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Smart grid systems and communication technologies, such as Advanced Metering Infrastructure 
(AMI), have revolutionized utility service management and monitoring. AMI leverages smart meters 
equipped with advanced communication capabilities, facilitating bidirectional communication between 
utilities and consumers. The increasing deployment of smart meters and the adoption of sub-hourly data 
collection requirements by utility companies highlight significant data volume growth. Thus, there is a 
need for efficient real-time data processing solutions as existing approaches may not meet previously 
established Service-Level Agreements (SLAs) concerning performance, accuracy, and scalability 
metrics. This research aims to comprehensively review the latest publications relevant to distributed 
real-time data processing methods for smart grid applications and outline problems for further 
research. Specifically, the study delves into the effectiveness and application of reviewed approaches in 
managing the constant stream of data from smart meters and IoT devices within the smart grid context. 
By analysing existing methodologies and advancements, this study seeks to identify challenges and 
opportunities in real-time data processing for smart grid infrastructures, focusing on addressing the 
complexities of processing, managing, and storing large volumes of real-time data. The literature review 
revealed two primary applications of real-time data processing: optimization of data streaming 
performance and data analysis. The review encompasses various studies, each presenting distinct 
methodologies and technologies applied to address the challenges of processing large volumes of real-
time data from smart meters and IoT devices. Future research should address the challenges and 
limitations discovered in this study. 

Key words: real-time distributed processing; data streaming; smart grid (SG); smart meter 
(SM); Advanced Metering Infrastructure (AMI). 
 

Introduction 
In the last decade, interest in advanced energy management systems and communication technologies 

has risen significantly [1]. These technologies provide a pathway towards more efficient, resilient, and 
sustainable energy systems, benefiting both customers and utilities. Various communication protocols [2–
6] have been developed to facilitate data collection from measuring devices. Comprehensive smart 
metering solutions were designed to enable efficient utility service management, monitoring, and control. 
Among these solutions, Advanced Metering Infrastructure (AMI) [7, 8] stands out as a transformative 
approach to managing utility, which supports all stages of the measured data life cycle, from data 
collection to the final delivery of energy consumption statistics to end users [9]. AMI leverages a network 
of smart meters [10] equipped with advanced communication capabilities and data management systems 
with bidirectional communication between utilities and consumers. This infrastructure features automated 
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meter reading in regular hourly or sub-hourly intervals and various real-time processes, including those 
performed near smart meters, such as real-time load monitoring and analysis [11], data compression [12] 
and control of energy consumption patterns. Additionally, it supports tasks executed at later stages of the 
general data pipeline, such as fraud detection [13], outage detection and management, dynamic pricing 
adjustments [14], and load forecasts [15, 16]. 

As urban populations grow, the demand for intelligent energy solutions rises proportionally. More 
and more smart meters are being installed, and their penetration rate has risen significantly. For instance, 
the report from 2017 [17] shows that by 2016, the number of AMI installations in the U.S. was about 70.8 
million, equal to about 47 % of total electric meters and according to [18], this number grew to 199 million 
installations, equal to about 72 % of total electric meters installations. 

As of 2017, Ukraine had an estimated 20.7 million electric meters, with approximately 18.6 million 
primarily in the household sector and the remaining 2.1 million deployed in the industrial and utility 
sectors. Automated Meter Reading (AMR) systems are mostly utilized in industrial installations. Even 
though smart meters are used in residential and utility services at some scale, in most cases measurements 
are not collected frequently, usually just a few times a month, primarily for billing purposes. According to 
[19], in addition to low AMR coverage, several significant factors negatively impact the state of 
automation of electricity metering in Ukraine: 

• Smart metering systems deployed in industrial enterprises primarily monitor consumption 
patterns rather than facilitate settlement calculations, except for non-regulated tariff supplies. 

• Incompatibility issues arise due to the development of AMR systems based on different normative 
requirements, particularly concerning communication protocols for system access and data 
exchange. 

• Technical limitations such as the absence of a unified system for accurate timekeeping and 
measurement synchronization. 

