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Abstract. This work describes the development and testing of a data-driven hydrodynamic model for quadruped robots 
designed for adaptive and intelligent interaction in dynamic environments. To effectively manage and interpret sensor data, we 
employ Gaussian Process Regression (GPR) to model the underlying uncertainties in fluid-structure interactions, allowing for more 
precise predictions in complex and varying environments. The probabilistic nature of GPR enables quadruped robots to handle noisy 
data and provide robust, uncertainty-aware decision-making strategies. 

We train and evaluate the model using real-time sensor data, which includes ambient environmental factors and the robot's 
internal states. A key focus of our study is the robot's adaptive response to different hydrodynamic conditions, such as varying speeds 
and fluid dynamics. The results demonstrate that the GPR-based model efficiently learns and adapts to these dynamic conditions, 
leading to accurate force prediction and enhanced autonomous performance in a range of real-world scenarios. 
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1. Introduction 

Quadruped robots have garnered attention for 
applications like subsurface inspections and planetary 
exploration, but their use in aquatic environments is 
limited due to challenges in hydrodynamic modeling. 
Accurately predicting underwater forces is complex beca-
use of fluid-structure interactions (FSI) and changing 
conditions such as leg shape or movement patterns. 
Traditional models, like those based on Navier-Stokes 
equations, are precise but computationally heavy and 
unsuitable for real-time applications [1, 2]. 

Fluid-structure interaction models, while detailed, 
also require significant resources, making them 
impractical for real-world scenarios. These methods also 
struggle to account for the dynamic nature of changing 
robot structures during motion. 

In contrast, Gaussian Process Regression (GPR) 
offers a data-driven, probabilistic approach that captures 
uncertainties in fluid dynamics. GPR models not only 
predict forces accurately but also adapt to varying con-
ditions and noise in real-time data. This makes GPR a 
promising tool for underwater robots, offering robust 
predictions in unpredictable environments. 

2. Drawbacks 

Traditional hydrodynamic models, though accurate, 
are computationally demanding and unsuitable for real-
time applications. Fluid-structure interaction methods 
also require extensive resources and struggle to adapt to 
changing robot structures during movement [3]. 

While GPR models are more flexible, they have their 
limitations. As the dataset grows, GPR becomes compu-
tationally expensive, which can limit its real-time use. The 
model's performance also heavily depends on selecting 
the right hyperparameters and kernel functions, making it 
sensitive to noisy or sparse data. 

3. Goal  

This paper aims to develop a novel approach for 
modeling the hydrodynamics of quadruped robots with 
swimming capabilities using GPR. The key objectives of 
this study are: 

– Unique Dataset Collection: To gather a 
comprehensive dataset through controlled towing 
experiments,  capturing a wide range of motion scenarios. 
This dataset is crucial for training and validating the 
hydrodynamic models. 

– Development of a GPR-Based Hydrodynamic 
Model: To design an innovative GPR framework that 
leverages its probabilistic nature to capture uncertainties 
in fluid-structure interactions, allowing for more precise 
force predictions. This model will be optimized to handle 
varying leg configurations and dynamic environments. 

– Achieving Robust Prediction under Varying 
Conditions: To demonstrate the model's ability to 
accurately predict force states across different speeds, 
fluid dynamics, and environmental conditions. GPR's 
uncertainty quantification will be critical in enhancing the 
model's adaptability and robustness in dynamic, real-time 
underwater environments. 
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The ultimate goal of this study is to significantly 
improve hydrodynamic modeling for quadruped robots, par-
ticularly in underwater applications, by providing a more 
adaptive, accurate, and robust prediction framework that can 
handle complex and variable conditions [4]. 

4. GPR-based Model  
GPR is a non-parametric, probabilistic model used to 

learn the dynamics of a system by capturing the relationships 
between input and output data. GPR is particularly effective 
for modeling continuous-time changes in forces as a function 
of sensor inputs while providing uncertainty estimates. The 
model defines a distribution over functions and uses training 
data to update this distribution. The core of GPR lies in 
predicting a continuous function based on a set of observed 
data points [5,6,7,8]. 

