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In this study, an attack on the El-Gamal encryption scheme ELG-LUC3-ECC is proposed,
which is based on a third-order Lucas sequence over an elliptic curve finite field, using
Hastad’s and Julta’s theorems. Hastad’s theorem was used to solve the problem of multi-
variate modular equations system, whereas Julta’s theorem was used to find the solutions
of multivariable modular equation. As a result, the minimum amount of plaintext required
for a successful attack may be determined. Thus, similar attacks can be prevented if the
quantity of plaintext remains within the appropriate range.
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1. Introduction

Cryptography is a study of encrypting plaintext using an encryption key and decrypting ciphertext
using a decryption key. Public Key Cryptography (PKC) is a cryptographic system that exposes
encryption keys which was proposed by Diffie and Hellman [1] in 1978.

In 1985, El-Gamal [2] proposed a digital signature scheme which was using Diffie–Hellman key
exchange method to generate the encryption key and now known as the El-Gamal encryption scheme
(ELG). Smith and Skinner [3] extended ELG in 1994, by integrating it with the second order Lucas
function, dubbed LUCELG. In 2014, Wong and his team [4] modified LUCELG by incorporating it in an
elliptic curve over a finite field, that is now referred as ELG-LUC-ECC. Based on the characteristics
of elliptic curve and second order Lucas function, the security of modified cryptosystem had been
improved [5–7]. Said and Loxton [8] proposed LUC3, a cubic cryptosystem based on the Lucas sequence.
Miller [9] developed a cryptography based on elliptic curve in 1985. At the same time, Koblitz [10]
developed the cryptography based on elliptic curve too. Now, these cryptosystems call as Elliptic
Curve Cryptography (ECC). The foundation of these cryptosystems is a discrete logarithm problem
in the group of point of an elliptic curve defined over a finite field.

In 2021, Wong et al. [11] introduced ELG-LUC3-ECC, a new cryptosystem that combines the ELG,
LUC3, and ECC cryptosystems. A security analysis on ELG-LUC3-ECC is presented in this paper
utilising Hastad’s and Coppersmith’s theorems.

2. ELG-LUC3-ECC

Suppose that
y2 = x3 + ax+ b (1)

is the equation of elliptic curve with a and b are elements for a finite field Fp and 4a3 +27b2 6= 0, then
exist a set of group G

G(Z) = {(x, y) ∈ Z × Z|y2 = x3 + ax+ b} ∪ {∞} (2)

for field H contains Fp.
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In ELG-LUC3-ECC, the system modulus denoted as n, where n is the order of group G, and the
encryption key, e = stR ∈ G is generated by a key exchange method, whereas R ∈ G is a secret number
known to both sender and receiver, s ∈ G is a secret number for sender, and t ∈ G is a secret number
for receiver. In this case, the encryption key for ELG-LUC3-ECC is not the receiver’s public key. The
receiver’s public key is Q = tR ∈ G.

In the process of encryption, the sender will generate the ciphertexts as follows:

c1 = sR, (3)

c2 ≡ VsQ(m1,m2, 1) mod n, (4)

c3 ≡ VsQ(m2,m1, 1) mod n, (5)

where m1 and m2 denoted as plaintexts and c1 and c2 denoted as ciphertexts.
Before recovering the original plaintexts, the receiver should be calculating the decryption key

while the decryption key is depending on encryption key. Therefore, the receiver needs to calculate
the encryption key by

e = tc1. (6)

After getting the encryption key, the receiver can generate the decryption key by

d ≡ e−1 mod φ(n), (7)

where

φ(n) =











n2 + n+ 1, if g(x) mod n is an irreducible cubic,

n2 − 1, if g(x) mod n is product of irreducible quadratic and a linear factor,

n− 1, if g(x) mod n is roduct of three linear factors,

(8)

with g(x) = x3 − c2x
2 + c3x− 1.

In essence, the receiver is able to compute the original plaintexts by

m1 ≡ Vd(c2, c3, 1) mod n, (9)

m2 ≡ Vd(c3, c2, 1) mod n. (10)

3. An attack

There are several theorems will be used in Hastad’s attack. The first theorem will be discussed is
Hastad’s theorem which is a theorem to solve the multivariate modular equations system.

Theorem 1. Let N =
∏k

i=1 ni and n = min
1<i<k

(ni). Given a set of k equations
∑δ

j=0 ai,jx
j ≡ 0

mod ni where all the modulus ni are relatively prime to each other and gcd(〈ai,j〉
δ
j=0, ni) = 1 for all

values of i. Then, x < n in polynomial time can be found if N > 2(δ+1)(δ+2)/4(δ + 1)δ+1nδ(δ+1)/2.