Recent studies [20] and [21] underscore the critical need for implementing a smart grid system in 
Ukraine, particularly in the aftermath of the partial destruction of the energy infrastructure due to the 
russian bombing. Moreover, effective real-time handling of cyber threats, as highlighted in [20], is also of 
greatest importance. One of the pivotal advantages of a smart grid system is its capacity to enable utilities 
to monitor and rebalance electricity networks in real-time, which could significantly assist during periods 
of high peak consumption. 

The necessity for real-time processing approaches in AMI stems from the increasing complexity and 
scale of modern energy systems. With the widespread adoption of smart meters, there’s a significant uptick 
in real-time data processing related to energy consumption. This data holds valuable insights for utility 
providers, aiding them in optimizing energy distribution, detecting anomalies, and enhancing system 
efficiency. By deploying efficient real-time processing solutions, utilities can fully utilize AMI, leading to 
more resilient, sustainable, and responsive energy networks. 

 
Problem statement 

The challenge addressed in this study revolves around the complex task of effectively processing, 
managing, and storing large volumes of real-time data within smart metering infrastructures. This 
complexity arises from several factors. Firstly, meter readings are collected using various communication 
protocols, resulting in heterogeneous data that needs unification for processing and analysis. Additionally, 
regulatory requirements in some regions mandate that meter readings be collected as frequently as every 15 
minutes [22], exponentially increasing the data load. Furthermore, utility providers set different Service Level 
Agreements (SLAs), which consist of various performance metrics, including data processing efficiency, 
latency, throughput, availability, and reliability, suited to meet each utility's unique needs and priorities. 

Achieving efficient real-time processing, akin to near-real-time with minimal delay between data 
acquisition and action, under these conditions necessitates addressing numerous obstacles. These include 
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ensuring scalability to accommodate the installation of new meters, using adaptable processing algorithms 
capable of handling diverse data types and potentially incorporating advanced optimization techniques to 
enhance system performance. Addressing these challenges requires innovative solutions tailored to the 
unique needs of smart metering infrastructures. 

 
Purpose of the article 

This research aims to comprehensively review the latest publications that are relevant to the topic of 
distributed real-time data processing methods for smart grid applications. Specifically, the study delves 
into the effectiveness and application of reviewed approaches in managing the constant stream of data from 
smart meters and IoT devices within the smart grid context. 

 
Analysis of the latest research and publications 

In the study [23], the authors used Apache Kafka to replace the previous batch-processing design 
with an event-streaming approach. This streaming platform served as the communication bridge between 
an independent Head-End System (HES), comprising a data collector and meter data library, and the Meter 
Data Management System (MDMS) application. During the experimental phase, the primary focus was 
evaluating the meter reading performance, particularly concerning load profile (LP) data. The experiment 
involved 1191 meters over seven days, each generating LP data at 15-minute intervals (totalling 96 LP data 
points per day). Unfortunately, the experiment had to be halted due to infrastructure availability issues. 
Nonetheless, the data collected within the initial 4.5 hours provided sufficient evidence to conclude that the 
enhancement was successful. 

Real-time ETL process was explored in [24]. Apache Kafka was also chosen as the primary 
communication component alongside Kafka Streams API and KSQLDB, which enabled data processing in 
event streaming pipelines. It also allowed for data transformations such as mapping, filtering, formatting, 
aggregating, and outputting the transformed data to downstream stream processors. On the other hand, 
KSQLDB provided an interactive framework for performing stream processing activities like data 
aggregation, filtering, joining, and windowing. The processed data underwent continuous transformations, 
known as stream processing, while the information was updated continuously. 

The “Flexmeter” smart metering platform proposed in [25] utilises a cloud-based architecture 
consisting of distinct layers and modules for efficient data management and communication. The Device 
Integration Layer enables interoperability among communication technologies through Device Integration 
Adapters (DIAs), converting measurements into a standardised format. The Middleware Layer includes a 
Message Broker and Inbound Pipeline for asynchronous bidirectional communication with devices via MQTT. 
The Data Storage Module manages connections with InfluxDB and MongoDB which are designed for big data 
management. The proposed architecture allowed the integration of two real-time services: the State Estimation 
(SE) service and the Network Reconfiguration (NR) service. SE service aims to obtain reliable monitoring of 
the grid status, while NR service aims to provide faster recovery times and increased resiliency of distribution 
networks. The experimental tests showed that the proposed approach was able to provide reliable state 
estimation and network topology reconfiguration functionalities while being scalable and flexible. 

