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Abstract. This paper explores the application of the ARFIMA fractal model for prediction of 
the dynamics of river water pollution based on BOD measure. The study begins by conducting a 
review of related works in the field of water quality analysis. At this stage also a suitable dataset is 
selected, that is used to train the ARFIMA, one of the machine learning models. GPH semi-
parametric algorithm is applied for estimating the fractal differentiation parameter of the ARFIMA. 
The obtained results are compared with similar obtained with ARIMA model using RMSE and 
MAPE metrics. The study reveals an enhancement in accuracy with the use of fractal methods for 
water pollution prediction.  

Keywords: fractal model, ARFIMA, biochemical oxygen demand, utoregressive model, 
ARIMA, Python, R language. 

Introduction 
Human economic activity causes significant changes in the environment. The water environment is 

not only a place where various pollutants accumulate, but due to the movement of water both over the land 
surface and through underground streams, these pollutants are spread across the planet. Changes in the 
physical, chemical and biological parameters of natural waters lead to negative consequences, the first of 
which is the harmful impact on human health and other living organisms. Water pollution is primarily 
caused by industrial, municipal and agricultural wastewater, the total volume of which is around 1,300 km3 
globally. At the same time, pollutants are released into the aquatic environment, the total weight of which 
is about 15 billion tonnes per year [1]. The key pollutants are heavy metals, dyes, pesticides, oil and oil 
products, biogenic organic matter, surfactants, etc. In addition to water-soluble pollutants, water is also 
contaminated with mechanical impurities, insoluble debris, and thermal and biological pollutants. It should 
be noted that water quality in rivers is deteriorating not only due to human activity but also due to natural 
factors. These include rock weathering, water evaporation, atmospheric deposition, climate change and 
natural disasters [2-4]. Both anthropogenic and natural impacts on water quality have certain seasonal 
changes and depend on the territory (urban or rural). Therefore, understanding what changes and factors 
affect river water quality is crucial for managing water quality in river basins, as well as predicting these 
changes in the future. 

To achieve this goal, the following tasks were performed: 
1. To select a historical data set for the selected river and analyse a limited sample for a specific 

study station to understand general trends and properly clean the data for further steps. 
2. Decompose the time series and analyse it for white noise, stationarity and long memory. 
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3. Taking into account the results in the second step, select the most appropriate parameters of the 
selected fractal model to maximise the accuracy in terms of the RMSE metric. 

4. Use the semiparametric GPH algorithm to estimate the fractal differentiation parameter of the 
ARFIMA model. 

5. Compare the performance of the created fractal model with the same model with automatic 
parameter selection, as well as with the most appropriate autoregressive model on different sizes of 
training and test data. Analyse the results. 

The object of the study is the dynamics of water pollution, which must be determined from previous 
historical data. 

The subject of the study is the mathematical and software of an intelligent system for analysing and 
predicting the dynamics of water pollution. 

The scientific innovation consists of the development of an intelligent system for the dynamics of 
analysis and forecasting, which will automate the data processing process and improve the quality of 
forecasting decisions, as well as the use of the semiparametric GPH algorithm to estimate the fractal 
differentiation parameter of the ARFIMA model. 

The practical significance of the work lies in the development of software, and the functioning of an 
information system using fractal modelling approaches, which will facilitate the early detection of 
environmental problems. 

Problem Statement 
The subject area is rivers, which are complex and dynamic systems. The assessment of their quality 

is determined by many factors.  
A common indicator of organic pollution of rivers is an indicator called biochemical oxygen demand 

(BOD) [2]. This is the amount of dissolved oxygen consumed by microorganisms during the oxidation of 
organic matter in water and waste. Typical sources of BOD are readily degradable organic carbon and 
ammonia. These compounds are common constituents or by-products of the metabolism of plant and 
animal waste and human activities (domestic and industrial wastewater). Standardised methods for 
quantifying BOD in wastewater have remained virtually unchanged for decades, despite numerous 
drawbacks. The most commonly used indicator is BOD5, which determines the amount of oxygen in 
milligrams required for the oxidation of organic matter contained in 1 litre of water by aerobic bacteria to 
CO2 and H2O within 5 days without access to air and light. As a rule, the five-day period is not sufficient 
for complete oxidation, but it provides sufficient time for microbes to acclimatise and for significant 
(approximately 40 to 80 per cent) oxidation [2]. The cleanest rivers have a BOD5 value of less than 1 mg 
O2/l, while moderately and heavily polluted rivers have values between 2 and 8 mg O2/l. 

