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Abstract. This paper explores the application of the ARFIMA fractal model for prediction of
the dynamics of river water pollution based on BOD measure. The study begins by conducting a
review of related works in the field of water quality analysis. At this stage also a suitable dataset is
selected, that is used to train the ARFIMA, one of the machine learning models. GPH semi-
parametric algorithm is applied for estimating the fractal differentiation parameter of the ARFIMA.
The obtained results are compared with similar obtained with ARIMA model using RMSE and
MAPE metrics. The study reveals an enhancement in accuracy with the use of fractal methods for
water pollution prediction.

Keywords: fractal model, ARFIMA, biochemical oxygen demand, utoregressive model,
ARIMA, Python, R language.

Introduction

Human economic activity causes significant changes in the environment. The water environment is
not only a place where various pollutants accumulate, but due to the movement of water both over the land
surface and through underground streams, these pollutants are spread across the planet. Changes in the
physical, chemical and biological parameters of natural waters lead to negative consequences, the first of
which is the harmful impact on human health and other living organisms. Water pollution is primarily
caused by industrial, municipal and agricultural wastewater, the total volume of which is around 1,300 km’
globally. At the same time, pollutants are released into the aquatic environment, the total weight of which
is about 15 billion tonnes per year [1]. The key pollutants are heavy metals, dyes, pesticides, oil and oil
products, biogenic organic matter, surfactants, etc. In addition to water-soluble pollutants, water is also
contaminated with mechanical impurities, insoluble debris, and thermal and biological pollutants. It should
be noted that water quality in rivers is deteriorating not only due to human activity but also due to natural
factors. These include rock weathering, water evaporation, atmospheric deposition, climate change and
natural disasters [2-4]. Both anthropogenic and natural impacts on water quality have certain seasonal
changes and depend on the territory (urban or rural). Therefore, understanding what changes and factors
affect river water quality is crucial for managing water quality in river basins, as well as predicting these
changes in the future.

To achieve this goal, the following tasks were performed:

1. To select a historical data set for the selected river and analyse a limited sample for a specific
study station to understand general trends and properly clean the data for further steps.

2. Decompose the time series and analyse it for white noise, stationarity and long memory.
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3. Taking into account the results in the second step, select the most appropriate parameters of the
selected fractal model to maximise the accuracy in terms of the RMSE metric.

4. Use the semiparametric GPH algorithm to estimate the fractal differentiation parameter of the
ARFIMA model.

5. Compare the performance of the created fractal model with the same model with automatic
parameter selection, as well as with the most appropriate autoregressive model on different sizes of
training and test data. Analyse the results.

The object of the study is the dynamics of water pollution, which must be determined from previous
historical data.

The subject of the study is the mathematical and software of an intelligent system for analysing and
predicting the dynamics of water pollution.

The scientific innovation consists of the development of an intelligent system for the dynamics of
analysis and forecasting, which will automate the data processing process and improve the quality of
forecasting decisions, as well as the use of the semiparametric GPH algorithm to estimate the fractal
differentiation parameter of the ARFIMA model.

The practical significance of the work lies in the development of software, and the functioning of an
information system using fractal modelling approaches, which will facilitate the early detection of
environmental problems.

Problem Statement

The subject area is rivers, which are complex and dynamic systems. The assessment of their quality
is determined by many factors.

A common indicator of organic pollution of rivers is an indicator called biochemical oxygen demand
(BOD) [2]. This is the amount of dissolved oxygen consumed by microorganisms during the oxidation of
organic matter in water and waste. Typical sources of BOD are readily degradable organic carbon and
ammonia. These compounds are common constituents or by-products of the metabolism of plant and
animal waste and human activities (domestic and industrial wastewater). Standardised methods for
quantifying BOD in wastewater have remained virtually unchanged for decades, despite numerous
drawbacks. The most commonly used indicator is BODs, which determines the amount of oxygen in
milligrams required for the oxidation of organic matter contained in 1 litre of water by aerobic bacteria to
CO, and H,0O within 5 days without access to air and light. As a rule, the five-day period is not sufficient
for complete oxidation, but it provides sufficient time for microbes to acclimatise and for significant
(approximately 40 to 80 per cent) oxidation [2]. The cleanest rivers have a BOD;s value of less than 1 mg
O,/1, while moderately and heavily polluted rivers have values between 2 and 8 mg Oy/1.
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Fig. 1. Variables and processes affecting organic pollution in rivers, expressed as BOD [3]

