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The model of the impurity diffusion process in the layer where a system of random point
mass sources acts, is proposed. Mass sources of various power are uniformly distributed in
a certain internal interval of the body. Statistics of random sources are given. The solution
of the initial-boundary value problem is constructed as a sum of the homogeneous problem
solution and the convolution of the Green’s function and the system of the random point
mass sources. The solution is averaged over both certain internal subinterval and the entire
body region. Simulation units are designed for modeling of the behavior of the averaged
concentration function with acting system of point mass sources of various power. On this
basis, the averaged concentration field is investigated depending on the internal interval
length, power and number of sources in the system as well as the concentration values at
the layer boundaries.
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1. Introduction

Statistical modeling as a method of solving probabilistic and deterministic problems based on the use
of random variables and laws of probability theory has gained wide application for a large number
of problems related to the analysis, synthesis, and optimization of parameters, forecasting of com-
plex physical and technical objects. A characteristic feature of these mathematical models is their
indeterminacy, meaning that in a statistical model, defined through mathematical relationships, some
variables do not have specific values, but have a probability distribution only. The main problem of
statistical modeling is the selection of an appropriate statistical model to represent the formation pro-
cess. Typically, data preparation can be extremely complex, necessitating both an understanding of
the process and the appropriate statistical analysis. Research in this scientific field has been vigorously
advancing over the past two decades.

Chen et al. [1] studied linear models for regression analysis with compositional variables. These
regression models assume a certain mathematical relationship between variables and suppose that data
errors are in a specific form. They are widely used in statistical mathematical modeling. For modeling
systems under uncertainty, a method for constructing interval models has been developed [2, 3]. In
the paper [4], sequential regression approaches were used for analyzing processes where covariates are
revealed stage by stage. This sequential approach involves fitting a regression model for the next
stage using covariates identified at the end of the current stage, thus considering the history of the
process up to the stage under consideration. The authors of the paper [5] proposed a statistical model
that combines several linear regression models and presented algorithms for estimating the maximum
likelihood of such a model. Wilcox [6] obtained results that show the feasibility of calculating a
confidence interval using a robust regression estimator in case when the property of heteroscedasticity
is satisfied. The obtained method is applicable for a small sample using estimates of the least squares
method, as well as robust regression estimates.
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Gong et al. [7] considered the inverse problem of finding a source governed by a random Gaussian
field for a stochastic time-fractional diffusion equation. It was shown that the Fourier modulus of
the diffusion coefficient of the random source is uniquely determined by the variance of the Fourier
transform of boundary data. In the article [8], a time partitioning method is presented for degenerate
convection-diffusion equations stochastically perturbed by white noise. Numerical modeling was con-
ducted for the case of fluid diffusion in porous media. Zhang et al. [9] constructed and investigated the
numerical solution of the inverse source problem for the time-fractional diffusion equation. In [10], the
authors consider the inverse problem to find the parameters of a stochastic time-fractional diffusion
equation. Theorems on the solution correctness of the direct problem are proven, and a scheme for
finding the unknown parameters using Tikhonov regularization is described. Reis et al. [11] studied
the model of random walk infiltration in homogeneous and fractal environments with localized sources
on their boundaries. Exact solutions were obtained in two- and three-dimensional cases. The arti-
cle [12] deals with the inverse source problem for the time-fractional diffusion equation. A solution is
constructed using the regularization method, and conditions for the convergence of the approximate
solution to the exact one are obtained. In [13], the diffusion process described by a continuous-time
random walk model is investigated. An analytical exact solution was found, and the Green’s func-
tion was constructed. Budhiraja et al. [14], using stochastic partial differential equations driven by
Poisson random measures, studied a system that models the spread of pollutants in a waterway. Ba-
sic qualitative properties of the solution for the indicated stochastic system were established. The
work [15] provides a qualitative and quantitative description of polymeric membranes with dispersed
magnetic powder (magnetic membranes) for air separation. Diffusion processes are described, and
mathematical models based on the diffusion equation in such type membranes are proposed. In [16],
the non-Gaussian spread of dissolved substances subject to advection, dispersion, and kinetic adsorp-
tion is analyzed. A formulated mathematical model combines the application of Markov chain theory
to describe kinetic sorption with the consideration of a system of mass transfer differential equations.
The paper [17] presents an Euler-Lagrange approach for analyzing flows and transport processes in
connected hydrosystems. A feature is the use of stochastic Lagrange particles for the numerical study
of connected hydrosystems.