Proof. Refer [12, 13]. �

Theorem 2. Assume that the p modular polynomial system with degree 6 k and l variables denoted
as

j1+j2+...+jl6k
∑

j1,j2,...,jl=0

ai,j1,j2,...,jix
j1
1 x

j2
2 . . . x

jl
l ≡ 0 mod ni, (11)

for i = 1, . . . , p, x1, . . . , xi < n and n = min
1<i<k

(ni). Let N =
∏p

i=1 ni, f =
∑δ

m=1 m (m+l−1
m )

and g =
∑δ

m=0 m (m+l−1
m ), if all the modulus ni are relatively prime to each other, then

gcd
(

〈ai,j1,j2,...,jl〉
j1+j2+...+jl6δ
j1,j2,...,jl

, ni

)

= 1 for i = 1, . . . , p and if

N > 2g(g+1)/4ggnf (12)

the result is a real-valued equation in polynomial time which is equivalent to Eq. (11).

Proof. Refer [13]. �
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Coppersmith’s theorem [14] is an extended result from Hastad’s theorem. This theorem is used
to find the solution of a modular equation. It is specific for a single variable integer polynomial with
degree k. The integer polynomial in ELG-LUC3-ECC is a multivariable polynomial. Thus, Julta’s
Theorem [15] is used to solve this problem. Before discussing Julta’s theorem, it is important to
understand Coppersmith’s theorem, which is specific to single variable integer polynomial.

Theorem 3. Suppose that a single variable integer polynomial P (x) with degree k and a positive
integer N of unknown factorization, then in time polynomial in log(N) and k, all integer solutions x0
to P (x0) ≡ 0 mod N with | x0 |< N1/k can be found.

Proof. Refer [13, 14]. �

In 1998, Julta [15] improved Coppersmith’s theorem, in which it is able to find the integer solution
for multivariable polynomial.

Theorem 4. Let P (x1, . . . , xm) ≡ 0 mod N be a m variables polynomial with total degree k and a
root x0, then exist an algorithm with determines c(> 1) integer polynomial equation of total degree in
cmk log(N), in time polynomial in cmk log(N), such that x0 as a root for each of the equation.

Proof. Refer [15]. �

Let m1 and m2 are the plaintexts of ELG-LUC3-ECC, then

m1,i ≡ αim1 + βi mod ni, (13)

and

m2,i ≡ αim2 + βi mod ni. (14)

The corresponding ciphertexts can be generated by computing

c1,i = siRi, (15)

c2,i ≡ VsiQi
(m1,i,m2,i, 1) mod n, (16)

c3,i ≡ VsiQi
(m2,i,m1,i, 1) mod n. (17)

Since the third order of Lucas sequence in ELG-LUC3-ECC is equal to two variables of Dickson
polynomial [16, 17], then

VsiQi
(m1,i,m2,i, 1) = DsiQi

(m1,i,m2,i, 1)

=

⌊siQi/2⌋
∑

i=0

⌊siQi/3⌋
∑

j=0

siQi(−1)i

siQi − i− 2j

(

siQi − i− 2j
i+ j

)(

i+ j

i

)

m
siQi−2i−3j
1,i mi

2,i, (18)

where 2i+3j 6 siQi. Similar for VsiQi
(m2,i,m1,i, 1). Thus, c2,i and c3,i can be considered as polynomial

in term of m1,i and m2,i with degree siQi.

Corollary 1. Suppose that N =
∏k

i=1 ni and n = min
1<i<k

(ni). Given a set of k equations
∑j1+j26δ

j1,j2=0 ai,j1,j2x
j1
1 x

j2
2 ≡ 0 mod ni where all the modulus ni are relatively prime to each other and

gcd(〈ai,j1,j2〉
j1+j26δ
j1,j2

, ni) = 1 for all values of i. Then, x < n in polynomial time can be found if

N > 2(δ+1)(δ+2)(δ2+3δ+4)/16

(

1

2
(δ + 1)(δ + 2)

)
1
2
(δ+1)(δ+2)

n
1
3
δ(δ+1)(δ+2) . (19)

Proof. In two variable case for Theorem 1.

f =
δ

∑

m=1

m

(

m+ 1
m

)

=
1

3
δ(δ + 1)(δ + 2), (20)

g =

δ
∑

m=0

m

(

m+ 1
m

)

