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The paper establishes the conditions of numerical stability of a numerical branched con-
tinued fraction using a new method of estimating the relative errors of the computing of
approximants using a backward recurrence algorithm. Based this, the domain of numer-
ical stability of branched continued fractions, which are expansions of Horn’s confluent
hypergeometric functions Hg with real parameters, is constructed. In addition, the behav-
ior of the relative errors of computing the approximants of branched continued fraction
using the backward recurrence algorithm and the algorithm of continuants was experimen-
tally investigated. The obtained results illustrate the numerical stability of the backward
recurrence algorithm.
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1. Introduction

Continued fractions and their multidimensional generalizations — branched continued fractions are a
powerful mathematical tool for representing and approximating special functions [1-3|. In the an-
alytical theory of branched continued fractions, the branched continued fraction expansions of the
hypergeometric functions of Appell [4-8], Lauricella 9], Saran [10,11], Horn [12-19], Gauss 20|, and
generalized hypergeometric functions |21, 22| were constructed and studied. Compared to power se-
ries, in many cases these expansions converge faster and have wider regions of convergence. Also, the
advantage of using continued fractions and branched continued fractions is the property of numerical
stability, which consists in the stability of algorithms for computing their approximants to rounding
errors and ensures non-accumulation or insignificant accumulation of errors arising in the process of
computations [1,2,23-25].

Works [26-30] are devoted to the study of the stability of algorithms for computing approximants
of continued fractions. The problem of numerical stability of branched continued fractions, the approx-
imants of which are computed by the backward recurrence algorithm, was studied in [1,31,32]. Also,
in the analytical theory of branched continued fractions, the stability of numerical branched continued
fractions to perturbations of their elements is investigated. In works [33-36], estimates of the errors
of approximants of branched continued fractions, which arise when their elements are perturbed, were
obtained, and sets of resistance to perturbations were constructed. The numerical stability of contin-
ued fractions and branched continued fractions, which are expansions of some special functions, was
investigated in [8,23,37].

This paper investigates the numerical stability of branched continued fractions, which are expan-
sions of ratios of Horn’s confluent hypergeometric functions Hg.

Consider the Horn’s confluent hypergeometric function Hg [38], which is defined as a double power
series of the form

1 2] <
— z —+00
47 2 )
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where a, ¢ are complex numbers, ¢ & {0, —1, —2,...}, () is the Pochhammer symbol, z = (21, z2) € C2.
Let Ip ={1,2,3} and for k > 1
Iy, = {i(k) = (io, i1, .- ,ig): 0 € Lo, 2 — [(4p—1 — 1)/2] <dp <3 —[(dr—1 —1)/2], 1 <7 <k}
In the work [15], using a generalization of the classical method of constructing a Gaussian fraction,
for each ig € Iy, the expansions of the following ratios
Hg(a, c;z)
Hg(a + 6}, + 02, ¢+ 02 + 03 5 2)

10’ 20’

into branched continued fractions

3—[(io—1)/2] Pi1y(z)
RS T
1=2-160=D/2 Q1) + 2

Pi(2) (z) ’ M

in=2- (@ -1)/2 Qi2) + -

where 5{0 is the Pochhammer symbol, [-] denotes an integer part, were obtained. The elements of the
branched continued fraction (1) are determined by the formulas, for i(1) € I,

_2a+1
~2 =10 =3,
C
2c — 1
e ot D), =2 =2
Fi(z) = et 1) (2)

22, Z‘0 :27 il :37

21, Z‘0 = 17 il :27

c(c+1)

a
2_7 Z‘0:37 i1:17
¢ a

22, iO :37 1 :27

2c(c+1)
fori(k +1) € Iyy1, k> 1,

2at k- xS+ 1)

ir

c+k—Sklst
z2

21, Zk = 17 Z.k‘-i-l = 27

r=0 Yi,

- 7ik:17ik 1:37
c+k—S kLl "

r=0 i,

(2c—a+k+>F20 (0 —200)) (a+k— 20 63 +1)

ir

(c+k—F g0 ) (ct+k—Sr g6k +1)

21, Zk = 27 ik)-ﬁ-l = 27

Pi(k—i—l)(z) = - c—a-+ Zf;ol (5% — 52-17.) s i = 2. gy =3 (3)
(c+h—kgal ) (c+h—rgob +1) 7 7 7 ’
a+k—2f;é5i . 3 1
, U =9, 1k =4
2+ k- o)) "
k—1 ¢3
ka_—li— k— ZT:O 5“ — 29, i =3, g1 = 2,
for ig € Iy,
a o3
Qig =1 — 5{;51'0’ )
and, for i(k) € Iy, k > 1,
atk—Y1)0
Qi) = 1 — =0 -0 (5)
20c+k—>72000)
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2. Formulas of relative errors of computing of approximants of branched continued
fraction