In [18], theoretical models were developed for the concentration and velocity of fluid along the flow
in an unstable, uniform, one-dimensional flow saturated with sediments. The effect of stratification
through diffusion coefficients was investigated. Yu et al. [19] considered a model of fractional diffusion
with heterogeneous Dirichlet boundary conditions in a finite area. They explored various variants of
weight functions of the continuous distribution with mean µ and standard deviation σ, and studied
their impact on the behavior of the local and global time solution. Semi-analytical solutions were
proposed for the analysis of the model. In [20], the convergence of a multilevel Monte Carlo Markov
chain algorithm for solving a linear parabolic partial differential equation containing a logarithmic
undefined Gauss’ diffusion coefficient was analyzed.

This paper studies diffusion processes in a layer under the action of a system of randomly located
point mass sources. The main goal of the proposed study is to develop a mathematical model of impu-
rity diffusion under the action of a system of random point sources and to construct a solution to the
corresponding initial-boundary value problem, and to perform a numerical analysis of the concentration
field of migrating particles also.

2. Mathematical model

Let us consider an impurity substance diffusing in a layer of thickness x0. Additionally, in the body,
there is a set of point mass sources ωiδ(x − x̂i), where ωi is the power of the i-th source, δ(x) is the
Dirac delta function [21], we treat these as a system of sources at random points x = x̂i, x̂i ∈ [x̄1, x̄2],
and 0 6 x̄1 < x̄2 6 x0 (Figure 1).

Let the sources statistics be given as 〈δ(x− x̂i)〉, 〈δ(x− x̂i)δ(x−xj)〉, 〈δ(x− x̂i)δ(x−xj)δ(x− x̂k)〉,
. . . , i, j, k = 1, . . . , N .
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Fig. 1. The layer where the impurity
diffuses under action of a system of ran-

dom point mass sources.

The diffusion equation of the impurity substance under
the action of a system of point sources in the case of one-
dimensional spatial variable takes the following form [22, 23],
based on Fick’s laws,

ρ
∂c(t, x)

∂t
= d

∂2c(t, x)

∂x2
+

N
∑

i=1

ωi δ(x− x̂i), (1)

where c(t, x) is the concentration of the migrating substance,
ρ is the body density, d is the kinetic coefficient of transfer, N
is the random point sources number; t is time, x is the spatial
coordinate.

Assume that the first-order initial and boundary conditions are given. Specifically, the initial
condition is zero, and constant particle concentration values are maintained on the both surfaces of
the layer,

c(t, x)
∣

∣

t=0
= 0, (2)

c(t, x)
∣

∣

x=0
= c0 ≡ const, c(t, x)

∣

∣

x=x0

= c∗ ≡ const . (3)

The impact of the system of random point-mass sources within the body results in the stochasticity
of the function being sought, that is, the randomness of the impurity concentration field.

3. Construction of the solution

We aim to find the solution to the initial-boundary value problem (1)–(3) as a sum of the solution to
the homogeneous initial-boundary value problem and the convolution of the Green’s function with the
system of random point sources [22]. We have

c(t, x) = ch(t, x) +

N
∑

i=1

ωi

∫ t

0

∫ x0

0
G(t, t′, x, x′) δ(x′ − x̂i) dx

′dt′, (4)

where ch(t, x) is the solution to the following homogeneous problem

ρ
∂ch(t, x)

∂t
= d

∂2ch(t, x)

∂x2
, (5)

ch(t, x)
∣

∣

t=0
= 0, (6)

ch(t, x)
∣

∣

x=0
= c0 ≡ const, ch(t, x)

∣

∣

x=x0

= c∗ ≡ const; (7)

and G(t, t′, x, x′) is the Green’s function of the problem (1)–(3), that can be found by solving the
following problem with zero initial and boundary conditions

ρ
∂G(t, t′, x, x′)

∂t
− d

∂2G(t, t′, x, x′)