=
1

2
δ(δ + 1)(δ + 2), (21)

Replace Eq. (20) and Eq. (21) into Eq. (12) will get Eq. (19). �
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Corollary 2. Let k be the number of set of the plaintexts in ELG-LUC3-ECC such as
(m1,1,m2,1), . . . , (m1,k,m2,k), then the original plaintexts can be recovered if

k >
1

3
sQ(sQ+ 1)(sQ+ 2), (22)

and

n > 2
(sQ+1)(sQ+2)((sQ)2+3sQ+4)

16

(

1

2
(sQ+ 1)(sQ+ 2)

)
1
2
(sQ+1)(sQ+2)

, (23)

where sQ = max
16i6k

(siQi).

Proof. The proof can be accomplished by verifying the conditions of Corollary 1 are satis-
fied. Since there are k set of plaintexts in ELG-LUC3-ECC, then exist k set of ciphertexts
(c1,1, c2,1, c3,1), . . . , (c1,k, c2,k, c3,k), and 2k equations

P1,i(m1,m2) ≡ DsiQi
(m1,i,m2,i, 1)− c2,i ≡ 0 mod ni, (24)

and

P2,i(m2,m1) ≡ DsiQi
(m2,i,m1,i, 1)− c3,i ≡ 0 mod ni, (25)

where 1 6 i 6 k. Assume that all the modulus ni and the coefficients of Eq. (24) and Eq. (25) are
relatively prime to each other, then

N =

k
∏

i=1

ni > n1

1
3
sQ(sQ+1)(sQ+2)+1

∏

i=2

ni

> 2
(sQ+1)(sQ+2)((sQ)2+3sQ+4)

16

(

1

2
(sQ+ 1)(sQ+ 2)

)
1
2
(sQ+1)(sQ+2)

(26)

if satisfied Eq. (22), Eq. (23) and n = min
1<i<k

(ni). �

Based on Corollary 2, we find the maximum number of plaintexts in ELG-LUC3-ECC to avoid
this type of attack. This mean that the system is secure if the number of plaintexts is less than the
maximum number.

Table 1. Examples of the maximum number of plaintexts for ELG-LUC-ECC and ELG-LUC3-ECC.

sQ 1001 (10-bits) 3997 (12-bits) 15843 (14-bits)

ELG-LUC-ECC 501 501 79 900 003 125 508 246
ELG-LUC3-ECC 670 674 004 42 602 695 996 2 647 054 861 360

Therefore, Table 1 gives examples of the maximum number of plaintexts for ELG-LUC-ECC and
ELG-LUC3-ECC in different bits system.

4. Conclusion

For the ELG-LUC3-ECC cryptosystem, the two-variable Dickson polynomials were used to trans-
form the third-order Lucas sequence into two-variable polynomials. According to the theorems and
corollaries presented in Section;3, if the number of plaintexts encrypted by ELG-LUC3-ECC exceeds
1
3sQ(sQ + 1)(sQ + 2), then the corresponding plaintexts can be recovered without the recipient’s
knowledge. Additionally, Table;1 indicates that the maximum allowable number of plaintexts for
ELG-LUC3-ECC is greater than that for ELG-LUC-ECC.

In other words, ELG-LUC3-ECC requires a higher minimum number of plaintexts than ELG-LUC-
ECC to execute an attack successfully. Thus, the results demonstrate that ELG-LUC3-ECC offers
greater security than ELG-LUC-ECC.
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Атака на ELG-LUC3-ECC з використанням
теореми Хастада та Юлти
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У цьому дослiдженнi запропоновано атаку на схему шифрування Ель–Гамаля, зас-
новану на послiдовностi Лукаса третього порядку над скiнченним полем елiптичної
кривої з використанням теореми Хастада та Юлти. Теорема Хастада була викори-
стана для розв’язування задачi системи багатовимiрних модульних рiвнянь, тодi як
теорема Юлта використовувалася для знаходження розв’язкiв багатовимiрного мо-
дульного рiвняння. У результатi можна визначити мiнiмальний обсяг вiдкритого тек-
сту, який необхiдний для успiшної атаки. Отже, подiбним атакам можна запобiгти,
якщо кiлькiсть вiдкритого тексту залишається в межах визначеного дiапазону.

Ключовi слова: кубiчний; Ель-Гамаль; теорема Хастада; теорема Джулта; по-

слiдовнiсть Лукаса.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1135–1140 (2024)


