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Y naniii po0oTi HA OCHOBI MYJbTHIIAPOBOI HeHPOHHOI MepesKi JOCJHIIKEHO BILUIUB KiJlbKOCTI
NPUXOBAHUX WIAPiB, YHCJIA HelipOHIiB Y HHUX Ta THUNIB aKkTHBaNiiHMX (yHKUili HA TOYHicThH KiIacu-
¢dikauii cuapsaaiB wicrbox Tunis (A — (a-6oenpunacu); A/M — (a/m-6oenpunacu; A/P — (6pone6iiini);
A/PC - (0ponebiiino-uaéusHi); M — (m-6oenpunacu); P — (6pouebiiini 6oenpunacu)), sika oMiHIETHCS
MaTpUIlel0 MOMHJIOK. 30KpeMa, MOOYI0BaHi MATPHUIi MOMMJIOK Ui OUIHKM TOYHOCTI Kjacugpikamii
cHapsigiB micrbox TumiB (A — (a-6oenpunacu); A/M — (a/m-6oenpunacu; A/P — (opone6iiini); A/PC —
(oponediiino-nadusHi); M — (m-6oenpunacu); P — (6pouediitni 6oenpunacu) MyJIbTHIIAPOBUM HelpoH-
HMM NepUenTPOHOM 3 OJHUM, JBOMA Ta TPbOMA NPHUXOBAHMMH HIAapaMu Ta QYyHKUIAMM aKTHBALIN:
Logistic, Tanh, Relu, Softmax sinmoBizHo. BcraHoB/eHO, IO HaBHIIA TOYHiCTH KaacHpikamii
CHAPSAAIB J0CATa€cThCs 32 J0NOMOIOI0 Heiipomepe:ki 3 ABOMAa NPHUXOBAHMMHU IIAPaMM 3 KiJbKICTIO
HelipoHiB y nepuromy npuxopanomy mapi 33 3 pynkuiero akrupauii tanh ta 8—mu neiiponamu 3 pyHk-
uie aruBanii Tanh y apyromy npuxoaHomy mapi Ta Softmax s Heiiponis BuxigHor mapy.

Kiro4oBi c1oBa: MaTpunsi NOMIIOK, Kiaacudikalis cHapsAIiB, HeliPOHHA Mepeska, oNTHMI3alist
004HCII0BAJBLHUX pecypciB.

Introduction

In the modern dimension of security and defense, the important task is the classification of
projectiles by their type in order to ensure the safety of citizens and effective management of military
operations. Various machine learning methods, including the analysis of the confusion matrix, are used to
achieve this goal. The confusion matrix is a powerful tool for evaluating the effectiveness of classifiers in
tasks such as projectile type classification. This article aims to conduct a comparative analysis between
different configurations of feedforward neural networks in the context of projectile classification.

The task of neural network classification of projectiles (A — (artillery), A/IM — (anti-tank), A/R —
(armor-piercing), A/RC — (armor-piercing-incendiary), M — (mines), R — (rockets)) is relevant, as its solution
automatically solves the problem of determining the type of projectile [1] (artillery or rocket) for the
selection of effective strategies and tactics in military operations, for the safe removal and disposal of
unexploded projectiles, and for researching the properties and characteristics of new types of projectiles.

The article considers the application of the confusion matrix for the classification of projectiles (A —
(artillery), A/IM — (anti-tank), A/R — (armor-piercing), A/RC — (armor-piercing-incendiary), M — (mines),
R — (rockets)) using MLP perceptron to determine the type of projectile (artillery or rocket) using neural
networks with one-, two-, three-hidden layers, having respectively the number of neurons 33; 33 and 8; 33,
16 and 8 with activation functions relu, tanh, logistic.
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The work examines neural networks with the following morphologies: MLPClassifier 1HL L (neural
network with an input sensory layer of 18 neurons, a hidden layer of 33 neurons with activation functions
Logistic, an output layer of 6 neurons with activation functions Softmax), MLPClassifier 2HL T (neural
network with an input sensory layer of 18 neurons, the first hidden layer of 33 neurons with activation
functions Tanh, the second hidden layer of 8 neurons with activation functions Tanh, an output layer of 6
neurons with activation functions Softmax), MLPClassifier 3HL_T (neural network with an input sensory
layer of 18 neurons, the first hidden layer of 33 neurons with activation functions Tanh, the second hidden
layer of 8 neurons with activation functions Tanh, the third hidden layer of 16 neurons with activation
functions Tanh, an output layer of 6 neurons with activation functions Softmax), and MLPClassifier 2HL R
(neural network with an input sensory layer of 18 neurons, the first hidden layer of 33 neurons with
activation functions Relu, the second hidden layer of 8 neurons with activation functions Relu, an output
layer of 6 neurons with activation functions Softmax).