 

 
Fig. 1. Variables and processes affecting organic pollution in rivers, expressed as BOD [3] 
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The level of organic pollution in a river, usually expressed as BOD, is the result of two opposing 
mechanisms: pollutant inputs and natural purification (Figure 1) [3]. Wastewater discharges from cities and 
intensive livestock farms are the main organic pollutants in rivers. Although the pollution originates at the 
point of discharge along the river, the impact of such pollution extends to downstream populations and 
ecosystems as pollutants are transported through the river network. The extent to which pollutants are 
exposed downstream depends on the ability of rivers to clean themselves through dilution by natural runoff 
and natural degradation by microorganisms. Changes in river flow as a result of global warming affect the 
ability of rivers to dilute, especially in places where there is a decrease in climate humidity. An additional 
negative factor is the increase in water extraction to support the population. This further reduces the ability 
of rivers to function [3]. 

Despite the significant self-purification capacity of rivers, the number of people affected by organic 
pollution is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050 [3]. That requires not only 
the introduction of new water purification systems but also additional ways to predict changes in water 
quality indicators. 

Review of Modern Information Sources on the Subject of the Paper 
Time series analysis refers to the identification of general patterns reflected by data over a certain 

period of time. Among the most popular methods for modelling and forecasting time series are 
autoregressive models, the most prominent of which is ARIMA (AutoRegressive Integrated Moving 
Average). During the modelling process, we find 3 parameters [4]: Autoregressive (AR) of order p, which 
describes the number of significant delays in the time series, the order of integration of the series d, and the 
Moving Average (MA) of order p, which describes the number of significant forecast errors. A 
generalisation of this model is the fractal model ARFIMA (AutoRegressive Fractionally Integrated Moving 
Average), which allows modelling time series with a long memory. That is, the d-index can take on non-
integer values. In general, this type of generalisation allows for the necessary analysis of various time 
series, taking into account a long-lasting shock in the time series, since the ARIMA model allows for the 
recording of processes with either a short memory with d = 0 or an infinite memory with d = 1. In his study 
[5] comparing the modelling of stationary time series using ARMA and ARFIMA processes, Anderson 
(1998), using Monte Carlo simulations and comparing forecast errors, shows that ignoring long memory 
when it exists leads to a more seriously deterioration of results than imposing it in the absence of it. This 
observation is extremely important because, in practice, a researcher never knows which process underlies 
the dynamics of processes. Based on the above considerations, we can consider the use of ARFIMA 
processes as one of the most modern and relevant approaches for studying time series. 

Analysis of software tools. 
The studies related to time series analysis and fractal differentiation were carried out with the Python 

programming language version 3.6.5 using the pandas version 1.1.3 and numpy version 1.19.2 libraries. 
For time series forecasting, the R programming language version 4.1.3 was used, along with the forecast 
version 8.16 and Arfima version 1.8.0 libraries. The division into two programming languages for the 
implementation of this work was forced since there are no libraries related to working with the ARFIMA 
model or other fractal models in such popular programming languages as Python. 

Main Material Presentation 
Dataset for forecasting river water pollution 
The dataset has been taken from the data.gov.uk | Data publisher platform [6]. The data for its 

creation has been obtained between 1990 and 2018. This table presents raw data from river monitoring 
sites, including Water Framework Directive monitoring sites. 

The dataset consists of a single CSV file with aggregated data for various rivers in the UK, each 
value representing a measurement from a specific monitoring station at a particular time for a particular 
river. The data for each measurement has been taken at different intervals of 1-2 times per month, and are 
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represented by several characteristics, such as alkalinity, biochemical oxygen demand, conductivity, 
dissolved copper, dissolved oxygen, dissolved iron, nitrate, nitrite, ammonia, acidity, dissolved 
phosphorus, suspended solids, and dissolved zinc. 