179



Mykhailo Bordun, Olha Mokrytska

The level of organic pollution in a river, usually expressed as BOD, is the result of two opposing
mechanisms: pollutant inputs and natural purification (Figure 1) [3]. Wastewater discharges from cities and
intensive livestock farms are the main organic pollutants in rivers. Although the pollution originates at the
point of discharge along the river, the impact of such pollution extends to downstream populations and
ecosystems as pollutants are transported through the river network. The extent to which pollutants are
exposed downstream depends on the ability of rivers to clean themselves through dilution by natural runoff
and natural degradation by microorganisms. Changes in river flow as a result of global warming affect the
ability of rivers to dilute, especially in places where there is a decrease in climate humidity. An additional
negative factor is the increase in water extraction to support the population. This further reduces the ability
of rivers to function [3].

Despite the significant self-purification capacity of rivers, the number of people affected by organic
pollution is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050 [3]. That requires not only
the introduction of new water purification systems but also additional ways to predict changes in water
quality indicators.

Review of Modern Information Sources on the Subject of the Paper

Time series analysis refers to the identification of general patterns reflected by data over a certain
period of time. Among the most popular methods for modelling and forecasting time series are
autoregressive models, the most prominent of which is ARIMA (AutoRegressive Integrated Moving
Average). During the modelling process, we find 3 parameters [4]: Autoregressive (AR) of order p, which
describes the number of significant delays in the time series, the order of integration of the series d, and the
Moving Average (MA) of order p, which describes the number of significant forecast errors. A
generalisation of this model is the fractal model ARFIMA (AutoRegressive Fractionally Integrated Moving
Average), which allows modelling time series with a long memory. That is, the d-index can take on non-
integer values. In general, this type of generalisation allows for the necessary analysis of various time
series, taking into account a long-lasting shock in the time series, since the ARIMA model allows for the
recording of processes with either a short memory with d = 0 or an infinite memory with d = 1. In his study
[5] comparing the modelling of stationary time series using ARMA and ARFIMA processes, Anderson
(1998), using Monte Carlo simulations and comparing forecast errors, shows that ignoring long memory
when it exists leads to a more seriously deterioration of results than imposing it in the absence of it. This
observation is extremely important because, in practice, a researcher never knows which process underlies
the dynamics of processes. Based on the above considerations, we can consider the use of ARFIMA
processes as one of the most modern and relevant approaches for studying time series.

Analysis of software tools.

The studies related to time series analysis and fractal differentiation were carried out with the Python
programming language version 3.6.5 using the pandas version 1.1.3 and numpy version 1.19.2 libraries.
For time series forecasting, the R programming language version 4.1.3 was used, along with the forecast
version 8.16 and Arfima version 1.8.0 libraries. The division into two programming languages for the
implementation of this work was forced since there are no libraries related to working with the ARFIMA
model or other fractal models in such popular programming languages as Python.

Main Material Presentation

Dataset for forecasting river water pollution

The dataset has been taken from the data.gov.uk | Data publisher platform [6]. The data for its
creation has been obtained between 1990 and 2018. This table presents raw data from river monitoring
sites, including Water Framework Directive monitoring sites.

The dataset consists of a single CSV file with aggregated data for various rivers in the UK, each
value representing a measurement from a specific monitoring station at a particular time for a particular
river. The data for each measurement has been taken at different intervals of 1-2 times per month, and are
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represented by several characteristics, such as alkalinity, biochemical oxygen demand, conductivity,
dissolved copper, dissolved oxygen, dissolved iron, nitrate, nitrite, ammonia, acidity, dissolved
phosphorus, suspended solids, and dissolved zinc.

The river with the highest number of measurements from this dataset, namely the River Quoyle
(Northern Ireland), was selected for the study (458 measurements). The BOD was chosen as it is a key
characteristic for assessing river pollution and is often used as a very important indicator for pollution
assessment in the relevant scientific literature. However, preliminary data cleaning was required, as not
every measurement had this indicator.

Investigating the presence of trend, seasonality, Hurst's indicators, stationarity of time series and
long memory

Before starting modelling and forecasting, it is necessary to identify certain properties of time series
to understand the feasibility of using specific machine learning models.

Thus, the first step is to decompose the time series, which can be seen in Figure 2, created using the
statsmodels.api module of the Python programming language.
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Fig. 2. Decomposition of the time series of BOD in the Quoyle River

It shows the presence of a trend and the absence of pronounced seasonality. The last graph in Figure
2 characterises the outliers, i.e. shows the noise in our time series. Ideally, it should have white noise
patterns, which are characterised by zero mean, constant variance, and independence of variables. In other
words, it is actually a random set of numbers, and this allows machine learning models to capture all the
necessary signals of the training sample, which maximises the efficiency of the algorithm. However, in our
case, we can see that although the variance is stable, the mean value is always greater than zero, and we
can safely reject the hypothesis of white noise in the redundancy graph.