Given a dataset  

𝒟𝒟 = {(xi, yi)}i=1n  

where xi  represents the input (e.g., sensor data), and 𝑦𝑦𝑖𝑖 
represents the output (e.g., hydrodynamic force), GPR 
models the relationship between inputs and outputs as a 
multivariate Gaussian distribution: 

𝑦𝑦(𝑥𝑥) ∼ 𝒢𝒢𝒢𝒢�𝑚𝑚(𝑥𝑥), 𝑘𝑘(𝑥𝑥, 𝑥𝑥′)� 

where 𝑚𝑚(𝑥𝑥) is the mean function (typically assumed to be 
zero), and 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) is the covariance (kernel) function that 
defines the similarity between points 𝑥𝑥 and 𝑥𝑥′. 

The covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) plays a crucial role 
in determining the behavior of the model. A common choice 
is the Radial Basis Function (RBF) kernel: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = σ𝑓𝑓2 exp�−
��𝑥𝑥−𝑥𝑥′��

2

2𝑙𝑙2
�                     (1) 

where 𝜎𝜎𝑓𝑓2  is the signal variance, and 𝑙𝑙  is the length scale, 
which controls how quickly the function can vary. 
The GPR prediction for a new test point x∗ is given by the 
conditional distribution: 

p(y∗|x∗,𝑋𝑋, 𝑦𝑦) = 𝒩𝒩�µ(x∗),σ2(x∗)�                  (2) 

where the mean and variance of the prediction are: 

µ(x∗) = 𝑘𝑘�x∗ ,X�[K(X, X) + σn2I]−1y              (3) 

σ2(x∗) = k(𝑥𝑥∗, x∗) − k(𝑥𝑥∗, X)[K(X, X) + σn2I]−1k(𝑋𝑋, 𝑥𝑥∗) 

Here, 𝐾𝐾(𝑋𝑋,𝑋𝑋)  is the covariance matrix of the 
training inputs, 𝜎𝜎𝑛𝑛2  is the noise variance, and 
k(𝑥𝑥∗,𝑋𝑋)represents the covariance between the test point 𝑥𝑥 
and the training points. 

The advantage of GPR is its ability to provide not 
only a mean prediction but also a measure of uncertainty for 
each prediction. This is critical in dynamic environments, 
such as underwater robotics, where sensor noise and environ-
mental variability can significantly affect the accuracy of 
force predictions. 

In this study, we optimize the hyperparameters of the 
kernel function (e.g., σ𝑓𝑓2  , 𝑙𝑙  and σ𝑛𝑛2 ) using a maximum 
likelihood estimation approach, and the model is trained on 
real-time sensor data collected during robot movements. 
GPR's ability to model the underlying uncertainties in fluid-
structure interactions makes it highly suitable for robust 
predictions in varying underwater environments. 

Middle: The Gaussian Process Regression (GPR) model 
processes the kinematic information and maps it to a latent vector 
ℎ, incorporating uncertainty estimates to account for variations in 
the environment and the robot's movements. Right: The 
prediction of the hydrodynamic force trajectory Fb is generated 
by the GPR model based on the initial condition F0, providing 
a probabilistic force prediction across the time steps 
[𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝐿𝐿]. 

 

5. Model Architecture 

 
Fig. 1. Overview. Left: The robot's motion under different conditions is represented  

in time steps [𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑁𝑁], capturing key kinematic data. 
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The proposed model architecture aims to predict 
the hydrodynamic forces acting on a quadruped robot 
using GPR based on a sequence of observational data. The 
key components of the model are GPR and the covariance 
(kernel) function. The steps involved in the model 
architecture are as follows: 

• Input Data: The input consists of a sequence of 
kinematic observations 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, … ,𝒙𝒙𝑵𝑵 , each representing 
motion parameters sampled at uniform time intervals. 
These parameters include two joint angles and two linear 
velocities, providing a comprehensive description of the 
robot's movement. 

• Covariance (Kernel) Function: The GPR 
model uses a kernel function to learn the relationship 
between the inputs and the hydrodynamic forces. The 
covariance function 𝒌𝒌(𝒙𝒙,𝒙𝒙′)  defines the similarity 
between data points 𝒙𝒙 and 𝒙𝒙′, crucial for predicting forces. 
The most used kernel in this study is the Radial Basis 
Function (RBF) kernel, given by: 

𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 𝜎𝜎𝑓𝑓2 exp �−
��𝑥𝑥−𝑥𝑥′��

2

2𝑙𝑙2
�                  (4) 

where 𝜎𝜎𝑓𝑓2 is the signal variance and 𝑙𝑙 is the length scale. 
This kernel allows the GPR model to capture both smooth 
and rapidly changing dynamics, which are critical in 
underwater environments. 