The river with the highest number of measurements from this dataset, namely the River Quoyle 
(Northern Ireland), was selected for the study (458 measurements). The BOD was chosen as it is a key 
characteristic for assessing river pollution and is often used as a very important indicator for pollution 
assessment in the relevant scientific literature. However, preliminary data cleaning was required, as not 
every measurement had this indicator. 

Investigating the presence of trend, seasonality, Hurst's indicators, stationarity of time series and 
long memory 

Before starting modelling and forecasting, it is necessary to identify certain properties of time series 
to understand the feasibility of using specific machine learning models.  

Thus, the first step is to decompose the time series, which can be seen in Figure 2, created using the 
statsmodels.api module of the Python programming language. 

 

 
Fig. 2. Decomposition of the time series of BOD in the Quoyle River 

It shows the presence of a trend and the absence of pronounced seasonality. The last graph in Figure 
2 characterises the outliers, i.e. shows the noise in our time series. Ideally, it should have white noise 
patterns, which are characterised by zero mean, constant variance, and independence of variables. In other 
words, it is actually a random set of numbers, and this allows machine learning models to capture all the 
necessary signals of the training sample, which maximises the efficiency of the algorithm. However, in our 
case, we can see that although the variance is stable, the mean value is always greater than zero, and we 
can safely reject the hypothesis of white noise in the redundancy graph. 

The next step in the analysis is to find the Hearst index, which is one of the most popular methods 
for assessing memory in a time series. The author of this method, Harold Hirst, was the first to explore the 
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concept of long memory when he studied the tributaries of the Nile River and the optimal size of water 
reservoirs. In general, the value of this indicator ranges from 0 to 1. The value of the Hearst exponent for 
the time series was determined using R/S analysis [7]. In this case, we obtained a value of 0.6266, which 
indicates a moderate long-term correlation in the time series with a tendency to randomness. 

Figure 3 also shows the ACF graph, i.e. the autocorrelation graph, which shows the correlation 
between the time series and its lagged version at each value of the delay. The graph shows that some time 
delays fall outside the confidence interval (blue area on the graph), which expresses the dependence and 
point effect of long-term memory. 

 
Fig. 3. ACF function for the time series of BOD in the Quoyle River 

There are two popular statistical tests for determining stationarity: ADF and KPSS [8-10]. In 
general, each of them tests opposite hypotheses and results of which are complementary to each other, i.e. 
the impossibility of rejecting the null hypothesis of non-stationarity by the ADF test and rejecting this 
hypothesis of stationarity by the KPSS test is an important indicator of the presence of a unit root, i.e. an 
I(1) process, which shows non-stationarity of the time series. 

The result was obtained using the statsmodels.tsa.stattools module of the Python programming 
language, which showed a p-value of the ADF statistic of 0.00014, which is less than the threshold of 0.05, 
which serves to reject the null hypothesis. The p-value of the KPSS statistic is 0.0751, which is greater 
than the threshold of 0.05 and accepts the null hypothesis for our time series. Stationarity is a rather 
important attribute and makes the time series more predictable and suitable for applying various 
forecasting methods. 

Mathematical description of the fractal model ARFIMA 
Autoregressive (AR) model of order p 

∑ = − ++=
p

i titit XcX
1

εφ , (1) 

where pφφ ,...,1 are autoregressive parameters, с  is a constant and the random variable and tε  is white 

noise. 
Moving Average (MA) model of order q: 

∑ = − ++=
q
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1
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where pθθ ,...,1  are parameters of the moving average, µ  is constant and random variables tε , ...,1−tε  

is white noise. 
A generalisation of the above models is: 
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where dB)1( −  is called the differentiation operator. The ARMA and ARIMA models can only capture 
processes with short memory since the parameter d takes on only integer values. Therefore, in order to 
capture processes with long memory, it is necessary to use the fractal model ARFIMA(p,d,q), where the 
parameter d takes on fractional values. 
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We can also expand the differentiation operator using the binomial expansion for any real number d: 
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It is also possible to represent the differentiation operator as a Gamma function: 
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where Г(.) denotes the Gamma function and is represented by ∫
∞ −−=Γ
0

1)( dxexz xz . When d=0, tX   it is 

simply white noise, and its autocorrelation function is 0. When d=1,  is a random walk with the value of 
the autocorrelation function equal to 1, and it can be considered as white noise after first-order 
differentiation, which is the difference between the previous value and the current value in the time series. 

