocation points were chosen
as the beginning, the center of mass, and the end of the boundary or contact element.

After finding the unknown constants d¢, dili, u™ from the SLAE, we determine the potential u(x)
and the flow g(x) by formulas (12) at the points of observation inside the object, at the interfaces and
at the outer boundary.
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6. Finding the potential of the DC electric field in a mountain ridge with LAMI

Suppose that Q C QM where the domain Q2 is an unbounded right angle, which we describe with
two rays P; = {(z1,22): 0 < 21 < 00,292 = 0} and P> = {(z1,22): — o0 < x2 < 0,21 = 0} (Figure 2).
We denote the parts of the boundary 0f2 coinciding with Py, P», respectively, N1, No. We describe the
part of the boundary N3 = 9Q\ (U2, ;) by the known curve zo = f(x1). The boundary conditions
were set as follows:
o Ju(x)
on(z)
moreover, Z?:l fNi ¢ (z) dN;(z) = 0. Note that the choice of sources on the rays P;, P, in the form
U(z) = 0—21(q(1)(a:) + ¢®(z)) ensures that conditions (14) are satisfied on Ny, Na.

According to INBEM, we consider the domain B D Q, B C R?, 90N OB = U?ZlNi. Assume that
the distance between the curves 9B and N3 is sufficient to accommodate the near-boundary elements.
We define the potential and its coordinates and normal derivatives by formulas similar to (12) without
addition with unknown C', taking into account a special fundamental solution U, for a right angle
instead of FS for a plane and such an expression for

s(z, ®) JIZ/ ®(x, &) dN;(£), 22:( (2,9) + ®(x, 5’“))

=1
W =(6,8), €W =(&,-&), s@):(—&,@), ¢@ = (=&, -&).

The peculiarity of the proposed approach is that we satisfy boundary conditions (14) only on N3, Ny
and on N1, Ny they are fulfilled automatically.
The functions in boundary conditions (14) were as follows:
¢ (z) = 0.5(5(x1 — 16) — 8(z1 — 20)), ¢@(z) =0, ¢®(x)=0,
N3 = {(a:l,xg): 0<ax1 <2520 = f((L'l)}, Ny = {(a:l,a:g): 25 < < 3,0 = f((L'l)},
f(z1) =22%/3 — 1121 /3 + 5 for 0 < 21 < 3.

= q(l)(iﬂ)) T e Niy 1= 172737 u(l) (:E) = 07 x € N4’ (14)

Electrical conductivities were specified
by formulas

o(€) = o1 + 04 (E)xg, 01 = 1,
(&) =y =15,
in which o4(§) was a function of two pa-
rameters
og(é1,6) = (1-&) (1 - &)k,
At the same time, the relationship be-

tween the coordinates &1, & and 71, 7o
was written by the formula

3
lila 1b2
Fig. 2. The model of a mountain ridge with LAMI. &i (1, 7m2) ;:1 ;:1 Porta (M1, 772)5
1 2
where ¢ =17.2, €21 = %2 532 =18, &1 =19.35, £12 = 16.75, &13 = 16.65, £33 = 19.25, &3 = 18.8,
Gl = &8 = 08, &1 = €32 = —1.25, &' = —¢13 = —1.35, €12 = ¢22 = €23 = 0, here the index

m =1 is omitted.
The potential and its derivative along the normal were determined by formulas similar to (12),
taking into account the Green’s function U, for a right angle instead of the FS:

ZZAG’ 2, U.)d} +ZD ZZA“ x,U, ng; b

v=1 i=1 =1 =1
H1+1H2+1

+ - Z Z Bl (x, U )yl + I(x,U,),
h1 0 ho=0
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vV 3
=3 A (@, Q) +ZD ZZA“ 2, Q) Zdif b
1

v=1 i= =1 i=1
1H1+1H2+1
+§ Z Z Bh($7sz)7huh+I2($szj)v
h1 0 ha=0
S 3 DELCTITES 9 3 oIt e
v=1 i=1 s=2 =1 =1
1H1+1H2+1
h h, h
+§ Z Z B ($7Uz)7 U +I2(:E7UZ)7
h1=0 ho=0

where

L, ®) le/ B(z,€) dN;(6).