The next step in the analysis is to find the Hearst index, which is one of the most popular methods
for assessing memory in a time series. The author of this method, Harold Hirst, was the first to explore the
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concept of long memory when he studied the tributaries of the Nile River and the optimal size of water
reservoirs. In general, the value of this indicator ranges from 0 to 1. The value of the Hearst exponent for
the time series was determined using R/S analysis [7]. In this case, we obtained a value of 0.6266, which
indicates a moderate long-term correlation in the time series with a tendency to randomness.

Figure 3 also shows the ACF graph, i.e. the autocorrelation graph, which shows the correlation
between the time series and its lagged version at each value of the delay. The graph shows that some time
delays fall outside the confidence interval (blue area on the graph), which expresses the dependence and
point effect of long-term memory.
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Fig. 3. ACF function for the time series of BOD in the Quoyle River

There are two popular statistical tests for determining stationarity: ADF and KPSS [8-10]. In
general, each of them tests opposite hypotheses and results of which are complementary to each other, i.e.
the impossibility of rejecting the null hypothesis of non-stationarity by the ADF test and rejecting this
hypothesis of stationarity by the KPSS test is an important indicator of the presence of a unit root, i.e. an
I(1) process, which shows non-stationarity of the time series.

The result was obtained using the statsmodels.tsa.stattools module of the Python programming
language, which showed a p-value of the ADF statistic of 0.00014, which is less than the threshold of 0.05,
which serves to reject the null hypothesis. The p-value of the KPSS statistic is 0.0751, which is greater
than the threshold of 0.05 and accepts the null hypothesis for our time series. Stationarity is a rather
important attribute and makes the time series more predictable and suitable for applying various
forecasting methods.

Mathematical description of the fractal model ARFIMA

Autoregressive (AR) model of order p

P
X, =c+) ) X, +s,, (1)
where ¢,,...,¢, are autoregressive parameters, ¢ is a constant and the random variable and ¢, is white
noise.
Moving Average (MA) model of order q:

q
X, =pu+ zizl O, . +e,, )
where 6, ,...,9p are parameters of the moving average, (& is constant and random variables ¢,, &,_,,

is white noise.
A generalisation of the above models is:

-3 8Y1-BY (X, - u)=(1+X7 0,8k, 3

where (1—B)? is called the differentiation operator. The ARMA and ARIMA models can only capture

processes with short memory since the parameter d takes on only integer values. Therefore, in order to
capture processes with long memory, it is necessary to use the fractal model ARFIMA(p,d,q), where the
parameter d takes on fractional values.
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We can also expand the differentiation operator using the binomial expansion for any real number d:

(1-B)' = ( ]( B) =1-dB+ d(d D g _d@=Dd=2) s, 4)
3!
It is also possible to represent the differentiation operator as a Gamma function:
I'(k—-d
oy ) gy s

C(k+ DI (=d)

t

where I'(.) denotes the Gamma function and is represented by ['(z) = J; “le™dx . When d=0, X, it is

simply white noise, and its autocorrelation function is 0. When d=1, X+ is a random walk with the value of
the autocorrelation function equal to 1, and it can be considered as white noise after first-order
differentiation, which is the difference between the previous value and the current value in the time series.

R I'(k—
When d is already a real number, X, :—zkl(%}ﬁ_k+et and, therefore, X, is
- (-

influenced by all historical data (X, ,, X,_,, ...).

t—1°

Estimation of the optimal parameter of fractal differentiation of the ARFIMA model

Various methods for estimating the fractal differentiation parameter are increasingly mentioned in
scientific literature related to time series analysis. These methods can be classified into two groups:
parametric and semi-parametric. The most popular methods in the parametric group include a likelihood
function. In the semi-parametric group, the most popular method, known as the GPH method, was
proposed by Geweke and Porter-Hudak. The semiparametric approach involves estimating the model
parameters in two stages. Firstly, the parameter d is estimated separately, and then the other parameters are
estimated. This is different from the methods used in the first group, where all parameters are estimated
simultaneously.

As the ARFIMA model from the R programming language forecast library with automatic parameter
selection according to the documentation also uses a semi-parametric approach, we will provide a more
detailed description of the GPH method.

