
INFORMATION SYSTEMS AND NETWORKS
Issue 15, 2024

https://doi.org/10.23939/sisn2024.15.159

UDK 004

DEVELOPING A PERFORMANCE EVALUATION BENCHMARK
FOR EVENT SOURCING DATABASES

Roman Malyi1, Pavlo Serdyuk2

Lviv Polytechnic National University,

Software Engineering Department, Lviv, Ukraine
1 E-mail: roman.m.malyi@lpnu.ua, ORCID: 0000-0002-2255-1132
2 E-mail: pavlo.v.serdiuk@lpnu.ua, ORCID: 0000-0002-2677-3170

© Malyi R., Serdyuk P., 2024

In the domain of software architecture, Event Sourcing (ES) has emerged as a significant paradigm,

especially for systems requiring high levels of auditability, traceability, and intricate state management.
Systems such as financial transaction platforms, inventory management systems, customer relationship
management (CRM) software, and any application requiring a detailed audit trail can significantly benefit
from this approach. Numerous aspects of ES remain unexplored, as they have yet to be thoroughly
investigated by scientific research. The unique demands of such systems, particularly in terms of database
performance and functionality, are not adequately addressed by existing database benchmarks. By
establishing benchmarks, organizations can compare different databases to determine which best meets their
needs for applications. This aids in selecting the most appropriate technology based on empirical data rather
than assumptions or marketing claims.This paper introduces a novel benchmarking framework specifically
designed for evaluating databases in the context of event sourcing. The framework addresses critical aspects
unique to ES, including event append performance, efficient handling of Projections (separate databases for
read operations), strong consistency, ordered data insertion, and robust versioning controls. Through
rigorous testing and analysis, this framework aims to fill the gap in existing database benchmarking tools,
providing a more accurate and relevant assessment for ES systems. We also conducted experiments that not
only demonstrated the effectiveness of our approach but also yielded meaningful results, substantiating its
practicality and applicability.

Key words: event sourcing; MongoDB; EventStoreDB; PostgreSQL; events; NoSQL; performance
comparison.

Introduction

Event-driven systems have emerged as a pivotal paradigm for addressing the challenges of real-time
data processing and communication. Event sourcing architecture and its benefits are deeply described in
the works of (Alongi, 2022) [1] and (Overeem, 2021) [2].

Data stores utilized for event sourcing must fulfill specific prerequisites to effectively support the
event-driven paradigm, as described in the paper (Overeem, 2021) [2] it’s mainly two operations: read and
append. They also must offer durable storage to safeguard the chronological sequence of events, ensuring
accurate reconstruction of system states. Immutability of stored events is essential to maintain data
integrity. Furthermore, efficient querying mechanisms are necessary for reconstructing past states.
Scalability is vital to accommodate growing event streams. Finally, support for distributed architectures
ensures fault tolerance and high availability, critical for consistent event sourcing implementations.

160 R. Malyi, P. Serdyuk

The criticality of selecting an appropriate database for ES is underscored by the diverse and often
challenging requirements these systems present. These include high throughput for event writes, efficient
strategies for event reads, rapid reconstruction of states from events, and the ability to scale horizontally in
response to fluctuating workloads. Additionally, the inherently append-only nature of event logs in ES
poses unique challenges for database management systems, especially in terms of long-term data growth
and query optimization.

Formulation of the problem

The benefits of ES, such as improved audit trails, historical state reconstruction, and enhanced
system resilience, are well-documented; they also introduce a set of complex challenges in database
management. The primary concern is the selection of an optimal database system that aligns with the
specific requirements of ES, including handling high-volume event streams, ensuring efficient state
reconstruction, and maintaining data integrity over prolonged periods.

Existing benchmarks primarily focus on general database operations or are tailored towards other
specific applications, such as OLTP or data warehousing. These benchmarks, while comprehensive in their
domains, do not adequately capture the nuances and specialized demands of ES systems.

Analysis of recent research and publications

The paper (Sfaxi, 2021) [3] presents a detailed methodology for benchmarking a cash management
platform used by an investment bank. This is achieved using a generic benchmarking solution named
BABEL. The paper emphasizes the modular design of BABEL and offers an evaluation methodology
along with best practices for its application in real-world systems. A key outcome of this study is the
ability to identify appropriate trade-offs between consistency and availability, aligning with the service
level agreements specified by clients. Additionally, the paper demonstrates that the integration of BABEL
with the platform incurs minimal overhead during runtime. The workloads suggested in the article are
similar to the YCSB benchmark.