MLPClassifier 1HL L is a neural network with an input sensory layer of 18 neurons, which
corresponds to the 18 components of the input feature vector; a hidden layer with 33 neurons with
activation functions Logistics; an output layer of 6 neurons with activation functions Softmax, as 6 objects
are classified.

input layers hidden layers output layers

position x
position_y
position_h
velocity
explosion_x
explosion_y
explosion_h R E—
hour

minute

angle big tick —»
angle small tick
le d
angle degrees
angle rotation_degrees

distance 2d
distance 3d S —
flight time
max_height

- =

Fig. 1. Model MLPClassifier 1HL L (formula (1))

Yi = fsoftmax ((Zj;wl‘j frogistic (Z:;ij xk))) i €{1,6}, @

The architecture of the MLPClassifier 2HL T neural network with two hidden layers and the Tanh
activation function will be discussed in detail in the following sections, as this model was chosen for projectile
classification due to its highest classification accuracy. The next model, MLPClassifier 3HL T, is a neural
network with an input sensory layer of 18 neurons, corresponding to the 18 components of the input feature
vector; a first hidden layer of 33 neurons with activation functions Tanh; a second hidden layer of 16 neurons
with activation functions Tanh; a third hidden layer of 8 neurons with activation functions Tanh; and an output
layer of 6 neurons with activation functions Softmax, as 6 objects are classified.
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Fig. 2. Model MLPClassifier_3HL_T (formula (2))

16 8 33 18
Vi = fsoftmax( ' 1Wmlftanh <Z 1 Wliftanh <Z 1 Wijftanh <Zk 1 ijxk>>) S {1; 6}| (2)
= 1= j= =

It has been shown that the neural network with two hidden layers and 33 and 8 neurons with Tanh
activation functions respectively, and an output layer with six neurons with a Softmax activation function,
achieves the highest classification accuracy for projectiles (95.9%).

Analysis of recent research and publications

Recent publications in the field of machine learning and neural networks have demonstrated significant
advancements in various application domains. Two notable areas of focus include the optimization of neural
network models and the utilization of deep learning techniques for classification tasks.

In recent studies, the optimization of neural network models has been a key area of exploration. One
approach introduced is the TWD-SFNN model, which integrates the three-way decisions method with
feedforward neural networks. This model dynamically determines the number of hidden layer nodes and
addresses challenges such as dataset discretization and learning process adjustment.

Additionally, the application of deep neural networks (DNNSs) for classification tasks has garnered
attention. A recent publication explores the use of DNNs for classifying space objects using light curve
data. This study compares DNN-based algorithms with traditional methods and provides insights into their
effectiveness and limitations.

Recent research and publications in the field of classifier performance evaluation using the confusion
matrix and other metrics include various approaches and methods to improve this process. Below are
several current research directions with references to relevant articles:

1. Methods for evaluating multi-label classifiers. In the article [1], the authors discuss methods for
evaluating the effectiveness of classifiers for tasks where each element can belong to multiple classes
simultaneously.

2. Extension of the confusion matrix. In the work [2], the authors investigate the extension of the
confusion matrix to account for additional aspects of classification and uncertainty.

3. Use of a three-way confusion matrix. In the article [2], the authors use a three-way confusion
matriX to assess uncertainty in decision-making.

4. Generalization of performance metrics. In the work [3], the authors generalize performance
metrics for classifiers to account for the characteristics of the classification task.