∂x2
= δ(t− t′) δ(x − x′), (8)

G(t, t′, x, x′)
∣

∣

t=0
= 0, (9)

G(t, t′, x, x′)
∣

∣

x=0
= 0, G(t, t′, x, x′)

∣

∣

x=x0

= 0. (10)

The solution to the homogeneous initial-boundary value problem (5)–(7)can be obtained by reducing
to a problem with zero boundary conditions and applying the Laplace integral transform with respect
to the time variable and the finite Fourier sine-transform with respect to the spatial variable [24]. As
a result,

ch(t, x) = c0

(

1−
x

x0

)

+ c∗
x

x0
−

2

x0ρ

∞
∑

n=1

1
yn

(

c0 + (−1)n+1c∗
)

e−dy2
n
t/ρ sin(ynx), (11)

where yn = πn/x0, n = 1, 2, . . ..
One can find the Green’s function by solving the initial-boundary value problem (8)–(10) again by

applying Laplace and Fourier integral transforms. The Green’s function is obtained in the form

G(t, t′, x, x′) =
2

x0ρ
θ(t− t′)

∞
∑

n=1

e−dy2
n
(t−t′)/ρsin(ynx

′) sin(ynx), (12)

where θ(t− t′) is the Heaviside step function [25].
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4. Averaging the concentration over random spatial coordinates of source locations

Let us average the function c(t, x) over the random coordinates of the source locations x̂i. Taking into
account that ch(t, x) (11) is a deterministic function, we can state that 〈ch(t, x)〉 = ch(t, x). Hence,

〈c(t, x)〉 = ch(t, x) +

〈

N
∑

i=1

ωi

∫ t

0

∫ x0

0
G(t, t′, x, x′) δ(x′ − x̂i) dx

′ dt′

〉

.

We consider the set of random point sources ωi δ(x − x̂i) as a system of sources acting within the
body’s region. Let f(xi) represents the distribution density function of the random variable x̂i. Assume
that the internal mass sources comprise a system of sources, and that the contribution of each source
to the system is equally probable. Then the function f(

∑N
i=1 x̂i) is the sum of the density functions

f(x̂i) with unit weights pi:

f

( N
∑

i=1

x̂i

)

=

N
∑

i=1

pif(x̂i), pi ≡ 1. (13)

Let the interval of sources action be [x̄1; x̄2] ⊆ [0, x0]. Taking into account relation (13), the
averaged concentration field 〈c(t, x)〉 can be presented in the form

〈c(t, x)〉 = ch(t, x) +
N
∑

i=1

ωi

∫ x̄2

x̄1

∫ t

0

∫ x0

0
f(x̂i)G(t, t′, x, x′) δ(x′ − x̂i) dx

′dt′dx̂i. (14)

Let us substitute the expression for the Green’s function (12) into relation (14). After integrating,

〈c(t, x)〉 = ch(t, x) +
2

dx0

∞
∑

n=1

1

y2n

(

1− e−dy2
n
t/ρ

)

sin(ynx)

N
∑

i=1

ωi

∫ x̄2

x̄1

f(x̂i) sin(ynx̂i) dx̂i.

Let us consider a certain configuration of the powers of sources that are part of the system. Suppose
each of the random variables x̂i is uniformly distributed [26] over the interval [x̄1; x̄2]. Taking into
consideration that f

(
∑N

i=1 x̂i
)

is the distribution function of the sources, and the disposition of the

source at the any given point is equally probable, then
∫∞

−∞
f
(
∑N

i=1 x̂i
)

dx̂i = 1. Thus, f(x̂i) =
1/(N(x̄2 − x̄1)).