The discussed cloud-based system architecture in [26] involves four layers: Smart Meters for data 
collection, the gateway component for local processing and communication, the Big Data Cloud Platform 
for machine learning and analytics, and the Application and Visualisation Component for end-user information. 
The gateway communicates with Amazon Web Services (AWS) IoT via MQTT over WebSocket. Data is 
sent to AWS Kinesis for real-time processing, with AWS EMR clusters handling data directly from Kinesis 
streams, supported by DynamoDB for metadata. AWS services were chosen for their comprehensive toolset, 
and the application component utilises Amazon QuickSight for data visualisation. Experimental validation 
integrated system components and collected data to create datasets. 

In the study [27], the authors build upon the proposed event-streaming architecture introduced in 
[23]. However, the primary aim of this research was to establish a reference framework for future 
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evaluations or assessments of smart meter data collection performance. They proposed five formulas 
designed to calculate different performance indicators, thereby facilitating the determination of the 
operational efficiency of smart meters. Additionally, the authors highlighted the importance of implementing 
data retention policies, as accumulating data over time could lead to deteriorating conditions and elevate 
the risk of performance failure. Authors of [28] also proposed a comprehensive assessment procedure for 
AMI system evaluation in the early stages of deployment. 

Our previous research [29] also investigated the possibility of using Apache Kafka as an event-
streaming method for real-time communication between system components. While the proposed approach 
did boost computation performance, we faced some delays because of the limitations of this particular 
message broker, especially when a specific processing order or priority was needed. As a result, it is 
essential to consider how message brokers are used in meter data management systems, considering the 
different requirements for various communication adapters. 

The primary focus of work [30] centres around addressing the challenge of lost data traceability in 
data stream processing. The author explores the feasibility of incorporating streaming provenance to 
effectively trace output data back to its source, thereby enhancing transparency and reliability in load forecasts. 
Experimental findings indicate that the integration of provenance results in a 10.4 % decrease in throughput, an 
8.8 % increase in memory consumption, a 10.4 % rise in latency, and a substantial 238.1 % increase in 
CPU utilisation. Despite these performance impacts, the importance of provenance remains significant, as 
it enables tracing data origins and processing steps. This capability proves especially valuable in detecting 
faulty meters within smart grid systems and other similar applications, albeit with some performance 
degradation. 

Similar research was conducted in [31], where data provenance alongside other methods was used to 
find faulty smart meters in an energy distribution network. Experimental findings in this study also showed 
a decrease in throughput between 22–34 % and a latency increase between 24–42 %. However, the authors 
came to the same conclusion that stream processing with provenance indeed emerges as a promising 
alternative for analysis in AMI contexts due to its potential to significantly mitigate the storage 
requirements of meter data. 

Authors of [32] presented an AMI architecture based on the fog computing paradigm, designed to 
enable efficient real-time communication between smart meters and cloud servers. The proposed design 
includes different local metering components (LMCs), tiered computing resources, and cloud infrastructure 
for real-time monitoring and control to improve energy efficiency and customer services. The authors 
conducted experiments to demonstrate the effectiveness of their proposed design in terms of load profile 
data acquisition and communication times. The results showed that the proposed design achieved real-time 
performance, with load profile data becoming available at the MDC layer after a seven-minute interval, 
which is well before the next sampling instance given at the rate of 15 minutes. 

While research [33] is not directly related to smart grid solutions, it demonstrates approaches for 
enhancing the performance of real-time big data stateful streaming applications by using Redis cache and 
MongoDB database for storing and accessing interim results in stateful Spark streaming applications. The 
same applies to work [34]. It mentions that stream processing of big data presents numerous challenges, 
including handling high volume, velocity, variety, and veracity of data and ensuring real-time response, fault 
tolerance, scalability, and state management. Various distributed stream processing systems, including Apache 
Storm, Spark Streaming, Samza, and Flink, have emerged to address these challenges. These systems offer 
different processing models, stream primitives, latency, throughput, state management, delivery guarantees, and 
programming APIs. The authors highlighted that the selection of a stream processing system hinges on the 
specific requirements and characteristics of the application domain, including data sources, processing logic, 
quality of service, and cost constraints. 