5. Application of machine learning. In the article [3], researchers use machine learning methods to
improve the evaluation of classifier performance.
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Overall, these studies demonstrate the continuous development and improvement of methods for
evaluating classifier performance for more accurate and reliable analysis of classification results in various
application areas.

Formulation of the purpose of the article
The aim of the work is to evaluate the accuracy of projectile classification (A — (artillery), A/IM —
(anti-tank), A/R — (armor-piercing), A/RC — (armor-piercing-incendiary), M — (mines), R — (rockets)) using
a neural network perceptron with different numbers of hidden layers, neurons in them, and different
activation functions based on the confusion matrix.

Presentation of the main material

Let X — the set of descriptions of dynamic objects (projectiles) consists of 6 types, i.e., |Y| = 6. Each
object x € X is described by a feature vector of 18 components. The target dependency y*:X =Y is
known only in a finite training sample X™ = {(x, 1), ..., (tm, Y1)}, Where x; € R8 — is a feature vector,
y; €{1,234,56} — is the class number (type of projectile). The task is to construct an algorithm
a.X - 'Y, capable of classifying any object x € X from the 6 projectile classes with high accuracy using
an optimized multilayer perceptron (with the number of hidden layers, the number of neurons in them, and
the type of activation functions) based on a high-quality training sample.

For the classification of dynamic objects (A -1, AIM -2, AIR -3, AIRC -4, M -5, R - 6), the
study uses a three-layer neural network optimized by the number of hidden layers and the number of
neurons in them, with the following morphology: two hidden layers and one output layer. The input
sensory layer has 18 neurons, because the input feature vector has 18 components; the first hidden layer
has 33 neurons with Tanh activation functions; the second hidden layer has 8 neurons with Tanh activation
functions; the output layer has 6 neurons with Softmax activation functions, because there are 6 objects
being classified.
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Fig. 3: Three-layer neural network model (formula(3))
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Formula of the model:

Vi = fsoftmax <2j=1 Wi ftann <2ji1 Wij ftanh (211:1 Wik xk))) i €{1;6}, (€))

where y; — is an element of the output vector of probabilities for each class of projectiles; fsomax — is the
Softmax activation function; fumn — is the Tanh activation function; wii — is an element of the weight matrix
between the second hidden layer and the output layer; wi; — is an element of the weight matrix between the first
and second hidden layers; wijc — is an element of the weight matrix between the input layer and the first hidden
layer, the model receives the input feature vector X = (xq,x,...,X15), Where xi — position_xi, X2 —
position_yi, X3 — position_hi, x4 — velocity, xs — taget_class, Xs — explosion_x,, X7 — explosion_y,, X —
explosion_hy, Xg — hour, xi0 — minute, xi1 — second, X2 — angle_big_tick, xi3 — angle_small_tick, X1 —
angle_degrees, x15 — angle_rotation_degrees, X1 — distance_2d, x17 — distance_3d, x;s — flight_time.

To prepare data for the classification of projectiles from the 1L220U-KS complex, the method of
pseudorandom noise with a normal distribution is used to generate new values that help the
MLPClassifier_2HL_T neural network acquire generalizing properties.

Generation of a new value (formula3)):

Vi* = Vi + ag; - N(O,l), (4)
where ;" is the new value of the i-th characteristic; V; — is the initial value of the i-th characteristic; o; -
is the standard deviation of the i-th characteristic; N(0,1) — is the function for generating pseudorandom
values with a normal distribution (mean = 0, standard deviation = 1).

Calculation of the standard deviation (formula (4)):

o; = /Z(Vl%“l)z (5)

where V; — i-th value of the characteristic; w;— mean value of the i-th characteristic; N — size of the
training sample.

In this article, data were generated for the classification of projectiles based on data from the device
11L.220U: position_xi, position_ys, position_hs, velocity, taget_class, explosion_x., explosion_y,, explosion_h,,
hour, minute, second, angle_big_tick, angle_small_tick, angle_degrees, angle_rotation_degrees, distance_2d,
distance_3d, flight_from the study [16].