When d is already a real number, tktkt X
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dkX ε+







−Γ+Γ

−Γ
−= −

∞

=∑ 1 )()1(
)(

 and, therefore, tX  is 

influenced by all historical data ( 1−tX , 2−tX , …). 

Estimation of the optimal parameter of fractal differentiation of the ARFIMA model 
Various methods for estimating the fractal differentiation parameter are increasingly mentioned in 

scientific literature related to time series analysis. These methods can be classified into two groups: 
parametric and semi-parametric. The most popular methods in the parametric group include a likelihood 
function. In the semi-parametric group, the most popular method, known as the GPH method, was 
proposed by Geweke and Porter-Hudak. The semiparametric approach involves estimating the model 
parameters in two stages. Firstly, the parameter d is estimated separately, and then the other parameters are 
estimated. This is different from the methods used in the first group, where all parameters are estimated 
simultaneously.  

As the ARFIMA model from the R programming language forecast library with automatic parameter 
selection according to the documentation also uses a semi-parametric approach, we will provide a more 
detailed description of the GPH method. 

The GPH method begins by estimating the parameter d through a least squares regression in the 
spectral domain, utilizing a sample shape from the spectral density poles at the origin. 

)(λXf ~ d2−λ ,   0→λ . 
To illustrate this method, we can express the spectral density function of the stationary model 

TtX t ,...,1, =  as follows: 
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where )(λεf  is the spectral density of tε , assuming that it is a finite and continuous function on the 
interval ];[ ππ− . 

The logarithm of the spectral density function can be represented as follows: 
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Let )( jXI λ  be the periodogram performed on the Fourier frequencies, mj
T

j
j ,...,2,1,

2
==

π
λ . 

T  is the number of studies, and m is the number of Fourier frequencies considered, which is the number of 
ordinates of the periodogram to be used in the regression. 
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The importance of the choice of m is evident as it significantly affects the estimation results. On the 

one hand, m should be small enough to consider only frequencies close to zero. On the other hand, m 
should be large enough to ensure convergence of the least squares estimate. 

The GPH estimation requires two main assumptions related to the asymptotic behaviour of equation (8): 
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 the random variables are independent and 

identically distributed (IID) random variables. 
Under hypotheses H1 and H2, we can write a linear regression 

{ } ,
2

sin4log)(log 2
j

j
jX edI +

















−=

λ
αλ  (9) 

where )
6

,.(..~
2πcронe j − . Let 

















−=

2
sin4log 2 j

jY
λ

. The GPH estimate is the least squares estimate 

of the regression { })(log jXI λ  on the constants and α  and jY  . The estimate of d, denoted as GPHd̂  is 
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Porter-Hudak (1990), Crato and de Lima (1994), showed that the parameter m should be chosen so 

that ∞→T , υTm = , 7.0,6.0,5.0=υ . Under the normality assumption for tX , they proved that the 
resulting estimate is consistent and asymptotically normal. Therefore, the estimated standard deviation can 
be used for inference. 

Results and Discussion 
The modelling and prediction task requires a dataset with the date of measurement and the 

corresponding BOD value. 
To determine the optimal fractal model for ARFIMA, we first used the GPH method described in 

Section 3.4, using the fdGPH function of the fracdiff library of the R programming language. It was used 
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to estimate the fractal differentiation parameter. In order to obtain a stationary time series using the 
estimated fractal differentiation parameter, the time series were differentiated using the diffseries function 
of the fracdiff library of the R programming language, which uses an approximate binomial expression of 
the long memory filter. The determined differentiated series and the values of the ACF and PACF 
functions are shown in Figure 4. 