The work (Aluko, 2019) [4] presents a comprehensive study of four popular Big SQL systems:
Apache Hive, Spark SQL, Apache Impala, and PrestoDB. The study aims to analyze the performance
characteristics of these systems using three different benchmarks: TPC-H, TPC-DS, and TPCx-BB. The
study finds that Textfile formats showed the lowest performance, while compressed formats like ORC
provided better performance. The Parquet file format generally offered the highest performance for most
queries. The article concludes with valuable insights and lessons learned from the experiments, providing
guidance for future research and practical applications in Big SQL system benchmarking.

The survey paper (Fuad, 2020) [5] provides an extensive overview and analysis of various
benchmarking efforts in the realm of big data systems. The survey discusses the Yahoo! Cloud Serving
Benchmark (YCSB), introduced in 2010, which was designed to assess the performance characteristics of
NoSQL databases. The HiBench benchmark suite, presented for Hadoop, includes synthetic micro-
benchmarks and real-world applications to assess the Hadoop framework. The StreamBench benchmark,
introduced by Lu et al., addresses standard stream processing scenarios and operations. It measures
different aspects of systems like multi-recipient performance, fault tolerance, and durability. The survey
mentions studies like those by Barnawi et al., which focused on assessing the performance of big graph
processing systems such as Giraph and GraphLab. In the emerging domain of big machine/deep learning
systems, few benchmarking efforts have been made. The study by Boden et al., for example, implemented
distributed machine learning algorithms on Apache Flink and Apache Spark, focusing on scalability with
high-dimensional data. Overall, the paper underscores the complexity and diversity in benchmarking big
data systems, highlighting the need for comprehensive and versatile benchmarks that can cater to various
system types and application scenarios.

(Han, 2018) [6] presents a comprehensive survey of state-of-the-art big data benchmarking efforts.
The paper categorizes existing benchmarks into three groups: micro benchmarks, end-to-end benchmarks,

Developing a performance evaluation benchmark for event sourcing databases 161

and benchmark suites. Micro benchmarks focus on individual system components or specific behaviors.
End-to-end benchmarks assess entire systems using typical application scenarios. Benchmark suites
combine different micro and/or end-to-end benchmarks to provide comprehensive solutions. Examples
include HcBench and MRBS for Hadoop-related systems, and HiBench, CloudSuite, and BigDataBench
for various big data systems. A significant part of the paper is dedicated to discussing workload generation
techniques for big data benchmarks. Workloads are categorized based on the type of operations used to form
them, including I/O operations, algorithms, and elementary operations (like standard SQL operators or
similar syntaxes). This categorization helps in understanding how different benchmarks simulate real-
world scenarios and the effectiveness of their methodologies.

In the work of (Yang, 2020) [7] explained the importance of applying metrology principles to
benchmarking to improve the quality and authority of measurement results in benchmarks. It argues that
benchmarks are essential for both users and manufacturers in making informed decisions and optimizing
product performance.

The paper lists several benchmarks in various fields:
● BigBench for DBMS and MapReduce systems.
● CloudSuite for scale-out workloads in machine learning and cloud services.
● HiBench by Intel for MapReduce applications.
● CALDA for Hadoop and RDBMS systems.
● YCSB for NoSQL databases.
● AMP Benchmarks for real-time analysis applications.
● LinkBench for social graph databases.
● CloudBM for cloud data management systems.
● Various AI benchmarks like Fathom, DeepBench, BenchNN, DNN-Mark, Tonic Suite, and

DAWNBench.
The paper concludes that adopting metrology principles in benchmark design and development enhances

the measurement quality, making benchmarks more authoritative and reliable for evaluating IT products.
We discovered an abundance of research papers that delve into the comparative analysis

between MongoDB and various other database systems. These papers extensively examine the
distinctions and performance characteristics between MongoDB and alternative database solutions.
The substantial body of literature reflects a keen interest in evaluating MongoDB’s features within the
broader context of database technology.

(Deari, 2018) [8] conducts a thorough analysis and comparison between document-based and
relational databases, assessing data storage, management principles, and CRUD operation performance
using MongoDB and MySQL as representative examples. The findings offer valuable insights into the
strengths and limitations of each database model.