Study [35] explores big data parallel processing performance using Apache Spark for load 
forecasting. Authors discovered that standalone machine learning surpasses distributed computing with 
Spark when data fits into a single node's memory. However, Spark outperforms standalone methods due to 
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reduced resource distribution overhead, especially with large datasets, provided there is enough memory 
for successful non-distributed execution. Performance in a Spark cluster improves with increased nodes, 
peaking between 4 and 8 cores per node. Excessive memory does not necessarily reduce execution time. 
The authors continued their research with the study [36], delving deeper into big data processing 
approaches and comprehensively reviewing several computation models. They also proposed big data 
architecture for smart grids utilising Apache Hadoop. This architecture consists of three main layers – data 
collection, storage, and data mining and analytics. One of the main goals of this solution is to enable the 
integration of different data sources from smart grids, such as smart meters, sensors, and other devices. 
This integration will provide more comprehensive and accurate insights into grid operations, energy 
consumption patterns, and consumer behaviour. Another objective is to improve the scalability and 
flexibility of smart grid data management, allowing utilities to handle large and growing volumes of data 
and support various use cases. 

While researching topics on real-time distributed systems, it is essential to review existing proposed 
solutions from other industries. For instance, the study [37] describes Uber’s real-time infrastructure in 
great detail, explaining all constraints and considerations for choosing specific data streaming, storage, and 
analytics technologies. With an optimised stack, Uber’s real-time data infrastructure handles multiple 
petabytes daily. Open-source technologies like Kafka and Flink enable seamless data processing and high 
availability. Pinot provides low-latency OLAP capabilities and Presto integration for real-time data 
exploration. The flexibility of the infrastructure caters to diverse use cases supported by abstractions like 
FlinkSQL and PrestoSQL. Future work includes unifying streaming and batch processing, enhancing 
multi-region deployments, and exploring tiered storage solutions for cost efficiency and elasticity. 

From the literature reviewed, two primary applications of real-time data processing approaches 
emerge: one is centred around optimising data streaming performance, while the other focuses on data 
analysis. The focus, findings (Table 1) and experimental datasets (Table 2) of these articles are summarized for 
a clear understanding. This review also highlights the attention given by studies such as [23], [27], and 
others to the critical aspect of accommodating SLAs within real-time distributed processing approaches, 
asserting success in meeting these requirements. Despite technological advancements, challenges persist in 
achieving optimal data processing efficiency, latency management, throughput optimization, and high 
availability and reliability in smart grid environments. Insights from other industries, such as Uber’s 
innovative approaches, underscore the potential for leveraging external examples to enhance smart grid 
solutions. Therefore, while progress has been significant, there remains room for improvement and 
exploration of novel strategies to meet the evolving demands of smart grid environments. 

 
Table 1  

Summary of the literature reviewed 

Work Year Focus Findings 
[23] 2021 Real-time data processing 

using event-streaming 
utilizing Apache Kafka 

• The proposed event-streaming approach enhanced overall 
system performance compared to the previous design – batch 
processing. 

• Experimental findings indicate that the system effectively 
operates within the required SLA  

[24] 2023 Real-time data ETL process 
using event-streaming 
utilizing Apache Kafka 

• Explores the methodology for extracting and loading data 
from low voltage distribution networks and its application in 
AMI  

[25] 2018 Real-time data processing 
using an event-driven 
approach utilizing Message 
Broker, InfluxDB, and 
MongoDB 

• Experimental results show that the proposed system can 
perform all the steps of the multi-level Distribution System 
State Estimation (DSSE) within a few seconds, and satisfies 
the communication requirements of classes TT0, TT1, and 
TT2 defined by the IEC 61850 standard  
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Table 1 (continued). 
Summary of the literature reviewed 