Let ip be an arbitrary index in Ip, Py = Pi(k)(zo), i(k) € Ix, k > 1, be the values of the partial
numerators of the branched continued fraction (1) at an arbitrary fixed point zy from its domain of
convergence (see [15]). Then

o 3-[(i0—1)/2] P

) — (). ¢ 6

f Qio +i :2_%:_1)/2} e R
T+ Y. o

Q’l(2

i0=2—[(i1—1)/2]
is the value of the branched continued fraction (1) at the point z.
Let n be an arbitrary natural number. To compute the nth approximant

(i) R Py
R =Qut > (172 (7)
i1=2—[(i0—1)/2] O Z 1510)
i9=2—[(i1—1)/2] Qi) + . 3-lina-1)/2 p

4 Qi(n)
in=2—[(in_1-1)/2] 1)
of the branched continued fraction (6) we will use the backward recurrence algorithm, which consists

in computing the quantities

3—[(ix—1)/2] P(k+1)

Gitey = Qir) + > EONN
ipr1=2—[(1x—1)/2] Ti(k+1)
with initial condition G = Qi(n), i(n) € I,. Then f,(f Gz(g).
Let the computation of the nth approximant (7) lead to roundoff errors

, i(k)ely, k=n—-1n-2,...,0,

Piw — By
553) = M7 Py #0, (k) €ly, 1<k<n,
i(k)

@ _ Qiw) — Qi)

g; - ) Qz 7é 07 i(k) €1, 9 0 < k < n,
i(k) Qi(k) (k) ( ) k
of elements Pj), Qi) respectively, where PZ-( k) = RN(Pig)), Qi) = RN(Q;x)), where RN(-) is the

roundoff functlon. If £ =x =0, then we assume that gl ) =0.

The value f,sio) = C?EO ), where
5[l 1-1)/2) ]5,

i(k)ely, k=n—-1n-2,...,0,

Aln)

with initial condition Gi? ) = =P, i(n)» i the approximate value of the nth approximant fn

Definition 1. A branched continued fraction (6) is called numerical stable if for an arbitrary € > 0
there exists dc > 0 such that for each Py, € C, i(k) € Iy, 1 < k < n, such that

Pite) — Piw)
Pik)
and each Qi(k) € C,i(k) € I, 0 < k < n, such that
Qitky — Qik
Qi(k)
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the inequality holds
f(io) _ p(io)

n n

#io)

Let

be the relative errors of the quantities Gg(k)), i(k) € I, 0 < k < n. We prove that for the relative errors
(@) i(k) € I, 0 < k < n, the formulas hold

i(k),n’
G .
55(73)7” = 52(.83) i(n) € Ip,

and, for i(k) € I, 0 <k <n

3— [(zk 1)/2] 3—[(ix—1)/2] (n) (1+E(P) )
(@) 9i(k+1) i(k+1)
Eilk)m <1_ k+1 1+5 > (S -1 (8
inp1=2—[(ix—1)/2) 2k+1:2—[<ik—1>/21 T itk 1)n

where 62(86)) i(k) € Iy, 0 <k <n,and ¢, itk )) i(k) € I, 1 < k < n, are the relative errors of the elements

of nth approximant (7), and the quantities gg(k)), i(k) € I, 1 < k < n, are defined by
o) = Pitk)

ik) A (n)

Gie-1 i)

, ik)yely, 1<k<n.

Since for any i(n) € I,
) = Qz(n )s z(n Qz (n)

then Ez('(ci)) .= gl(.(%)) i(n) € I,. For any 0 < k <n —1 and i(k) € I we have

o 1, B p
Eitk)m —) (Qi(k) + > ~(n) ) -1

(n) n
Gk is1=2— (s —1)/2 Gitrr1)
sl6-0/2 p (14 eP)
_ 1 Qi (1 . 6(( ))) + (k1) ( (k+1)) 1
a . . G @+ )
i(k) ir1=2—[(ix—1)/2] “i(k+1) i(k+1),n
3—[(ixg—1)/2 (P)
o e s [(i5—1)/2) Paen(1+eilly) 1
= om Ui GO G (14 0 ‘
i(k) ipr1=2—[(ix—1)/2] “Ti(k) Z(k+1)( * ei(k'f‘l)v")

Taking into account

—[(ir—1)/2]
Qi(k) 1 (n) ’ Pikt1)
= Giwy — > @)

W~ A
e =2 (012 Gighsn)
3—[(ip,—
vl p
=1- () ()
tpr1=2—[(ix—1)/2] G( )Gz(k-i-l)
3 [(ix—1)/2