Cloud users face challenges when transferring data across different cloud storage services due to
differing paradigms across platforms. In the work of (Khan, 2023) [9] examines articles addressing cloud
data portability, interoperability, and software architectures of SQL and NoSQL databases. State-of-the-art
studies extensively compare Oracle RDBMS and NoSQL Document Database (MongoDB), revealing
NoSQL databases as a tailored option for big data analytics and SQL databases as optimal for online
transaction processing (OLTP).

(Mukherjee, 2019) [10] explores a range of attributes inherent to NoSQL databases, outlines their distinct
advantages over traditional RDBMS systems, and contemplates the future trajectory of NoSQL technology. The
article also provides a foundational understanding of NoSQL and its practical applications.

Formulation of the purpose of the article

The primary purpose of this article is to introduce a benchmarking framework designed explicitly for
assessing database performance in event sourcing (ES) environments. Recognizing the distinct requirements
and challenges posed by ES architectures, this framework aims to fill a gap in the current landscape of
database performance evaluation tools.

162 R. Malyi, P. Serdyuk

Secondary purpose is to illustrate how the benchmarking tool can be applied in real-world scenarios,
providing insights into its usability and effectiveness.

Presenting main material

Overview of existing benchmarks
Database benchmarks are critical tools for evaluating the performance and efficiency of database

systems across various areas of software development. Here are some well-known examples of database
benchmarks, each focusing on different aspects and use cases:

1. YCSB (Yahoo! Cloud Serving Benchmark):
Specifically designed for evaluating the performance of NoSQL databases. It provides a framework

for creating and executing typical read, update, and scan operations across different cloud database
systems. It has 6 default workloads:

● Update-heavy: 50 % read, 50 % update.
● Read-mostly: 95 % read, 5 % update.
● Read-only.
● Read latest (delete old ones, insert new ones and read mostly the new ones).
● Read-modify-write.
● Short range scan.
2. TPC-C Benchmark (Transaction Processing Performance Council)
One of the most popular benchmarks for evaluating the performance of Online Transaction

Processing (OLTP) systems. It simulates a complete computing environment where a population of users
executes transactions against a database.

Default Workload: Simulates a complete computing environment where a population of users
executes transactions against a database. The primary operations involve order-entry, payment, status
updates, delivery, and stock level control. The workload is characterized by a mix of read and write
operations with a significant emphasis on transaction integrity.

3. SPEC Database Benchmarks (Standard Performance Evaluation Corporation)
These benchmarks are used to evaluate the performance of database systems in different configurations

and environments, providing a comprehensive overview of system capabilities.
One of the popular workloads is an e-commerce scenario where users interact with a web application

for purchasing items. This includes browsing, adding items to the shopping cart, and processing orders.

Design of a new benchmark
The conventional benchmarks for database performance, while robust in their general application,

are not adequately tailored for event store databases, particularly due to their specific operational nuances.
A critical aspect of event sourcing is that it often does not rely solely on direct reads from the event store.
Instead, it frequently employs the concept of Projections – separate databases specifically designed for read
operations. These Projections are tailored to facilitate efficient querying and data representation, distinct
from the event store’s primary function of recording events.

In revising the specifications for a benchmarking framework tailored to event store databases, it's
crucial to incorporate the aspect of strong consistency. This framework should rigorously evaluate how
effectively the database maintains orderliness in data insertion, ensuring that all events are stored in a
precise, sequential manner. This is essential in event sourcing, as the order of events directly impacts the
accuracy of state reconstruction and system behavior.

Developing a performance evaluation benchmark for event sourcing databases 163

 In Fig. 1, we explained the main concepts of three proposed benchmark scenarios.

Fig. 1. Benchmark overview

Scenario A only focused on the insert operation, as it is one of the most crucial parts of ES systems.

It’s important to be able to support big amounts of inserts and have the possibility to scale if needed.
Scenario B is intended to test the latency of creating read models in order to verify that delay is

suitable for the system.
Scenario C is optional and intended to predict database performance in the long run - when amounts

of data will grow over time.

Experiments
Financial data is well-suited for event sourcing due to its inherent chronological nature and audit

trail significance. Event sourcing captures every state transition, enabling accurate reconstruction of
financial system history. This approach ensures compliance, transparency, and the ability to trace and
analyze complex market transactions over time.

In the work (Qu, 2022) [11] authors mention that limitations of traditional stand-alone relational
database management systems (RDBMS) become evident in handling scalability challenges for extensive
applications like Securities Exchange. From this, we conclude that the incorporation of stock data into
performance testing becomes equally crucial for both SQL and NoSQL database solutions. That’s why we
decided to use real-world financial data for our tests. You can check data structure in Table 1.