The GPH method begins by estimating the parameter d through a least squares regression in the
spectral domain, utilizing a sample shape from the spectral density poles at the origin.

fX(/l)~/l_2d, A—0.
To illustrate this method, we can express the spectral density function of the stationary model
X ,t=1,...,T asfollows:

to

d
. A
fx(l>=[4sm2(5)} ., (©)
where f,(A) is the spectral density of &,, assuming that it is a finite and continuous function on the
interval [—m;7m].
The logarithm of the spectral density function can be represented as follows:

log{fy (1)} =1loglf, (0)}- dlog{4s1n (2j}+log{§ EO;} 7

21,
Let 7, (/lj) be the periodogram performed on the Fourier frequencies, /lj = T] ,j=12,...m

T is the number of studies, and m is the number of Fourier frequencies considered, which is the number of
ordinates of the periodogram to be used in the regression.
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logl{l  (1,)}=log{f, (0)}-d log{4 sin’ (%]} + log{j[i & ;} + log{%} , (8)

. LA : AT
where log{ /. (0)} is a constant, 10g{4 sin (7]} is an exogenous variable and log{m} is an
uncertain.

The importance of the choice of m is evident as it significantly affects the estimation results. On the
one hand, m should be small enough to consider only frequencies close to zero. On the other hand, m
should be large enough to ensure convergence of the least squares estimate.
The GPH estimation requires two main assumptions related to the asymptotic behaviour of equation (8):
(4

H1: for low frequencies, we assume that log{ } is insignificant

1 (4)
Sx (&)

identically distributed (IID) random variables.
Under hypotheses H1 and H2, we can write a linear regression

[ A
log{IX(/lj)}:oc —dlog{4sm2(?’]}+ej, 9)

H2: the random variables log{ }, j=12,...,m the random variables are independent and

2

A
where e; ~ n.0. p.(—c,%) Let Y, = —10g{4 sin 2(;’]} . The GPH estimate is the least squares estimate

of the regression log{l ¥ (/lj)} on the constants and o and Y, . The estimate of d, denoted as aAVGPH is

defined as follows:

S (- Dlogl ()

ey = ; — (10)
2, =Y)
where ¥ =m™" ZZ; (Y,) and m=g(T) with [jm g(T) =0, and [im g(T)/T =0.
T—o T—o

1
Geweke and Porter-Hudak have shown that if 7 — oo and |d | < 5 we have
2
A T m _ 1
\/Z(dm, —d)~ N{O,?{ZN(YJ—Y)Z} } (11

Porter-Hudak (1990), Crato and de Lima (1994), showed that the parameter m should be chosen so
that 7 —> o0, m=T", 0=0.5,0.6,0.7. Under the normality assumption for X,, they proved that the
resulting estimate is consistent and asymptotically normal. Therefore, the estimated standard deviation can
be used for inference.

Results and Discussion

The modelling and prediction task requires a dataset with the date of measurement and the
corresponding BOD value.

To determine the optimal fractal model for ARFIMA, we first used the GPH method described in
Section 3.4, using the f{dGPH function of the fracdiff library of the R programming language. It was used
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to estimate the fractal differentiation parameter. In order to obtain a stationary time series using the
estimated fractal differentiation parameter, the time series were differentiated using the diffseries function
of the fracdiff library of the R programming language, which uses an approximate binomial expression of
the long memory filter. The determined differentiated series and the values of the ACF and PACF
functions are shown in Figure 4.
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Fig. 4. Differentiated time series and applied ACF, PACF functions

From the values of the ACF and PACF functions, we can distinguish the number of significant
delays, i.e. those that are greater than the range of the confidence interval (blue dashed line in Figure 4),
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which will allow us to determine the maximum number for our parameters AR(p) from the ACF graph and
MA(q) from the PACF graph, respectively.

After determining the possible values of the order of AR(p) and MA(q), we determined the d-index
of the series integration using the fracdiff function from the fracdiff library of the R programming
language. The choice of the optimal model was determined by the RMSE estimate, taking into account the
difference between the test data.

After performing the above modelling, it is necessary to evaluate the predicted data, which can be
visually represented, for example, as in Figure 5, and for a sufficiently small test sample, the result of such
visualisation will be sufficiently demonstrative.

Forecasts from ARFIMA{0,0,1)
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Fig. 5. Weekly forecast of BOD by ARFIMA(0,0,1) model

It is worth noting that, in addition to presenting the predicted data, the 95% confidence interval is
also shown, which in Figure 5 is marked with a blue area and means the interval within which the value of
the estimated random variable can be expected with a given confidence level.