_ (n)
=1- Z Gi(k+1)

iky1=2-[(ix—1)/2]

we get (8).
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Consistently using the recurrence formulas (8), we obtain the formula for the relative error of the

quantities GZ(.?)), i(k) € I, 0 < k < n, in the form of a branched continued fraction

(@) S @
Eim = |1~ E : ey | L H&0) —1
ipr1=2—[(ix—1)/2]

. —2—% /2 5[l —1)/2 L
B 1- 3 @ a+@, )

9i(k+2) i(k+1
ig2=2—[(ir+1—1)/2]
3—[(in_1-1)/2] () (P)
+ : 14+@ 7
in=2—[(in—1-1)/2] i(n)

where i(k) € I, 0 < k < n — 1, herewith sg((i))m = 51('(%))’ i(n) € I,

Substituting k£ = 0 into formula (9), we obtain formula
f5 = £
fy(zio)

3—[(i0—1)/2] ) @

= (1 - Y gi(1)> (1+7) -1 (10)
i1=2—[(io—1)/2]

3—[(io—1)/2] (n) (1+ EZ(P>) 3—[(in-1-1)/2] gl((nrz) (1+ E(P>)

9i(1) 1) Z i(n)

L 3—[(i1—1)/2] + T+ 4 1+ @
i1=2—[(i0—1)/2] <1 _ Z glgn)> (1+ E(Q))) in=2—[(in-1-1)/2] i(n)

e

20,1

_|_
2)
ip=2—[(i1—-1)/2]

for the relative error of the nth approximant (7).

3. Sufficient conditions for the numerical stability of a numerical branched continued
fraction

Let us prove two auxiliary lemmas.

Lemma 1. Let p and g be the positive real numbers. The modified approximant

Tn(w)=q+7p+7p+...+q+—i (11)
n
of the continued fraction
o
q + q +
takes a positive value if
4p < ¢2, (12)
and one of the conditions
o> ZIENVE AP (13)
or 2
w< —q (14)

is fulfilled.
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Proof. The finite continued fraction (11) is equal to

—p/¢®  —p/d —p/q?
q<1—|— L +"'+Tw/q>' (15)

n

If inequality (12) holds, then the partial numerators of the continued fraction (15) can be written in
the form

p/q* = d(1—d),
where
g 1—+/1—4p/¢?
= 5 .

Consider the periodic continued fraction
—d(1—d) —d(1-4d)

1
+ 1 + 1 +

(16)
Let n be an arbitrary natural number. Let
—d(1—d) —d(1-4d) —d(1—d)

1+ 1 +777+ 1

n

=1+

be the nth approximant of the continued fraction (16), A,, B, be its nth numerator and nth denom-
inator, respectively. It is known (see [3, Theorem 3.2|) that the sequence of approximants {hy,}5°; is
monotonically decreasing and bounded from below

1—/1—4d(1—d)

1> hy > hpe1 > 5 , (17)
the continued fraction (16) converges to the value
1—+/1—-4d(1 —d LI ,
5 ( ), and B, =Y d(1-d)"", Ay=Bu.
=0
Then
Ap+9A, 1 B, + 4B
To(w) = g — = g
Bn + EBn—l Bn + EBn—l
It is clear that T}, (w) > 0, if
w  Bpi w _ Bpp
—= or ——> .
q By, q By,
It follows from inequalities (17) that T,,(w) > 0, if
1—+/1—4d(1—d
e < ( ) or — ¥ > 1,
q 2 q
that is, inequalities (13) or (14) hold. n
Lemma 2. Let
-p P

be a periodic continued fraction whose elements satisfy the inequality (12). Then the sequence of
modified approximants

2 a1, (19)

of the continued fraction (18) converges to the value:

1) g+ (¢— ¢ —4p)/2, ifw # —(q+\/q> — 4p)/2 and 4p < ¢*;
2) qo+ (¢+vq*>—4p)/2, ifw=—(q+/q> — 4p)/2 and 4p < ¢*;

3) qo+q/2, if 4p = ¢*.
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Proof. Consider the transformations

to(w) =qo —w, tw)=—p/(q+w). (20)
The composition

toototo...ot(w)
N—— ——

n
of transformations (20) is the nth modified approximant S, (w) of the continuous fraction (18).

Let 4p < ¢®. Then the transformation t(w) = —p/(q + w) is a fractional-linear mapping of the
hyperbolic type with fixed points w; = (—q + (—1)"*1\/¢? — 4p)/2, i € {1,2}, moreover, w; is an
attractive point.

If w # wo, then

lim (qo — Sp(w)) = wi.

n—o0

Thus
_JiZ_4
lim S, (w) =qo— w1 =qo+ KA .
n—00 2
If w = w9, then
nh_)n;o(qo — Sp(w)) = ws.