Table 1

Example of financial data used for test

Time Tick_Volume Real_Volume High Low Open Close

2023.02.28 23:59:00 2 0 1.058 1.0579 1.0579 1.058

2023.02.28 23:58:00 1 0 1.0579 1.0579 1.0579 1.0579

164 R. Malyi, P. Serdyuk

The structure from Table 1 was converted to the following model in c#:
public class AddCurrencyInfoCommand
{
 public DateTime Time { get; set; }
 public int TickVolume { get; set; }
 public int RealVolume { get; set; }
 public decimal High { get; set; }
 public decimal Low { get; set; }
 public decimal Open { get; set; }
 public decimal Close { get; set; }
}

Experimental setup: we ran the tests on the laptop with macOS version 14.2.1, Apple M2 Pro
processor with 16G of physical memory and solid-state drive.

We decided to use the two most popular databases PostgreSQL and MongoDB also, we used
EventStoreDB because it’s designed for event sourcing. Even though we ran tests from the laptop all
databases were created in the Cloud. We used DigitalOcean cloud service provider.

Databases specifications:
1. MongoDB v6 / 2 vCPU / 8 GB RAM / storage: 30GB SSD / data center region: Frankfurt.
2. PostgreSQL v16 / 2 vCPU / 8 GB RAM / Connection limit: 197/ storage: 30GB SSD / data

center region: Frankfurt.
3. EventStoreDb v23.10.1 using Docker based on virtual machine (VM) with 2 vCPU / 8 GB RAM /

40 GB NVMe SSD/ data center region: Frankfurt. EventStoreDb is not supported directly by
DigitalOcean, so we used docker to create it on a VM.

You can check the entire structure of our test setup in Fig. 2. For load generation we chose a free and
open source load testing framework called NBomber [12]. Code snipped for Scenario A:

private static ScenarioProps CreateScenario(string name, HttpClient httpClient,
int testDurationSeconds, int numberOfScenarioInstances){
ScenarioProps scenario = Scenario.Create($"{name}Scenario", async context =>{
var request = Http.CreateRequest("POST", $"http://localhost:5093/api/{name}/currency")

 .WithHeader("Accept", "application/json")
 .WithBody(new StringContent(JsonConvert.SerializeObject(CreateCommand()),

Encoding.UTF8, "application/json"));

var response = await Http.Send(httpClient, request);
 return response;
 })
 .WithInit(async context => { await Task.Delay(TimeSpan.FromSeconds(1)); })
 .WithoutWarmUp()
 .WithLoadSimulations(Simulation.KeepConstant(numberOfScenarioInstances,

TimeSpan.FromSeconds(testDurationSeconds)));
return scenario;}

API was created using C# language and ASP.NET Core Runtime 8.0. Only EventStoreDb can

support strong consistency and event versioning by default. So, for PostgreSQL we used a .Net library
called Marten [13]. For MongoDb we used persistence library – NEventStore [14]. Then we added support
for projections based on each event and decided to store it directly in memory because we want to calculate
the time from the new event’s arrival to the API till the moment when a new projection for it is created and
can be stored. Of course, we understand that real examples of read models (projections) can be much more
complicated, but for test purposes this is more than enough.

To be able to react on each event insert for PostgreSQL we used the “Event Projections”
functionality that already exists in the Marten library. EventStoreDB has “catch-up subscriptions”
functionality. Unfortunately, the NEventStore library that we used for MongoDb has no built-in support for
projections, so for MongoDb we chose the “change streams” database functionality. You can check out the
entire source code in the public repository [15].

Developing a performance evaluation benchmark for event sourcing databases 165

Fig. 2. Our test setup

As you can see from the code snipped above we can change testDurationSeconds and
numberOfScenarioInstances variables. So we made 4 runs for 5 minutes for all 3 databases at the same
time. Simulation.KeepConstant – means that our test framework will always keep one active HTTP request
and as soon as one response is received a new request will be sent. For every run we have general statistics
and a detailed report for each Scenario, see Fig. 3.

Fig. 3. Report for PostgreSQL Scenario A for 2 threads

In order to make information more clear and understandable we combined information from all 4
runs for all databases based on average request per second (RPS) characteristics, see Fig. 4.