Normalization (formula(6)):

Vi
V' = — (6)
where V' —is the normalized value of the i-th characteristic; V; — is the initial value of the i-th characteristic,
u; — is the mean value of the i-th characteristic, o; is the standard deviation of the i-th characteristic.

The Confusion Matrix is a tool in machine learning used to evaluate the performance of a classifier
on a dataset. It shows how many elements of each class were correctly or incorrectly classified by the
model.

The number of rows and columns depends on the number of labels the model is supposed to predict.
In this article, the classification of 6 classes is considered, so the confusion matrix for each model will have
6 rows and 6 columns (Table 1). Each row represents instances in the actual class, and each column
represents instances in the predicted class.

Table 1
The template of the confusion matrix used to construct the confusion matrix for 6 classes

Predicted Class

Actual Class 1 (Positive) 0 (Negative)

1 (Positive) TP (True positive) FN (False negative)
0 (Negative) FP (False positive) TN (True negative)
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FN (formula (19)—(30)): the number of falsely negative classified elements for the class will be the
sum of the values of the corresponding rows, except for the TP value. FP (formula (31)-(42)): the number
of falsely positive classified elements for the class will be the sum of the values of the corresponding
column, except for the TP value. TN (formula (43)—(48)): the number of correctly negative classified elements
for the class will be the sum of all column and row values, except for the values of this class, for which we
calculate the value. TP (formula (7)—(18)): the number of correctly positive classified elements, where the
actual value and the predicted value match (Table 2).

Table 2
Confusion matrix for 6 classes

A Xu X1z X3 Xua Xis Xis
AM X1 X2z X3 Xoa Xos Xos
A/P Xa1 Xz2 X33 Xa4 X35 X36
A/PC Xay Xa2 X3 Xaa Xas Xas
M Xs1 Xs2 Xs3 Xsq Xss Xsg

P Xs1 Xe2 Xe3 Xea Xes Xes

A A/M A/P A/PC M P

The confusion matrix analyzes several neural network models in this work, so a detailed analysis of
the confusion matrix will be conducted for the neural network with two hidden layers and the number of
neurons 33 and 8 with Tanh activation functions, respectively, and an output layer with six neurons with a
Softmax activation function, because this model showed the best results.

TP for class A:

TP, = Xq1, @)
TP, = 640, (8)
Where TP for class A/M: True Positive, meaning that the actual value and the predicted value match.
TPa = Xy, ©))
M
TP, = 112, (10)
TP for class A/P:
TPé = X33, (12)
P
TPa =96, (12a)
P
TP for class A/PC:
TP A = X44, (13)
PC
TP 4, = 361, (14)
PC
TP for class M:
TPy = Xss, (15)
TPy = 58, (16)
TP for class P:
TPp = X33, a7
TP, = 241, (18)
FN for class A:
FNy = X2+ X133+ X9y + Xi5 + Xy, (19)
FNy,=1+0+6+0+0=7, (20)

Where FN - False Negative, meaning that the actual value is positive, but it was incorrectly
predicted as negative.
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FN for class A/M:

FNa = Xz1+ Xp3+ Xpu + Xp5 + Xpe, (21)
M
FNa=1+0+0+1+0=2 (22)
M
FN for class A/P:
FNp = X31+ X3z + X34+ X35+ X3, (23)
P
FNa=0+0+1+0+6=7, (24)
P
FN for class A/PC:
ENa = Xgq + Xyp + Xyz + Xys + Xy, (25)
PC
FN4 =4+0+5+0+2=11, (26)
PC
FN for class M:
FNy = X51 + X5p + Xs3 + X5u + Xse, (27)
FNy =0+3+0+0+0=3 (28)
FN for class P:
FNp = Xe1 + Xe2 + Xe3 + Xeg + X5, (29)
FNp=0+0+6+0+0=6, (30)
FP for class A:
FPy = Xp1 + X33+ Xy + X51 + Xeq, (31)
FP,=1+0+4+ 0+0=5, (32)
Where FP — False Positive, meaning that the actual value is negative, but it was incorrectly predicted
as positive
FP for class A/M:
FPa = Xip+ Xgp + Xp + Xgp + Xeo, (33)
M
FPA=1+0+0+ 3+0=4 (34)
M
FP for class A/P:
FPa= Xi3+ Xp3+ Xy3 + X5z + X3, (35)
P
FP, =0+0+5+ 0+6=11, (36)
FP for class A/PC:
FPa = X4+ Xog + X3+ X5y + X, (37)
PC
FP4 =6+0+1+0+0=7, (38)
PC
FP for class M:
FPy = Xi5+ Xp5+ X35+ Xys + Xes, (39)
FPy=0+1+0+0+0=1, (40)
FP for class P:
FPp = Xi6+ Xp6 + X36 + Xy + Xs, (41)
FP, =0+0+6+ 2+0=38, (42)