Prediction Framework: The GPR model predicts 
the forces 𝐅𝐅(𝐭𝐭) acting on the robot at any time 𝒕𝒕, based on 
the input sequence of observations. Given a test input 𝐱𝐱∗, 
the model provides a Gaussian distribution over possible 
values of the force, with mean 𝛍𝛍(𝐱𝐱∗) and variance 𝝈𝝈𝟐𝟐(𝒙𝒙∗). 

• Model Training and Hyperparameter 
Optimization: The GPR model's hyperparameters, inclu-
ding the signal variance 𝝈𝝈𝒇𝒇𝟐𝟐 , length scale 𝒍𝒍 , and noise 
variance 𝛔𝛔𝒏𝒏𝟐𝟐 , are optimized using maximum likelihood 
estimation (MLE). The training data consists of real-time 
sensor measurements from the robot's movements in 
water, and the hyperparameter tuning ensures that the 
model accurately captures the underlying dynamics. 

• Prediction: The output of the GPR model is a 
set of predicted force vectors 𝐅𝐅𝟏𝟏,𝐅𝐅𝟐𝟐, … ,𝐅𝐅𝐋𝐋 ∈ 𝐑𝐑𝟐𝟐, where 𝐋𝐋 
is the prediction length, spanning various time intervals. 
The model primarily predicts forces in the 𝐱𝐱  and 𝐲𝐲 
directions, as forces in the 𝐳𝐳 -axis (due to gravity and 
buoyancy) are assumed to remain constant. 

The GPR-based architecture provides robust and 
adaptive force predictions by leveraging the uncertainty 
quantification inherent in Gaussian Processes. Unlike 
traditional machine learning models that offer point 
estimates, the GPR model offers a distribution of possible 
outcomes, making it well-suited for underwater 
environments where sensor noise and dynamic fluid 
conditions can introduce significant uncertainty. 

6. Learning Objective 

The learning objective of the GPR model is to 
minimize the prediction error between the predicted force 
vectors and the ground truth measurements while 
accounting for uncertainty. The process involves the 
following steps: 

• Dataset Preparation: 
The dataset consists of sequences of observation 

data along with corresponding force measurements. The 
data is divided into training, validation, and test sets. 
Formally, the dataset can be represented as: 

𝒟𝒟 ≔ ��𝐹𝐹0
𝑗𝑗 , 𝑥𝑥0

𝑗𝑗�, �𝐹𝐹1
𝑗𝑗, 𝑥𝑥1

𝑗𝑗�, … , �𝐹𝐹𝐿𝐿
𝑗𝑗 , 𝑥𝑥𝐿𝐿

𝑗𝑗��
𝑗𝑗=1

𝑀𝑀
       (5) 

where Fi
j is the predicted force at time step i for trajectory 

j, xi
j is the corresponding input observation, L is the total 

number of time steps per trajectory, and M is the number 
of trajectories in the dataset. 

• Loss Function: 
In GPR, the model outputs a mean prediction along 

with a variance estimate for the force vector at each time 
step. The loss function takes into account both the 
prediction error and the uncertainty estimate. The 
negative log marginal likelihood (NLML) is commonly 
used as the objective function to optimize GPR models, 
which maximizes the likelihood of the observed data 
given the predicted mean and covariance. 
The NLML loss function is formulated as: 

ℒ(θ) = 1
2

y⊤Kθ
−1y + 1

2
log|Kθ| + n

2
log(2π)       (6) 

where 𝐲𝐲  represents the observed forces, 𝐾𝐾𝜃𝜃  is the 
covariance matrix parameterized by 𝜃𝜃 (which includes the 
signal variance 𝜎𝜎𝑓𝑓2, length scale 𝑙𝑙, and noise variance 𝜎𝜎𝑛𝑛2, 
and 𝑛𝑛  is the number of data points. Minimizing this 
function allows the model to fit the data while properly 
accounting for uncertainty. 

•Backpropagation and Gradient Calculation:  
Unlike traditional neural networks, GPR uses 

analytical gradients for hyperparameter optimization. The 
gradient of the negative log marginal likelihood with 
respect to the hyperparameters θ is computed to update 
the kernel's parameters: 

𝜕𝜕ℒ(𝜃𝜃)
𝜕𝜕𝜃𝜃

= 1
2
𝒚𝒚⊤𝐾𝐾𝜃𝜃−1

𝜕𝜕𝐾𝐾𝜃𝜃
𝜕𝜕𝜃𝜃

𝐾𝐾𝜃𝜃−1𝒚𝒚 −
1
2
𝑇𝑇𝑇𝑇 �𝐾𝐾𝜃𝜃−1

𝜕𝜕𝐾𝐾𝜃𝜃
𝜕𝜕𝜃𝜃
�      (7) 

This gradient allows for backpropagation through 
the kernel's hyperparameters, ensuring that the model can 
adjust the signal variance, length scale, and noise variance 
to improve predictions. 