The required accuracy was achieved for 21 grid nodes, i.e. for Hy = Hy = 3. The accuracy of the
numerical integration on the near-boundary elements and on the discretization elements of the domains
1, was controlled as follows: the value of the integral on the element was compared with the sum of
the values of the integrals on its four components.

Since one of the main types of field observations for direct current methods is electrical profiling by
the method of removing median gradients, we will calculate the apparent resistivity p; of the medium
(the value reversed to its conductivity o1) by the formula: p, = ky|u(xy) — u(xar)|, where k, is

the normal gradient setting factor: k, = 7 (In %) for a half space, k, = 1/U,(xpr,24) —

1)U (xpxB) + 1)U (N, z) — 1/U(xN,4) for a right angle, M and N are moving observation
points on 0f), between which the potential difference was determined, A and B are the points at which
fixed real power sources with intensity d(z — z4) and (—1)d(x — xp) were placed.

In the Table 1 we compared the apparent resistivity, calculated using contact elements and analyt-
ically, for a conventional gradient installation over a vertical contact of two media in a half space for

po=4,p1=1,14=(-50), zp = (5;0).

Table 1.

. Analytical | Contact . Analytical | Contact . Analytical | Contact

! solution elements ! solution elements ! solution elements
—4.00 3.999 3.999 —1.25 4.000 3.991 1.50 0.999 1.009
-3.75 4.000 3.993 —1.00 4.000 3.991 1.75 1.001 1.009
—3.50 4.005 3.989 —-0.75 4.001 3.990 2.00 1.001 1.009
—-3.25 4.005 3.996 —0.50 4.001 3.992 2.25 1.000 1.009
—3.00 3.994 3.994 —0.25 4.000 3.930 2.50 1.000 1.008
—2.75 3.997 3.997 0.00 2.500 2.499 2.75 1.000 1.007
—2.50 4.007 3.995 0.25 1.000 1.070 3.00 1.000 1.006
—2.25 4.000 3.988 0.50 1.000 1.010 3.25 0.999 1.006
—2.00 3.996 3.991 0.75 1.000 1.010 3.50 1.000 1.005
—-1.75 4.002 3.993 1.00 1.000 1.009 3.75 1.000 1.004
—1.50 4.000 3.990 1.25 0.999 1.009 4.00 1.000 1.003

Numerical results showed (Figure 3) that with a given location of inhomogeneity, source and drain
at the boundary 0QM | in 1, and in the area adjacent to it, there is concentration of equipotential lines
when electrical conductivity increases in (2.

We have the opposite effect with low-impedance LAMI, in this case equipotential lines are located
less often. The effect of torsion of the specified lines is also observed, the direction of which depends on
the sign of the value k., but it is visually manifested somewhat worse than thickening or rarefaction.
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Fig. 3. Dependence of the electric potential u on the coordinate x; for different values xo: 1 — —2.0, 2 — —1.5,

3 ——-1.0,4 — —0.5,5 —0 (a, ¢) and on the coordinate x5 for of different z1: 1 — 16.25, 2 — 16.75, 3 — 17.5,
4 —18.5,5—19.25,6 — 19.75 (b, d) at x, =1 (@, b) and k, = —0.9 (¢, d).

7. Conclusion

An effective approach has been developed for inclusions with characteristics that are continuously
dependent on the coordinates. This approach allows us to calculate the potential and its normal
derivative in inhomogeneous media with curvilinear media interfaces. It is based on the combined use
of the advantages of analytical and numerical methods and includes the FS (or Green function) of
Laplace equations, the non-classical finite difference method only in the area of local inhomogeneity.
The main ideas of such methods: splitting, near-boundary elements, contact elements and collocation.