Based on the information from Fig. 4 it’s obvious that EventStoreDB has the best write performance
and it increases when we add new threads with test workload. MongoDb setup had concurrent issues even
with two threads which means that the current implementation with the NEventStore library is not suited
for high load. However, it’s not strange that a document-oriented database is not performing very well in
cases when each event write requires reads and writes in two separate collections. Document databases are
not designed to work in such scenarios. Anyway, it’s an advantage of MongoDB that it’s possible to use
for simple event-sourced applications without high loads. PostgreSQL had no errors, but RPS decreased in

166 R. Malyi, P. Serdyuk

the test with four threads compared to two, so it also can’t handle a lot of concurrent requests and slows
down, most likely because of locks on database tables as it’s required for strong consistency and event
versioning support.

Fig. 4. Average RPS for each test run

In order to test Scenario B, we added two fields to the event: ApiCallTime – the time when the

command entered the API, and SaveTime – the time when the event entered the background service in
order to create a model for reading. This allowed us to calculate the delay between the request and the
creation of the projection, the average values for one of the tests performed are shown in Fig. 5. Results are
almost the same as for write performance – EventStoreDB is the winner with a huge advantage.

Fig. 5. Average latency for projection creation

We haven’t run Scenario C mostly because it will take a huge amount of time to populate MongoDB

or PostgreSQL with big amounts of data when we see an RPS of less than 5.

Conclusion
In this work, we conducted a study of current research and the state of existing benchmarks for

NoSQL data storages and proposed a brand new benchmark for event-sourcing databases. We used
proposed scenarios to test three databases: MongoDB, PostgreSQL, and EventStoreDB.

In summary, the evaluation of performance across selected databases has yielded intriguing
insights into the behavior of these data storage solutions under varying workloads. Notably, our

Developing a performance evaluation benchmark for event sourcing databases 167

findings emphasize the importance of understanding the impact of concurrency and thread
management on write operations in these systems.

EventStoreDB exhibited exceptional write performance, consistently demonstrating its ability to
handle a significant volume of data. What stands out as particularly noteworthy is the fact that
EventStoreDB’s write performance improved as the number of threads increased, showcasing its strong
concurrency capabilities. This behavior aligns with its design as a dedicated event sourcing solution,
optimized for capturing and persisting events efficiently.

Conversely, the other databases in our evaluation displayed contrasting patterns. As we increased the
number of threads from 1 to 2 and then to 4 and 8, the number of writes observed in these databases
exhibited a decrease relative to previous runs. This behavior suggests potential limitations in their
concurrency handling for write operations, as well as the need for careful configuration and tuning to
optimize performance in multi-threaded scenarios.

We also compared the performance of selected databases for creating projections based on stored
events and found that EventStoreDB is the best choice in terms of speed.

The practical value of this work lies in the ability to test any database and find out whether it is
suitable for event sourcing under the required load. You can also use the results of this work to compare
several databases in the context of ES and choose the best one for specific use cases.

References

1. Alongi, F., Bersani, M. M., Ghielmetti, N., Mirandola, R., & Tamburri, D. A. (2022). Event-sourced,
observable software architectures: An experience report. John Wiley & Sons Ltd., 2127–2151.
https://doi.org/10.1002/spe.3116.

2. Overeem, M., Spoor, M., Jansen, S., & Brinkkemper, S. (2021). An Empirical Characterization of Event Sourced
Systems and Their Schema Evolution – Lessons from Industry. J. Syst. Softw. https://doi.org/10.1016/j.jss.2021.110970.

3. Sfaxi, L., & Ben Aissa, M. (2021). Designing and implementing a Big Data benchmark in a financial
context: application to a cash management use case. Computing, 103, 1983–2005. https://doi.org/10.1007/s00607-
021-00933-x.

4. Aluko, V., & Sakr, S. (2019). Big SQL systems: an experimental evaluation. Cluster Computing, 1–31.
https://doi.org/10.1007/s10586-019-02914-4.