If the averaging interval covers the entire layer thickness ([x̄1, x̄2] = [0, x0]), then f(x̂i) = 1/(Nx0).
Let us find the specific form of 〈c(t, x)〉 at 0 < x1 < x2 < x0. We obtain

〈c(t, x)〉 = ch(t, x) +
2Ω

dx0N(x̄2 − x̄1)

∞
∑

n=1

S12(yn)
(

1− e−dy2
n
t/ρ

)

sin(ynx), (15)

where

S12(yn) =
cos(ynx̄1)− cos(ynx̄2)

y3n
, Ω =

N
∑

i=1

ωi. (16)

In the case where the powers of the point sources are identical, that is ωi = ω, ∀i = 1, . . . , N , and
Ω = Nω, relation (15) takes the form

〈c(t, x)〉 = ch(t, x) +
2ω

dx0(x̄2 − x̄1)

∞
∑

n=1

cos(ynx̄1)− cos(ynx̄2)

y3n

(

1− e−dy2
n
t/ρ

)

sin(ynx). (17)

In addition, if x̄1 = 0, and x̄2 = x0,

〈c(t, x)〉 = ch(t, x) +
2ω

dx20

∞
∑

n=1

1− cos(ynx0)

y3n

(

1− e−dy2
n
t/ρ

)

sin(ynx). (18)

If we treat point mass sources that act in a certain region of the body as a united system of sources,
and each of these sources acts with the same power, then the averaged solution (17) for the system
takes the form of the averaged solution to the problem with a single source of the same power [27].

5. Numerical analysis of the averaged concentration field

Further calculations are performed in the dimensionless variables

ξ = x/x0, τ = d/(ρx20)t. (19)

Mathematical Modeling and Computing, Vol. 11, No. 2, pp. 385–393 (2024)



Mathematical modeling of impurity diffusion process under given statistics of a point mass sources . . . 389

The following are adopted as the base values of the problem’s parameters: d = 1, ρ = 1, N = 2,
ω1 = ω2 = 3, ξ0 = 1, ξ̄1 = x̄1/x0 = 0.4, ξ̄2 = x̄2/x0 = 0.6, c0 = 1, c∗ = 0.1. Graphs of the
averaged concentration of the impurity substance in a layer of dimensionless thickness ξ0 for the
uniform distribution of the random placement of the point sources system are shown in Figures 2–7.
Calculations were carried out using formulas (15)–(18). The series in these formulas were summed
with the precision 10−12.

Figure 2 illustrates the distributions of the averaged concentration of impurity particles at different
moments of dimensionless time τ = 0.02, 0.06, 0.1, 0.5 (curves 1–4 respectively). Figure 2a presents the
graphs of the function 〈c(τ, ξ)〉/c0, for a system consisting of two equally powerful point sources acting
within the interval [0.4, 0.6]. The calculations here were conducted using formula (17). Figure 2b shows
the distributions of the averaged concentration while the action interval of the point source system
coincides with the body’s region. For this case, calculations were performed using the formula (18).

a b

Fig. 2. Graphs of the averaged concentration of the impurity under the action of two equally powerful sources
at different moments in time for [ξ̄1, ξ̄2] = [0.4, 0.6] (a) and [ξ̄1, ξ̄2] = [0, ξ0] (b).

a b

Fig. 3. Graphs of the averaged concentration under the action of two equally powerful sources for different
lengths of the interval [ξ1, ξ2] (a) and for different positions of the interval in the body (b).

Figure 3a shows the behavior of the function 〈c(τ, ξ)〉/c0 depending on the length of the interval
[ξ1, ξ2]: [ξ1, ξ2] = [0.1, 0.9], [ξ1, ξ2] = [0.2, 0.8], [ξ1, ξ2] = [0.3, 0.7], [ξ1, ξ2] = [0.45, 0.55], [ξ1, ξ2] =
[0.49, 0.51] (curves 1–5) at time τ = 0.06. Figure 3b demonstrates plots of the averages concentration
function for different placements of the interval of action of point mass sources [ξ1, ξ2] within the
domain: [ξ1, ξ2] = [0, 0.1], [ξ1, ξ2] = [0.2, 0.3], [ξ1, ξ2] = [0.4, 0.5], [ξ1, ξ2] = [0.6, 0.7], [ξ1, ξ2] = [0.8, 0.9]
(curves 1–5) at the time τ = 0.5.

Figure 4 shows the distributions of the normalized averaged concentration 〈c(τ, ξ)〉/c0 for dif-
ferent values of impurity concentration maintained at the boundary of the layer ξ = ξ0: c∗ =
0, 0.1, 0.5, 0.75, 1.2 (curves 1–5).