TN (True Negative) — the sum of values in all other rows and columns except for the class for which
we are calculating the value

TN, =112+1+96+1+6+5+361+2+3+58+ 6+ 241 =892, (43)
TNa=640+6+1+4+5+361+2+58+ 6+ 241 = 1324, (44)
M
TNs=640+1+6+1+112+1+4+361+2+3+58+241 = 1430, (45)
P
TNa =640+1+112+1+96+3+58+ 6+ 241 = 1158, (46)

PC
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TNy =640+1+6+1+112+96+1+6+4+5+ 361+ 6+ 241 = 1420, 47)
TNp =640+1+6+1+112+1+96+1+4+5+ 361+ 3+ 358+ 3+ 58 = 1650, (48)
In the top left corner of the confusion matrix are the names of the actual classes. In the bottom part

of the confusion matrix are the names of the predicted classes.
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Fig. 4. Confusion matrix for MLPClassifier 2HL_T training dataset

After analyzing the confusion matrix, the following conclusions can be drawn for the training
dataset:
1. Classification effectiveness:
The model showed high effectiveness in classifying certain classes, particularly “A” and “A/PC,”
where the TP values are high: 640 and 361 respectively.
However, for some other classes, such as “A/P” and “M,” the model exhibited less satisfactory
results with a noticeable number of FP and FN values.
2. Misclassification:
There is a certain amount of misclassified samples in all classes, indicating the model's inability
to correctly identify certain subclasses.
The values of FP and FN for some classes indicate that the model tends to incorrectly classify
some classes as others.
3. Class balance:
Considering the TN values, it can be understood that the model successfully identifies classes
that do not belong to a specific class, except for the class for which the value is being calculated.
4. Need for further improvement:
Focusing on improving the classification accuracy for classes with a high number of errors (FP
and FN) may enhance the overall effectiveness of the model.

Testing Set | A: 0.96 | P: 0.96 | R: 0.96 | Confusion Matrix:

< 152 0 0 4 0 0
§ 0 23 0 0 1 0
o
o 0 0 23 2 0 0
3
[=N&] =
g 0 0 5 83 0 0
4 :
= 0 1 0 0 14 0
a 0 0 2 1 0
A AM AP APC M P

Predicted

Fig. 5. Confusion matrix for MLPClassifier_2HL T test dataset
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The values of accuracy: 0.96, precision: 0.96, recall: 0.96 shown in Fig. 2 above indicate that the
MLPClassifier 2HL_T model performs with high classification effectiveness on the test dataset.

The next model to be considered is a neural network with two hidden layers and 33 and 8 neurons
with Relu activation functions respectively and an output layer with six neurons with Softmax activation —
MLPClassifier 2HL_R.
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WX 0 0 89 7 0 7 o2 0 0 18 5 0 2
2 =
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Fig. 6. Confusion matrix for MLPClassifier 2HL R Fig. 7. Confusion matrix for MLPClassifier 2HL R test
training dataset dataset

Analysis of the confusion matrix for the training and test datasets for MLPClassifier_2HL_R allows
the following conclusions to be drawn:

1. Class “A”: MLPClassifier 2HL_R correctly classified 636 samples of class “A/P” in the training
dataset and 150 samples in the test dataset, indicating high efficiency in classifying this class.