5. Bajaber, F., Sakr, S., Batarfi, O., Altalhi, A., & Barnawi, A. (2020). Benchmarking big data systems: A
survey. Computer Communications, 149, 241–251. https://doi.org/10.1016/j.comcom.2019.10.002

6. Han, R., John, L., & Zhan, J. (2017). Benchmarking Big Data Systems: A Review. IEEE Transactions on
Services Computing, PP, 1–1. https://doi.org/10.1109/TSC.2017.2730882

7. Yang, K., Wu, T., Shen, Q., Cui, W., & Zhang, G. (2020). Benchmark Researches from the Perspective
of Metrology. https://doi.org/10.1007/978-3-030-49556-5_31

8. Deari, R., Zenuni, X., Ajdari, J., Ismaili, F., & Raufi, B. (2018). Analysis And Comparision of
Document-Based Databases with Relational Databases: MongoDB vs MySQL. 2018 International Conference on
Information Technologies (InfoTech), 1–4. https://doi.org/10.1109/InfoTech.2018.8510719.

9. Khan, W.; Kumar, T.; Zhang, C.; Raj, K.; Roy, A. M.; Luo, B. (2023). SQL and NoSQL Database
Software Architecture Performance Analysis and Assessments – A Systematic Literature Review. Big Data Cogn.
Comput. 7, 97. https://doi.org/10.3390/bdcc7020097

10. Mukherjee, S. (2019). The battle between NoSQL Databases and RDBMS.
http://dx.doi.org/10.2139/ssrn.3393986

11. Qu, L., Wang, Q., Chen, T., Li, K., Zhang, R., Zhou, X., … Zhou, A. (2022). Are current benchmarks
adequate to evaluate distributed transactional databases? BenchCouncil Transactions on Benchmarks, Standards and
Evaluations, 2, 100031. https://doi.org/10.1016/j.tbench.2022.100031.

12. (n. d.). .NET load testing framework. NBomber. Retrieved March 15, 2024, from https://nbomber.com/
13. (n. d.). Marten. Martendb. Retrieved March 15, 2024, from https://martendb.io/
14. (2023, August 16). Event sourcing library for .NET. Nuget.org. Retrieved March 15, 2024, from

https://www.nuget.org/packages/NEventStore/
15. Malyi, R. (2024, February 16). Test project source code. GitHub. Retrieved March 15, 2024, from

https://github.com/RomanMalyi/DatabaseComparison

168 R. Malyi, P. Serdyuk

РОЗРОБКА ТЕСТУ ЕФЕКТИВНОСТІ БАЗ ДАНИХ ДЛЯ EVENT SOURCING

Роман Малий1, Павло Сердюк2

Національний університет “Львівська політехніка”,
кафедра програмного забезпечення, Львів, Україна

1 E-mail: roman.m.malyi@lpnu.ua, ORCID: 0000-0002-2255-11321
2 E-mail: pavlo.v.serdiuk@lpnu.ua, ORCID: 0000-0002-2677-31702

© Малий Р., Сердюк П., 2024

У сфері архітектури програмного забезпечення Event Sourcing (ES) стало важливою

парадигмою, особливо для систем, які потребують високого рівня перевірки, відстеження та
складного управління станом. Такі системи, як платформи фінансових транзакцій, управління
запасами, програмне забезпечення для управління взаємовідносинами з клієнтами (CRM) і будь-
які програми, які потребують детального аудиту, можуть отримати значну користь від цього
підходу. Численні аспекти ES залишаються невивченими, оскільки їх ще повинні ретельно
дослідити науковці. Унікальні вимоги до систем ES, зокрема щодо продуктивності та функціо-
нальності баз даних, не відповідають належно наявним тестам баз даних. Встановлюючи конт-
рольні показники, організації можуть порівнювати різні бази даних, щоб визначити, яка
найкраще відповідає їхнім потребам у додатках. Це допомагає вибрати найвідповіднішу техно-
логію на підставі емпіричних даних, а не припущень чи маркетингових тверджень. Стаття
містить нову структуру порівняльного аналізу, спеціально розроблену для оцінювання баз даних
у контексті Event Sourcing. Фреймворк розглядає критичні аспекти, унікальні для ES, зокрема
продуктивність додавання подій, ефективне опрацювання проєкцій (окремі моделі для операцій
читання), надійну узгодженість, упорядковане вставлення даних і надійні засоби керування
версіями. Завдяки ретельному тестуванню та аналізу ця структура має на меті заповнити
прогалину в наявних інструментах порівняльного аналізу баз даних, надаючи точну та реле-
вантну оцінку для систем ES. Автори також виконали експерименти, які не тільки про-
демонстрували ефективність запропонованого підходу, але й дали вагомі результати, обґрун-
товуючи його практичність і застосовність.

Ключові слова: Event Sourcing; MongoDB; EventStoreDB; PostgreSQL; події; NoSQL;
порівняння продуктивності.