Here and further Figures a are presented for a small time interval of diffusion process τ = 0.06,
and Figures b are for larger time interval τ = 0.5. Figure 5 illustrates the distributions of the averaged
concentration normalized by its value at the boundary ξ = ξ0, i.e. c∗, depending on the value c(τ, ξ)
at the upper boundary ξ = 0: c0 = 0, 0.1, 0.5, 0.75, 1.2 (curves 1–5).
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Figure 6 presents the graphs of the function 〈c(τ, ξ)〉/c0 for different numbers of point sources in the
interval [0.4, 0.6] with equal fixed power Ω = 6: ω = 6, 3, 1.5, 0.2, 0.05 (curves 1–4). Figure 7 demon-
strates the behavior of the averaged concentration function under the action of a system with five point
sources, including one source of dominant power. Curve 1 corresponds to the system {1, 1, 1, 1, 40},
curve 2 — {1, 1, 1, 1, 20}, curve 3 — {1, 1, 1, 1, 10}, curve 4 — {1, 1, 1, 1, 1}.

a b

Fig. 4. Graphs of the averaged concentration for different values of concentration at the lower boundary of the
layer for small (a) and large (b) times.

It should be noted that the presence of a system of point mass sources in the layer increases the
concentration of the migrating substance throughout the body area. In this case, a characteristic
increase in the function of averaged concentration from the surface of the body (Figures 2b, 3a, 4a, 5a
and 5b) or in the middle of the layer (Figures 2a, 3b, 4a, 4b and 5–7) is observed. For all considered
cases, the dimensionless time to reach a steady state is the same, τ = 0.5. The presence of the interval
[ξ̄1, ξ̄2] of the action of the system of point sources significantly affects the behavior of the averaged
concentration of the impurity (Figures 2–7). At the same time, for small diffusion times, there is a
significant increase in impurity concentration from the surface ξ = 0 (curves 1 in Figure 2a and 2b). As
the process time increases, the concentration values in the upper part of the layer decrease (curves 2–
4 in Figure 2). Moreover, these changes occur more slowly with larger τ . In the case where the
distribution interval of point sources coincides with the entire body area, the function of the averaged
concentration is always smooth (Figure 2b). However, if the interval of action of the point sources is
less than the thickness of the layer, then a sharp increase in the averaged concentration near the point
ξ < ξ̄1 and a sharp decrease near ξ = ξ̄2 (Figures 2a and 3–7) are observed. In this case, such an
increase in 〈c(τ, ξ)〉 is smaller for smaller times and increases with the growth of τ (Figure 2a).

It should be noted that the impact of the system of point sources on the averaged concentration of
the impurity substance is significant, as is the influence of the width of the interval of possible source
locations (Figure 3a). The narrower the interval of action of the point source system, the higher the
values the averaged concentration reaches within this interval (Figure 3a). Furthermore, the closer
the interval [ξ̄1, ξ̄2] is to the boundaries of the body, the smaller the increase in 〈c(τ, ξ)〉 over this
range (curves 2–5 in Figure 3b). When the interval of action of the point sources is located near the
upper boundary of the layer, then the boundary condition has a noticeable effect on the averaged
concentration (curve 1 in Figure 3b).

The influence of the concentration value at the lower surface of the layer, c∗, is significant, and with
the increase of time, the greatest impact of this parameter occurs in the middle of the body (Figures 4a
and 4b). A similar situation is observed when varying the concentration value of the impurity at the
upper boundary of the layer, c0 (Figure 5). It should be noted that here, curves 1 demonstrate how
the diffusion process develops in the interval [0, 0.4], when sources are active in the interval [0.4, 0.6]
and a constant mass source acts at the body boundary ξ = ξ0 (Figure 5), but there is no source at the
upper surface of the body ξ = 0.