The high accuracy of the obtained solutions within homogeneous zones is achieved by using funda-
mental solutions or Green functions, and at the media interfaces and in the area of local heterogeneity is
ensured by numerical algorithms based on the proposed approach. The latter use the approximation of
curvilinear boundaries by quadratic or cubic elements; non-uniform patterns of a finite-difference grid
only in the area of inhomogeneity and interpolation of the unknown functions by high-order splines.

The effects of “compression—tension” and torsion observed as a result of the computational exper-
iment can be used when solving inverse problems of geoelectrical prospecting to choose the correct
initial approximations.

Mathematical modeling of potential fields by the developed approach is advisable and promising
to use for the choice of a rational complex of electrometric observations and its successful application
for the study of complex geological media, in particular, oil and gas deposits. The use of the contact
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elements on the interface instead of boundary or near-boundary elements made it possible to automat-
ically satisfy the first contact condition (potential equality) and consequently to increase the accuracy
of calculations.

Numerical experiments were conducted to testify to the feasibility of the developed approach for the
detection of alien inclusions in the objects using potential fields. It can be used to solve direct problems
in various applied fields of mathematical physics: geophysics, materials science and defectoscopy. In
particular, when it is necessary to know the distribution of temperature or electric fields in objects,
when searching for minerals or to ensure the reliable operation of structures, made from materials
with different characteristics. The proposed approach can be the basis for solving inverse problems
of geophysics and technical diagnostics, that is, to create methods for recognizing alien inclusions, to
determine their thermal or electrical conductivity, and magnetic permeability, size and location.
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MopentoBaHHA NoTeHUia/IbHOrO NOJISt NOEAHAHHSIM NPUrPAHNYHUX Ta
KOHTAKTHUX €JIEMEHTIB 3 HEKJTACUYHNMUN CKIHYEHHUMU PI3HNLSMN B
Heo4HOPIAHOMY cepenoBULL

2Kypapuak JI. M.

Hauionarvrut ynisepcumem “/Iveiscora nosimexnira”,
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina

Y craTTi HaBe/IEHO y3araJbHEHY CXeMy /I 3HAXOJKE€HHsI PO3B’S3KiB 3aj1ad Teopil mo-
TEHIlaJy B JBOBAMIDHUX KyCKOBO-OIHODITHUX CEPEIOBUINAX, siKi MICTATH JIOKAJIbHI 00-
JIACTI 3 3aJIeXKHUMHU Biji KoopamHaT dismaamMu xapakrepuctukamu. st onmcy momart-
KOBOT'O BIUIMBY IMX JIOKAJBHUX OOJIACTEI, TOPsi, 3 HEIPSIMAMK METOJAMU ITPUTPAHTIHIIX
1 KOHTAKTHUX €JIEMEHTIB, BUKOPUCTAHO HEKJIACHMYHUI METOJ CKIHYEHHUX Pi3HUIlb, KU
06a3yeThCs HA aCUMETPUYHUX CKIHUEHHO-PI3HUIEBUX CIiBBigHOMeHHAX. [IpoBeneHo mpo-
rpaMHy peaJii3alliio po3pobJIeHOrO MiAX0y JJIsi 3HAXO/KEHHS ITOTEHIHAIY eJIEKTPUTHOTO
[I0JIsE TOCTIAHOTO CTPYMY B TiPCHKOMY HEOIHOPITHOMY XpeOTi.

Kntouosi cnoBa: nenpamuil Memod npuzpaHusHuL eAemenmis; Henpamutl memod Kom-
MAKMHULT eACMERMIG; KYCKOB0-00HOPIOHUT 00°ckm; A0KAABHA 00AACTD HEOOHOPIOHOCTE
MAMEPIANY; HEKAACUWHI CKIHYEHHT PIBHUYL; EAEKMPUYHE NPOPIAIOBAHHA; 0808UMIPHA 30~
dana meopii nomeHuiay.
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