• Optimization: 
Hyperparameter optimization is typically carried 

out using gradient-based optimization algorithms such as 
the Adam optimizer or L-BFGS. These methods update 
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the hyperparameters of the covariance function by 
minimizing the NLML loss. During training, the model 
adjusts the kernel parameters iteratively to maximize the 
likelihood of the observed data while minimizing 
prediction uncertainty. 

The overall objective of the GPR-based model is 
not only to minimize the prediction error but also to 
ensure that the uncertainty estimates are well-calibrated, 
which is particularly crucial in dynamic environments like 
underwater robotics. 

7. Experiments 

7.1. Setup: 

To train and evaluate our GPR-based hydrody-
namic force prediction model, we conducted a series of 
controlled towing experiments. These experiments were 
designed to provide a rich dataset for training, validation, 
and testing, ensuring the accurate modeling of the robot’s 
interactions with the surrounding fluid. The key 
components of the experimental setup are described 
below [9,10,11]: 

• Pool Environment: 
All experiments were conducted in a controlled 

pool environment, ensuring repeatable and consistent 
hydrodynamic conditions. The water temperature and 
depth were maintained constant throughout the experi-
ments to avoid external variability in fluid dynamics. 

• Towing Mechanism: 
A specialized towing mechanism was employed, 

capable of pulling the robot at varying speeds and 
directions. The towing speeds ranged from 0.2 m/s to 0.5 
m/s, with increments of 0.1 m/s. The robot was towed in 
three primary directions: along the x-axis, y-axis, and 
diagonally at 45 degrees (xy). These  variations  allowed 
us to capture diverse motion scenarios, which are critical 
for training the GPR model. 

 

• Force Sensors:  
High-precision force sensors were installed on the 

robot to capture hydrodynamic forces acting on the robot 
in real-time. The sensors recorded force data along the x, 
y, and z axes. Since the GPR model is focused on 
predicting forces in the x and y directions (with z-axis 
forces assumed constant), this detailed sensor data 
provides a comprehensive training dataset. 

• Robot Configuration: 
To simulate different locomotion scenarios, the 

quadruped robot’s limb configurations were varied by 
adjusting joint angles. The robot was tested under a range 
of movement patterns, providing sufficient input diversity 
for the GPR model to learn fluid-structure interactions 
effectively. 

 

 
 

Fig. 2. Robot configuration 
 

The dataset derived from these experiments 
contains a sequence of kinematic observations (joint 
angles and velocities) paired with corresponding force 
measurements. This comprehensive dataset is critical for 
training the GPR model to predict hydrodynamic forces 
while quantifying the uncertainty in the predictions. 

The dataset was collected during the towing expe-
riments described. These experiments were specifically 
designed to measure the forces acting on the quadruped robot 
across 192 distinct towing speeds and joint configurations. 

 
Table 1. Input and output formats of the Datasets 

Expr. Input Output 

Expr1 Condition x: [batch, 100, 4] and Initial: 𝐹𝐹0 [batch, 2] [batch, 100, 2] 

Expr2 Condition x: [batch, 50, 4] and Initial: 𝐹𝐹0  [batch, 2] [batch, 50, 2] 

Expr3 Condition x: [batch, 50, 4] and Initial: 𝐹𝐹0  [batch, 2] [batch, 50, 2] 

 
Note: batch refers to the batch size during the training stage. 
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7.2 Dataset 

From Table 1, the dataset is augmented in the 
following ways: 

• Expr1: This experiment extends the time series 
to 100-time steps, representing sequential data of the 
quadruped robot maintaining a constant attitude angle. 
The Gaussian Process Regression (GPR) model is tasked 
with predicting the forces in two axial directions (x and y) 
over these 100-time steps. The focus is on testing the 
GPR’s ability to model the hydrodynamic forces under 
static conditions. 