Work Year Focus Findings 
[26] 2019 Real-time data processing 

utilizing cloud solutions such 
as AWS IoT, AWS Kinesis, 
AWS EMR, and DynamoDB 

• The experimental validation was focused on the integration of 
the system components and data collection to create datasets 
for future research  

[27] 2023 Assessment framework to 
determine the operational 
efficiency of smart meters 

• Proposed measurement criteria of smart meters performance 
based on their function, ranging from installation, registration, 
connection, disconnection, reregistration, and post-installation 
activities  

[28] 2021 Smart meter data collection 
performance evaluations 

• Proposed several formulas to evaluate smart meters' 
communication performance  

[29] 2023 Real-time data processing 
using event-streaming 
utilizing Apache Kafka 

• The experimental results showed that the approach with a 
message broker enhanced performance compared to batch 
processing. 

• Further research is aimed at enhancing existing or developing 
new computational models based on a distributed computing 
system to reduce computation delays. 

[30] 2023 Real-time data streaming 
provenance utilizing Apache 
Kafka, Apache Flink, 
Ananke, and InfluxDB 

• Implementing Ananke posed challenges in dealing with 
performance trade-offs associated with the transparent 
version. 

• Evaluation limitations were observed, including constraints 
imposed by fixed dataset sizes and the presence of missing 
data from InfluxDB  

[31] 2022 Real-time data streaming 
provenance utilizing Apache 
Flink and GeneaLog 

• Queries enriched with advanced provenance capture from 
extended GeneaLog proved effective in identifying common 
faults within smart meters. 

• Real-world AMI data assessment showed varying query 
performance, with manageable overall overhead from 
provenance but some queries suffering significant latency and 
memory issues. 

• Stream processing coupled with provenance capture 
showcased significant potential in reducing storage 
requirements, particularly for non-billing data  

[32] 2022 Real-time communication 
between smart meters and the 
cloud servers using agent-
based fog computing 

• Experimental results confirm the system’s ability to deliver 
metering data in real-time across all tiers of the AMI. 

• Authors acknowledge security and manageability challenges 
inherent in distributed AMI architecture, such as ensuring data 
confidentiality and managing node lifecycle  

[33] 2022 Enhancing the performance 
of real-time cloud big data 
stateful streaming 
applications utilising Redis 
and MongoDB 

• The optimization of memory access and utilizing in-memory 
caching techniques, such as Redis cache or high-performance 
databases like MongoDB, can improve the performance of 
real-time big data stateful streaming applications. 

[34] 2019 Big data stream processing 
utilizing Apache Storm, 
Spark Streaming, Samza, 
and Apache Flink 

• Comprehensive review and comparison of stream processing 
frameworks such as Apache Storm, Spark, Samza, and Flink. 

• There is no one-size-fits-all framework that is best for 
everybody. 

• It is recommended that users evaluate their specific 
requirements carefully and choose a framework that best 
meets their needs  
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Table 1 (continued). 
Summary of the literature reviewed 

 

Work Year Focus Findings 
[35] 2020 Big data parallel processing 

utilising Apache Spark 
• Experimental results indicate that non-Spark standalone 

machine learning performs better than Spark when the data 
fits into one node’s memory. However, Spark outperforms in 
the case of larger datasets due to reduced resource 
distribution overhead  

[36] 2021 Big data parallel processing 
utilising Apache Hadoop 
and Apache Spark 

• Key technologies such as Hadoop, MapReduce, HDFS, 
HopsFS, and Apache Spark are used for storing, processing, 
and analysing smart grid data, each with its strengths and 
limitations. 

• NoSQL databases are preferred for big data applications due 
to their scalability and performance advantages  

[37] 2021 Real-time data streaming 
infrastructure utilizing 
Apache Kafka and Apache 
Flink 

• Uber implements surge pricing using a streaming pipeline that 
ingests data from Kafka, processes it with a machine-learning 
algorithm in Flink, and stores results in a key-value store for 
quick lookup. 

• The system prioritizes data freshness and availability over 
consistency, with strict end-to-end latency requirements. 