 
Fig. 4. Differentiated time series and applied ACF, PACF functions 

From the values of the ACF and PACF functions, we can distinguish the number of significant 
delays, i.e. those that are greater than the range of the confidence interval (blue dashed line in Figure 4), 
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which will allow us to determine the maximum number for our parameters AR(p) from the ACF graph and 
MA(q) from the PACF graph, respectively. 

After determining the possible values of the order of AR(p) and MA(q), we determined the d-index 
of the series integration using the fracdiff function from the fracdiff library of the R programming 
language. The choice of the optimal model was determined by the RMSE estimate, taking into account the 
difference between the test data. 

After performing the above modelling, it is necessary to evaluate the predicted data, which can be 
visually represented, for example, as in Figure 5, and for a sufficiently small test sample, the result of such 
visualisation will be sufficiently demonstrative. 

 
Fig. 5. Weekly forecast of BOD by ARFIMA(0,0,1) model 

It is worth noting that, in addition to presenting the predicted data, the 95% confidence interval is 
also shown, which in Figure 5 is marked with a blue area and means the interval within which the value of 
the estimated random variable can be expected with a given confidence level. 

Let's consider how well the trained network copes with the applied task of predicting the BOD index 
from the data for the River Quoyle (Northern Ireland). For this purpose, we use test data of 7 and 50 units, 
which were not used for training the network. In general, I compared the above models using two metrics 
for the test set, namely RMSE and MAPE. RMSE is the root mean square deviation between the predicted 
and actual values, while MAPE describes the average absolute percentage deviation. To better understand 
the effectiveness of using the ARFIMA fractal model, we also performed simulations using the ARFIMA 
and ARIMA models with automatic parameter selection from the R programming language's forecast 
library. The results are shown in Tables 1-2. 
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Table 1. 

Evaluation of the prediction accuracy of test data between models (7 test data) 

 RMSE MAPE(%) 

(auto) ARFIMA(0,0.004,1) 1.062 43.465 
(auto) ARIMA(0,0,1) 1.059 43.363 

manually fitted ARFIMA(0,0.165,0) 0.676 32.005 

Table 2. 

Evaluation of test data prediction accuracy between models (50 test data) 

 RMSE MAPE(%) 

(auto) ARFIMA(0,0.003,1) 2.546 40.005 
(auto) ARIMA(0,1,2) 2.607 33.620 

manually fitted ARFIMA(13,0.1506,0) 2.526 36.351 

According to the above results for the key metric RMSE, we can safely conclude that among the 
above models, the ARFIMA model with parameter estimation using the algorithm described in Section 5 
has the highest forecasting efficiency. It is also important to note that despite the weakly expressed long 
memory in our time series, comparing the models with automatic parameter selection: fractal ARFIMA 
and autoregressive ARIMA, we can conclude that when there is a need to forecast a larger amount of data, 
the fractal model shows better results, since it takes into account the dependencies of previous values of the 
time series. 

Conclusions 
This paper discusses the use of information technology to forecast river pollution in non-stationary 

time series based on historical data. 
The use of software tools to implement algorithms and forecasting models in Python is justified. The 

R programming language is used for forecasting time series. The study of Hurst's indicators, stationarity of 
time series and long memory is conducted. On the example of the River Quoyle (Northern Ireland), the 
results of forecasting on the full set of training data also confirm the feasibility of using the ARFIMA 
model in comparison with the ARIMA model, taking into account various estimates of the test error such 
as RMSE, MAPE, which is quite significant, since it demonstrates that even for stationary time series with 
minimal long memory, fractal models show better forecasting accuracy results. The algorithm for selecting 
the optimal parameter d of the fractal differentiation of the ARFIMA model is adapted. 

In general, we can say that a larger number of data, both training and testing, clearly enhances the 
advantage of fractal models, as we take into account the long memory in the time series under 
consideration. However, you should always check the data and clean up any anomalies that cause an error 
in the forecasting estimate. 