• Expr2: This experiment highlights the 
comparative predictive capabilities of GPR models under 
variable conditions for online learning. The temporal 
length of each condition is reduced to 10-time steps, ran-
domly selected from the dataset. Additionally, a condition 
variable is concatenated to the input data, varying across 
five distinct scenarios. This setup allows the GPR model 
to generalize across different environmental conditions, 
making it more versatile in predicting forces in dynamic 
contexts. 

• Expr3: This experiment addresses the increased 
complexity of dynamic conditions. Random perturbations 
are introduced at each time step, with magnitudes equal to 
10% of the standard deviation of the respective force 
values. Similar to Expr2, the trajectories are resampled 
across 192 distinct conditions to test how well the GPR 
model adapts to noisy and dynamically changing 
scenarios. This experiment is key to understanding the 
robustness of GPR in environments with variable and 
unpredictable conditions. 

7.3 Model Prediction Performance 

In the following experiments, we evaluate the 
performance of different Gaussian Process Regression 
(GPR) models in predicting dynamic hydrodynamic 
forces on a quadruped robot. We compare the model’s 
predictions with the ground truth using Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE). 
Several kernel configurations, including the Radial Basis 
Function (RBF) and Matern kernels, are tested, along with 
the addition of different noise levels and varying training 
data conditions. 

 
Table 2.  Performance on Different Conditions 

Models MAE-S RMSE-S MAE-C RMSE-C MAE-N RMSE-N 
GPR-RBF 9.8e-3 4.0e-3 4.1e-3 5.0e-3 5.3 6.8 
GPR-Matern 8.3e-3 3.9e-3 3.5e-3 2.8e-3 4.0 5.3 
GPR-RBF 
(Noisy) 

5.4e-3 6.2e-4 2.8e-3 1.5e-3  2.8 4.9 

GPR-Matern 
(Noisy) 

3.7e-4* 5.8e-4* 2.4e-4* 5.1e-5* 2.0* 4.0* 

Note: The suffix -S indicates static conditions in Expr1, -C denotes conditions that change over time in Expr2, 
and -N represents noisy and changing conditions in Expr3. The * symbol is used to highlight the best-performing models. 

 
8. Analysis 

From Table 2, it is evident that GPR models with 
different kernel choices perform well under various 
dynamic conditions. The Matern kernel generally 
outperforms the RBF kernel, especially when the data 
includes variability and noise. This is likely due to the 
Matern kernel’s ability to model rougher functions and 
better capture the underlying complexities of the 
hydrodynamic forces. 

In scenarios with noisy conditions (as in Expr3), 
the GPR-Matern model demonstrates significantly better 
performance, with errors as low as 4.0, making it highly 
suitable for deployment in real-world underwater 
environments where sensor noise is prevalent. 

Additionally, GPR’s uncertainty quantification 
provides a distribution of possible outcomes, which 
proves advantageous in noisy environments. The GPR-
Matern (Noisy) model providing the most accurate and 
robust predictions. 

9. Limitations 

Despite the strengths of GPR, the model’s reliance on a 
large amount of training data and its sensitivity to kernel 
selection can limit real-time applicability. Furthermore, 
GPR's computational complexity may increase as the 
dataset grows. Future work will focus on reducing this 
complexity and testing the model in real-world aquatic 
environments to validate its robustness and performance. 
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Fig. 3. Model Prediction Performance under the different conditions  
with the time sequence length. (a) and (b) present the static force and conditions over time in expr1. (c)  

and (d) illustrate the change in force and conditions over time in expr2. (e) and (f) depict the noisy  
orce dynamics and conditions over time in expr3. In (a), (c), and (e),  

he dot lines mean that the model prediction trajectories 
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10. Conclusions  

This paper introduces a data-driven approach to 
learning complex hydrodynamic models for underwater 
quadruped robots using Gaussian Process Regression 
(GPR). We employed GPR with various kernel functions, 
such as the Radial Basis Function (RBF) and Matern 
kernels, to predict dynamic forces based on kinematic 
trajectories, providing a probabilistic framework for 
estimating hydrodynamic forces. By leveraging the 
model's uncertainty quantification, we enhance the 
robot’s adaptability to changing and noisy environments. 

The proposed GPR model offers a scalable solution 
for underwater robotics, balancing computational effi-
ciency and prediction accuracy. Our experiments showed 
that the GPR model, particularly with the Matern kernel, 
performs well across varying conditions, including static, 
dynamic, and noisy environments, with precise 
predictions of hydrodynamic forces. 
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