• Design trade-offs include using a Kafka cluster configured for 
higher throughput but not lossless guarantee, and an active-
active setup for higher availability  

 
Table 2  

Experimental datasets from reviewed literature 
 

Work Smart meters Dataset Interval Expected load per hour 
[23] 1191 Readings of energy consumption 15 minutes 4764 
[27] 103615 Readings of energy consumption 15 minutes 414460 
[30] 10 Readings of energy consumption N/A N/A 

[31] 282000 
Readings of energy consumption 1 hour 300000 
Voltage and current for three phases ~ 12 hours 25000 

 
Understanding data origins and volumes 

The smart grid ecosystem comprises a multitude of data sources, ranging from SCADA systems [38] 
to AMI, smart meters, sensors, Phasor Measurement Units (PMUs), distributed generation units, weather 
data, and customer information [36, 39]. These diverse data sources collectively generate large volumes of 
real-time data, reflecting various aspects of the grid’s operational status and environmental conditions. The 
data collected from these sources is transmitted securely to centralised servers or cloud platforms through 
dedicated channels, ensuring the integrity and confidentiality of the information [39]. 

In a typical AMI deployment [17] (Fig. 1, a), smart meters transmit raw readings to Data Concentrator 
Units (DCUs), which in turn relay meter data to Head-End Systems (HES). Alternatively, modified smart 
grid deployments [40] could utilize radio mesh (Fig. 1, b) and various device modules, allowing meters to 
transmit data directly to HES or serve as relays for forwarding meter values. Following preprocessing in 
HES, meter data is forwarded to the Meter Data Management System (MDMS). 

Communication networks facilitate the transmission of interval consumption data from the meter to 
the utility back offices. The MDMS plays a crucial role in managing the increased volume of data, integrating 
meter data with various information and control systems, such as head-end systems, billing systems, customer 
information systems, geographic information systems, outage management systems, and distribution 
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management systems. Additionally, in an AMI setup, data collection is not limited to electricity consumption 
alone; water, gas, or heat meters may also contribute, necessitating robust data management and integration 
strategies within the AMI infrastructure for comprehensive utility management. 

 

  
a   b  

Fig. 1. AMI deployment. (a) Typical AMI deployment. (b) Radio Mesh AMI deployment 
 
Smart meters typically gather electricity consumption data at intervals of an hour or less, varying 

from 5 to 60 minutes (Table 3). It's essential to differentiate between big data and large data volumes 
concerning meter data collection and processing. Large data volumes simply refer to the sheer amount of 
data generated by smart meters and similar devices. On the other hand, big data encompasses not just the 
volume but also factors like value, variety, velocity, and variability of data [41]. This means effective 
management and processing of meter data demand scalable and efficient big data analytics techniques. 
These methods should handle various data sources, process large volumes of data in real-time, and extract 
valuable insights to aid decision-making in smart grid systems. 

 
Table 3  

Expected data load for 1000 smart meters 

Data collection interval, minutes Number of readings 
1 hour 1 day 1 week 

5 12000 288000 2016000 
15 4000 96000 672000 
30 2000 48000 336000 
60 1000 24000 168000 

 
Discussions and further research 

In the domain of smart meter data processing and management, current scientific researches focus on 
improving key metrics like throughput and latency, data analysis quality, or overall operational efficiency, 
reliability, security, and sustainability. Notably, energy consumption estimation, energy loss detection, load 
forecasting, and anomaly detection have been significant areas of investigation. 

Energy consumption estimation techniques aim to accurately predict future energy usage patterns, 
aiding in resource planning and optimization [42]. Similarly, energy loss detection methodologies help 
identify inefficiencies and losses in distribution systems, facilitating improvements in system performance 
and reliability [43]. 

Load forecasting techniques play a crucial role in predicting future electricity demand, enabling 
utilities to effectively plan and manage their resources to meet consumer needs [15, 16, 32, 44, 45]. These 
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forecasts are essential for optimizing generation, transmission, and distribution operations, ensuring grid 
stability and reliability. 