2. Class “A/M”: MLPClassifier 2HL_R also showed high efficiency in classifying samples of class
“A/M” in the training dataset, correctly classifying 113 samples, but lower efficiency in the test dataset,
correctly classifying only 23.

3. Class “A/P”: For the class “A/P”, MLPClassifier 2HL_R correctly classified 89 samples in the
training dataset and 18 samples in the test dataset, indicating moderate efficiency in classifying this class.

4. Class “A/PC”: MLPClassifier_2HL_R correctly classified 362 samples of class “A/PC” in the
training dataset and 84 samples in the test dataset, indicating average efficiency in classifying this class.

5. Class “M”: The efficiency of MLPClassifier_2HL_R for class “M” was lower than for other
classes, correctly classifying only 59 samples in the training dataset and 13 in the test dataset.

6. Class “P”: MLPClassifier 2HL_R correctly classified 236 samples of class “P” in the training
dataset and 71 in the test dataset, indicating high efficiency in classifying this class.

Overall, MLPClassifier_2HL_R has shown quite high efficiency in classifying some classes (e.g.,
“A” and “A/PC”), but for other classes (especially “A/P” and “M”), the results were unsatisfactory. This
may require further refinement of the model to achieve better results on the test dataset.

Comparing the confusion matrix of MLPClassifier 2HL R and MLPClassifier 2HL T,
MLPClassifier 2HL R correctly classified 636 samples of class “A”, while MLPClassifier 2HL T
classified 640 in the training dataset; and MLPClassifier 2HL_R correctly classified 150 samples of class
“A”, while MLPClassifier_2HL_T classified 152 in the test dataset, indicating high efficiency in
classifying this class in both models, but MLPClassifier 2HL_T shows slightly better results.

Comparing the confusion matrices of the two models - MLPClassifier 2HL R and
MLPClassifier 2HL_T, we can see that both models demonstrate high efficiency in classifying dynamic
objects, but MLPClassifier 2HL_T shows slightly better results.

The next model to be considered is a neural network with one hidden layer and 33 neurons with
Relu activation function, and an output layer with six neurons with Softmax activation function —
MLPClassifier 1HL_L.
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Comparing the confusion matrix of MLPClassifier 1HL L with MLPClassifier 2HL T, we can see
that MLPClassifier 1HL L correctly classified 632 samples of class “A,” while MLPClassifier 2HL T
classified 640 correctly on the training dataset; and MLPClassifier 1HL L correctly classified 149
samples of class “A”, while MLPClassifier 2HL_T classified 152 correctly on the test dataset, indicating
high effectiveness in classifying this class in both models, but MLPClassifier 2HL_T shows slightly better
results.

< 632 0 0 15 0 0 < 149 0 0 7 0 0
g 0 M 0 0 3 0 2 0 23 0 0 1 0
0 % 0 0 95 0 0 8 2 % 0 0 21 1 0 3
I § 1 0 8 0 2 - § 1 0 7 0 0
= 0 1 0 0 60 0 =] 0 2 0 0 13 0
o 0 0 1 0 0 246 o 0 0 0 1 0
A AM AP APC M P A AM AP APC M P
Predicted Predicted
Fig. 8. Confusion Matrix for MLPClassifier_1HL_L Fig. 9. Confusion Matrix for MLPClassifier_1HL_L
Training Datase Test Dataset
Comparing the confusion matrices of the two models - MLPClassifier_1HL_L and

MLPClassifier 2HL_T, we can see that both models demonstrate high effectiveness in classifying
dynamic objects, but MLPClassifier_2HL_T shows slightly better results.

The next model to be considered is a neural network with three hidden layers and 33 and 8 neurons
with Tanh activation functions, respectively, and an output layer with six neurons with a Softmax
activation function — MLPClassifier_3HL_T.
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Fig. 10. Confusion Matrix for MLPClassifier 3HL_T Fig. 11. Confusion Matrix for MLPClassifier 3HL_T
Training Dataset Testing Dataset

Comparing the confusion matrix of MLPClassifier 3HL_T and MLPClassifier 2HL T, it can be
seen that MLPClassifier 3HL_T correctly classified 640 instances of class “A,” while
MLPClassifier 2HL_T classified 640 correctly in the training dataset. In addition, MLPClassifier 3HL_T
correctly classified 151 instances of class “A”, while MLPClassifier 2HL_T classified 152 correctly
in the testing dataset, indicating high efficiency in classifying this class in both models, but
MLPClassifier 2HL_T shows slightly better results.