References 
[1] S. K. Jain, V. P. Singh,  Water resources systems planning and management. Elsevier, 2023   
[2] M. R. Penn, J. J. Pauer, and J. R. Mihelcic, "Biochemical oxygen demand." Environmental and ecological 

chemistry, vol. 2, 2009, pp. 278-297. ISBN: 978-1-84826-206-5. – P. 278-297. 
[3] Y. Wen, G. Schoups, and N. van de Giesen, Organic pollution of rivers: Combined threats of urbanization, 

livestock farming and global climate change. Sci Rep 7, 43289 (2017). https://doi.org/10.1038/srep43289. 
[4] Liu K, Chen Y, Zhang X. An Evaluation of ARFIMA (Autoregressive Fractional Integral Moving 

Average) Programs. Axioms. 2017; vol. 6(2), P. 1-16. https://doi.org/10.3390/axioms6020016  
[5] B. K. Ray, Modeling long-memory processes for optimal long-range prediction, Journal of Time Series 

Analysis, 1993, vol. 14: pp. 511-525. https://doi.org/10.1111/j.1467-9892.1993.tb00161.x  



Mykhailo Bordun, Olha Mokrytska 

188 

[6] River Water Quality Monitoring 1990 to 2018, 2022.  URL: https://ckan.publishing.service.gov.uk/dataset/ 
river-water-quality-monitoring-1990-to-201821 

[7] D. Safitri, Mustafid, D. Ispriyanti and Sugito, Gold price modeling in Indonesia using ARFIMA method, 
IOP Conf. Series: Journal of Physics: Conference Series, vol. 1217, 2019, pp. 012-087, https://doi.org/10.1088/1742-
6596/1217/1/012087 

[8] V. Shah, G. Shroff Forecasting Market Prices using DL with Data Augmentation and Meta-learning: 
ARIMA still wins!, 2021, URL: https://arxiv.org/abs/2110.10233  

[9] B. Mohamed, R. Khalfaoui, Estimation of the long memory parameter in non stationary models: A 
Simulation Study, 2011, URL: https://shs.hal.science/halshs-00595057 

[10] V. Reisen, B. Abraham, S. Lopes, Estimation of parameters in ARFIMA Processes: A simulation study. 
2006.  

 
Михайло Бордун1 , Ольга Мокрицька 2 

1 Кафедра інформаційних систем, Національний університет ім. Івана Франка, Україна, Львів, вул. 
 Університетська, 1, E-mail: Mykhailo.Bordun@lnu.edu.ua, ORCID 0000-0001-8818-3363 

2 Кафедра систем автоматизованого проектування, Національний університет «Львівська політехніка», 
Україна, Львів, вул. С. Бандери 12, E-mail: olha.v.mokrytska@lpnu.ua, ORCID 0000-0002-2887-9585 

РОЗРОБЛЕННЯ ПРОГРАМНО-АЛГОРИТМІЧНОГО ЗАБЕЗПЕЧЕННЯ ДЛЯ ПРОГНОЗУВАННЯ 
ЗАБРУДНЕННЯ РІЧКОВИХ ВОД З ВИКОРИСТАННЯМ МЕТОДІВ ФРАКТАЛЬНОГО АНАЛІЗУ 

Отримано: березень 11, 2024 / Переглянуто: квітень 01, 2024 / Прийнято: квітень 05, 2024 

© Бордун М., Мокрицька О., 2024 

https://doi.org/ 

Анотація. У статті досліджено застосування фрактальної моделі ARFIMA для прогнозування 
динаміки забруднення річкових вод на основі вимірювання біохімічного споживання кисню . 
Дослідження починається з огляду суміжних робіт у галузі аналізу якості води. На цьому етапі також 
вибирається відповідний набір даних, який використовується для навчання ARFIMA, однієї з моделей 
машинного навчання. Напівпараметричний алгоритм GPH застосовано для оцінки параметра 
фрактального диференціювання ARFIMA. Отримані результати порівнюються з аналогічними, 
отриманими для моделі ARIMA з використанням метрик RMSE та MAPE. Дослідження виявило 
підвищення точності прогнозування забруднення води з використанням фрактальних методів. 
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