Anomaly detection methods [46] focus on identifying abnormal behaviour or events within smart 
grid systems, including cyber-attacks [47, 48], device faults [31], theft [49, 50], or false data injection [13]. 
Detecting and mitigating such anomalies is vital for maintaining system integrity, security, and resilience. 

Moving forward, future research may focus on developing new or enhancing existing real-time 
processing methods suitable for handling large volumes of data in smart metering. Additionally, other 
potential areas for investigation might include enhancing data traceability in real-time data stream 
processing, drawing upon insights from studies such as those outlined in [30] and [31], among various 
other potential tasks. 

 
Conclusions 

The growing data volumes within Advanced Metering Infrastructure (AMI) systems highlight the 
importance of managing data effectively to meet established Service Level Agreements (SLAs). This study 
comprehensively reviews the latest real-time data processing and analysis methods and technologies 
relevant to smart grid applications outlining the following findings: 

• Increased data load is driven by the widespread smart meter installations and more frequent data 
collection (sub-hourly intervals). Despite existing data processing approaches maintaining 
functionality under a rising load, challenges related to various performance, accuracy, and 
scalability metrics persist. 

• Both event-driven processing and data stream processing approaches could be used for data 
ingestion as well as for other tasks. For instance, some studies integrated stream processing to 
implement load forecasting and faulty meter detection, which showcased potential in reducing 
storage requirements. 

• Event-driven processing approaches provide very low latency in data transmission and 
outperform batch processing. However, this approach could introduce challenges as some 
message brokers may not support built-in ordering. 

• Data stream processing approaches also outperform batch processing but add additional 
computing overhead (memory and CPU usage). 

• Challenges related to security and manageability are inherent in distributed architectures. 
• Insights from other industries that deal with large real-time data volumes, such as those derived 

from Uber and others, offer valuable perspectives for enhancing smart grid solutions. 
Future research should focus on the challenges identified in the reviewed studies to ensure the 

scalability of smart grid systems and enhance existing methods to meet dynamic SLAs effectively. One of 
the possible problems that could be investigated in more detail is improving data traceability methods in 
real-time data stream processing. 
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Інтелектуальні енергосистеми та комунікаційні технології, такі як передова вимірювальна 
інфраструктура (Advanced Metering Infrastructure, AMI), здійснили революцію в управлінні та 
моніторингу комунальних послуг. AMI використовує “розумні” лічильники (Smart Meter, SM), 
оснащені розширеними комунікаційними можливостями, що полегшує двосторонній зв’язок між 
комунальними підприємствами та споживачами. Отже, існує потреба в ефективних рішеннях 
для опрацювання даних у режимі реального часу, оскільки відомі підходи можуть не відповідати 
раніше встановленим угодам про рівень обслуговування (SLA) щодо показників продуктивності, 
точності та масштабованості. Метою цього дослідження є детальний огляд останніх публікацій, 
що стосуються методів розподіленої обробки даних в реальному часі для застосування в 
інтелектуальних вимірювальних мережах, а також виявлення проблем для подальших 
досліджень. Зокрема, це дослідження заглиблюється в ефективність і застосування розглянутих 
підходів в управлінні постійним потоком даних від розумних лічильників та пристроїв Інтернету 
Речей. Це дослідження має на меті визначити проблеми та перспективи опрацювання даних у 
реальному часі для інфраструктури інтелектуальних мереж, зосереджуючись на вирішенні 
складнощів опрацювання, управління та зберігання великих обсягів даних у реальному часі. 
Огляд літератури виявив дві основні сфери застосування опрацювання даних у реальному часі: 
оптимізація продуктивності потокового передавання даних та аналіз даних. Аналіз охоплює різні 
дослідження, кожне з яких представляє окремі методології та технології, що застосовують для 
вирішення проблем опрацювання великих обсягів даних у реальному часі від розумних 
лічильників та пристроїв Інтернету Речей. Майбутні дослідження повинні бути спрямовані на 
вирішення проблем та подолання обмежень, виявлених у цьому дослідженні. 

Ключові слова: розподілена обробка в реальному часі; потік даних; розумна мережа; 
розумний лічильник; Передова вимірювальна інфраструктура. 

 