The analysis of the number of point sources in the system shows changes in the values of 〈c(τ, ξ)〉
only in the interval [ξ1, ξ2] (Figure 6). The fewer the number of sources N for the same Ω, the higher
the concentration function values on this interval (Figure 6a). Moreover, over time, the difference
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between the values of 〈c(τ, ξ)〉|ξ∈[ξ1 ,ξ2],N=1 and 〈c(τ, ξ)〉|ξ∈[ξ1,ξ2],N=4 increases, particularly for τ = 0.5,
reaching 55% (Figure 6b). If a point source with predominant power is active in the system, then the
values of the averaged concentration significantly increase in the interval [ξ̄1, ξ̄2] (Figure 7). The longer
the duration of the diffusion process, the higher the values of the averaged 〈c(τ, ξ)〉|ξ∈[ξ̄1,ξ̄2] (Figures 7a
and 7b). For example, for τ = 0.5 〈c(τ, ξ)〉|ξ∈[ξ1 ,ξ2],ωmax=40/〈c(τ, ξ)〉|ξ∈[ξ1 ,ξ2],ωmax=10 ≈ 2.1 (Figure 7b).

a b

Fig. 5. Graphs of the averaged concentration for different values of concentration at the upper boundary of the
layer for small (a) and large (b) times.

a b

Fig. 6. Graphs of the averaged concentration for a varying number of sources with equal total power for
small (a) and large (b) times.

a b

Fig. 7. Graphs of the averaged concentration in the presence of a dominant source of varying power in the
system for small (a) and large (b) times.

For small total powers Ω, their reduction almost does not affect the values of 〈c(τ, ξ)〉/c0 . For
example, when Ω decreases from 5 to 4, changes in the values of the function 〈c(τ, ξ)〉/c0 occur at most
in the third decimal place.

It should be noted for a system of sources where one of them has significantly higher power than
then the others, with the changes in the number of sources at a constant total power of sources Ω,
the averaged concentration assumes the same values. This is explained by the fact that the result of
averaging the concentration over the action interval is affected only by the average power of the active
sources Ω/N , which is reflected in the formula (15).
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6. Conclusion

Thus, the modeling of the process of impurity diffusion in the layer under the action of a system
of random point sources is performed. Mass sources of different power are uniformly distributed in
a certain internal interval, which may also coincide with the entire region of the layer. Moreover,
statistics of random sources are given. The solution of the initial-boundary value problem is found in
the form of the sum of the solution of the homogeneous problem and the convolution of the Green’s
function with the system of the point sources. Averaging of the obtained solution is performed under
uniform distribution on the internal subinterval and in the entire body region. Software modules have
been developed for simulating the behavior of the averaged concentration of the system of random
point mass sources for different lengths of intervals of the system of point sources and their location in
the body region, for different number of sources in the system, at the presence or absence of the source
with prevailing power. General laws of behavior of the impurity concentration field are established
depending on the parameters of the problem. In particular, it is shown that the presence of a system
of point mass sources increases the value of the concentration of the migrating substance, herewith a
characteristic increase in the function of the averaged concentration is observed from the surface of the
body or in the middle of the layer. It is shown that the presence of an interval of action of the point
source system significantly affects the behavior of the averaged concentration of the impurity, in most
cases sharply increasing the value of the averaged concentration in this interval. In the case when the
interval of the action of point sources coincides with the entire body region, the averaged concentration
function is always smooth.
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Математичне моделювання процесу дифузiї домiшки за заданої
статистики системи точкових джерел маси. I

Пукач П. Я., Чернуха Ю. А.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Запропоновано модель процесу дифузiї домiшки в шарi, в якому дiє система випад-
кових точкових джерел маси. Джерела маси рiзної потужностi розподiленi рiвномiр-
но на певному внутрiшньому iнтервалi тiла. Задана статистика випадкових джерел.
Розв’язок крайової задачi побудований як сума розв’язку однорiдної задачi i згортки
функцiї Грiна iз системою випадкових точкових джерел маси. Розв’язок усереднено
як на певному внутрiшньому пiдiнтервалi, так i в усiй областi тiла. Розроблено модулi
симуляцiї для моделювання поведiнки функцiї усередненої концентрацiї домiшкової
речовини за дiї системи випадкових точкових джерел рiзної потужностi. На цiй осно-
вi усереднене поле концентрацiї дослiджено в залежностi вiд довжини внутрiшнього
iнтервалу, потужностi i кiлькостi джерел в системi, а також значень концентрацiї на
границях шару.

Ключовi слова: математичне моделювання; дифузiя; випадкове точкове джерело;

функцiя Грiна; рiвномiрний розподiл; програмний модуль.
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