Comparing the confusion matrices of the two models - MLPClassifier 3HL T and
MLPClassifier 2HL_T, both models demonstrate high efficiency in classifying dynamic objects, but
MLPClassifier 2HL_T shows slightly better results. Additionally, MLPClassifier 2HL_T has two hidden
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layers, while MLPClassifier 3HL_H has three hidden layers, so for optimizing the computational
resources of the neural network, it is advisable to use a neural network with two hidden layers.

Conclusions

Based on the analysis of the confusion matrices for the MLPClassifier models, the following
detailed conclusions can be made:

1. The two-layer perceptron with Tanh activation function, MLPClassifier 2HL T, shows high
accuracy for classes “A” and “A/PC”, with TP values of 640 and 361 respectively.

2. The two-layer perceptron with Relu activation function, MLPClassifier 2HL_R, shows lower
classification accuracy than the MLPClassifier 2HL_T model. For classes “A/P” and “M,” the results were
satisfactory — 18 and 13 respectively. Compared to MLPClassifier 2HL_T, both models showed similar
results for class “A”, but MLPClassifier 2HL R showed slightly worse results.

3. The perceptron with Logistic activation function, MLPClassifier 1HL L, demonstrates high
classification accuracy for class “A” but less satisfactory results for some other classes. Compared to
MLPClassifier 2HL_T, MLPClassifier 1HL L shows similar effectiveness in classifying class “A,” but
the results differ for other classes.

4. The three-layer perceptron with Tanh activation function, MLPClassifier 3HL T, shows high
classification accuracy for some classes, but the results for classes “A/P” and “M” are not satisfactory.
Compared to MLPClassifier 2HL T, MLPClassifier 3HL_T shows similar results but with greater
complexity due to the third hidden layer.

Thus, the analysis based on the confusion matrix shows that the highest accuracy in classifying
projectiles (A — (ammunition); A/M — (ammunition/explosive); A/P — (armor-piercing); A/PC — (armor-
piercing-incendiary); M — (explosive); P — (armor-piercing ammunition)) is achieved using a neural
network perceptron with the following morphology (formula (49)):

Yi = fsoftmax (Zil Wii franh <Z}3i1 Wij frann (Zzl Wik xk))) i € {1;6}. (49)

So, the input sensor layer has 18 neurons because the input feature vector has 18 components; the
first hidden layer has 33 neurons with Tanh activation functions; the second hidden layer has 8 neurons
with Tanh activation functions; and the output layer has 6 neurons with Softmax activation functions
because there are 6 objects being classified.
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Abstract. This paper investigates the impact of the number of hidden layers, the number of
neurons in these layers, and the types of activation functions on the accuracy of classifying projectiles of
six types (A - (artillery); AIM - (artillery/missile); A/R — (armor-piercing); A/RC — (armor-piercing-
incendiary); M — (missile); R — (armor-piercing shells)) using a multi-layer neural network, evaluated by
a confusion matrix. Specifically, confusion matrices were constructed to assess the accuracy of
classifying projectiles of six types (A — (artillery); A/IM - (artillery/missile); A/R — (armor-piercing),;
A/RC - (armor-piercing-incendiary); M - (missile); R — (armor-piercing shells)) using a multi-layer
perceptron with one, two, and three hidden layers and activation functions: Logistic, Tanh, Relu,
Softmax, respectively. It was found that the highest accuracy in classifying projectiles is achieved using
a neural network with two hidden layers, with 33 neurons in the first hidden layer with Tanh activation
function and 8 neurons with Tanh activation function in the second hidden layer, and Softmax for the
neurons in the output layer.

Key words: confusion matrix, projectile classification, neural network, computational optimization.
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