Let's consider how well the trained network copes with the applied task of predicting the BOD index
from the data for the River Quoyle (Northern Ireland). For this purpose, we use test data of 7 and 50 units,
which were not used for training the network. In general, I compared the above models using two metrics
for the test set, namely RMSE and MAPE. RMSE is the root mean square deviation between the predicted
and actual values, while MAPE describes the average absolute percentage deviation. To better understand
the effectiveness of using the ARFIMA fractal model, we also performed simulations using the ARFIMA
and ARIMA models with automatic parameter selection from the R programming language's forecast
library. The results are shown in Tables 1-2.
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Table 1.
Evaluation of the prediction accuracy of test data between models (7 test data)
RMSE MAPE(%)
(auto) ARFIMA(0,0.004,1) 1.062 43.465
(auto) ARIMA(0,0,1) 1.059 43.363
manually fitted ARFIMA(0,0.165,0) 0.676 32.005
Table 2.

Evaluation of test data prediction accuracy between models (50 test data)

RMSE MAPE(%)
(auto) ARFIMA(0,0.003,1) 2.546 40.005
(auto) ARIMA(0,1,2) 2.607 33.620
manually fitted ARFIMA(13,0.1506,0) 2.526 36.351

According to the above results for the key metric RMSE, we can safely conclude that among the
above models, the ARFIMA model with parameter estimation using the algorithm described in Section 5
has the highest forecasting efficiency. It is also important to note that despite the weakly expressed long
memory in our time series, comparing the models with automatic parameter selection: fractal ARFIMA
and autoregressive ARIMA, we can conclude that when there is a need to forecast a larger amount of data,
the fractal model shows better results, since it takes into account the dependencies of previous values of the
time series.

Conclusions

This paper discusses the use of information technology to forecast river pollution in non-stationary
time series based on historical data.

The use of software tools to implement algorithms and forecasting models in Python is justified. The
R programming language is used for forecasting time series. The study of Hurst's indicators, stationarity of
time series and long memory is conducted. On the example of the River Quoyle (Northern Ireland), the
results of forecasting on the full set of training data also confirm the feasibility of using the ARFIMA
model in comparison with the ARIMA model, taking into account various estimates of the test error such
as RMSE, MAPE, which is quite significant, since it demonstrates that even for stationary time series with
minimal long memory, fractal models show better forecasting accuracy results. The algorithm for selecting
the optimal parameter d of the fractal differentiation of the ARFIMA model is adapted.

In general, we can say that a larger number of data, both training and testing, clearly enhances the
advantage of fractal models, as we take into account the long memory in the time series under
consideration. However, you should always check the data and clean up any anomalies that cause an error
in the forecasting estimate.
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AHOTamisA. Y CTaTTi IOCTiIKeHO 3acTocyBaHHs (pakTtambHOi Moaemi ARFIMA mns mporHo3yBaHHS
JTUHAMIKH 3a0pyJHEHHs PIYKOBHX BOJ Ha OCHOBI BHMIpIOBaHHS Oi10XiMIiYHOTO CHOXXKMBAHHS KHCHIO .
JlocmimKeHHsI TOYMHAETHCS 3 OISy CyMDKHUX pOOIT y rany3i aHaiizy sikocti Boau. Ha 1ipoMy eTarti Takox
BUOUPAETHCS BiANOBITHUI HAOIp NaHUX, SIKMH BUKOPUCTOBYEThCs Ui HaBuaHHI ARFIMA, onHiel 3 Mopeneit
MallMHHOrO HaB4aHHA. HamiBmapamerpuunuii amroputM GPH 3acrocoBaHo it OIIHKM mapaMeTpa
¢pakrampHoro nudepenuiroBanHst ARFIMA. Ortpumani pe3ynbTaTd MOPIBHIOIOTHCS 3 aHAJIOTIYHUMH,
orpumanumu mis moneni ARIMA 3 Bukopucranasm merpuk RMSE ta MAPE. [locnmimkeHHS BHSBUIO
ITiIBUIIEHHS] TOYHOCTI ITPOTHO3YBaHHS 3a0py/IHEHHS BOAW 3 BUKOPUCTAHHAM (DpaKTaAILHUX METOIIB.

Karwudosi cioBa: ¢pakransHa mozgens, ARFIMA, GioxiMiuHe CHOXXMBaHHSI KHCHIO, aBTOperpeciiina
Monenb, ARIMA, Python, mora R

188