Thus

: q+ g —4p
lim S,(w)=q—w2=¢q+ ——"——.

n—oo 2

Let 4p = ¢*. In this case w; = wy = —¢/2 and
lim (g0 — Si(w)) = —4/2.

n—
Then
lim Sy, (w) =qo+ ¢q/2
n—oo
for arbitrary values w. ]

Theorem 1. Let ig € Iy and let there exist non-negative constants 0 < a < 1 and 0 < 8 < 1 such
that

|€z(k |<a, i(k) ey, 1<k<n,n=>1, and |€z(k | <B,i(k) el 0<k<n,n>=1  (21)
A branched continued fraction (6) is numerlcaﬂy stable if there exists a positive constant n such that

3—[(ik—1—1)/2]

0
|g(k| 1<k<n, nx=l1, (22)
> i 1
in=2—[(in_1-1)/2) o

moreover, the constants a, (3, n satisfy the inequality
An(L+n)(1+a) < (1+2n)%(1 - B)% (23)

In addition, for the relative error of the nth approximant, the estimate
1+ 8+208 — /(1 +20)*(1 — )2 — dn(1 +n)(1 + o)

e i \\ 20+ ; > 1, (24)
n)
is valid, if 4n(1 +n)(1 4+ ) < (1 +2n)3(1 — B)?, and
ﬁ\/1+a+\/a+ﬁ2—6) L1 (25)

|’°’| Vita+ya+pB2-05)
if dn(1 +n)(1 +a) = (1+2n)%(1 — B)%.

Proof. Let iy € Iy and n be an arbitrary natural number. Using formulas (8), we show that estimates

€ 1< B, iln) € L, (26)
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and
|€z(k ),n | < Sn—k(w)7 Z(k) €ly, 0<k<n-—1, (27)

are valid for relative errors 5((13) i(k) € Ik, 0 < k < n, of values Gg(k)) i(k) € I, 0 < k < n. Here the

approximants S,_x(w), i(k) € I, 0 < k <n — 1, are defined by (19), where

1 1 L+2n n
=B——"(1-8), p= 1+ = 1-8), w= 1—
m=F-1=(1-0). p= 1+n( 0). 4=Tro(1-f). w=-ri=(1-p)
Note that if » > 0 and inequality (23) holds, then the elements p, g of the finite continued fraction
n —p —p —p
Tt | ——(1 — —_ = .. —
"’“1< e 6)> ¢+ qg+  +qtw
n—k—1

satisfy conditions (12) and (13) of Lemma 1. Then

Ui
Top—1 | ———(1 — >0, 0<k<n—2.
o (-r-0-9)
If £ =n we have (G) ©
|€i(n),n| = |€i(n)| < B,
which proves the estimate (26).
We prove the estimate (27) by induction on k. For k =n — 1 we have

3—[(in_1-1)/2] " © 3—[(in—1-1)/2] (Ew)) (1+€(( )))
8l = (1— > 9z<n))(1+5( )+ > Lo
in=2—[(in_1—-1)/2] in=2—((in-1-1)/2] Ci(n)n
3—[(in_1-1)/2] 1—|-€(P)
(@) (n) [~ "in) (@)
S G- T Z Yi(n) (1 () (1 +€i(n—1))>
in=2—[(in_1—1)/2] €itn)n
3—[(in—1-1)/2 14 P
(n) i(n)
< |€z(n 1)‘ + Z ‘gz(n)| ( 1 (@) + |€z(n 1) ‘)
in=2—[(in_1-1)/2] + 5i(n),n
n (lta
< -1
SOt L+n <1 BT 5)
(14 a)
TI 1+77( —p
B ( B)+—— R 1(w)
Assume that estimate (27) holds for k =m+1, 0 < m < n — 2, and prove it for k = m. We have
3—[(im—1)/2] 3=llim=1)/2 4 (1+ ) )
@ | _ (@) (n) Ji(m+1) i(m+1)
|Ei(m),n‘ = (1 +Ei(m)) (1 - Z gi(m+1)> T Z 14+ £@ -1
im41=2[(im—1)/2] im+1=2=[(im—1)/2] Ci(m+1),n

AN g — (1 + e
i(m) i(m+1) (@) i(m)
im41=2—[m=1)/2] LH Ciminn

8 [(im—1)/2] (P)
@ 3 (n) ( 14 €i6mp1) @ )>l

(P)

@, LF Cigma) @

< |Ei(m)‘ + Z ‘gi(m—l—l)‘ < ) -1+ |Ei(m)|)

b 1=2—[(im—1)/2] i(m+1),n

1+« L1+ «)

(e ) s g

K ‘Ez m+1) n| " 1= ‘Ez m+1) n‘
<o g gt Ealre) e

1+ A -p) + FEA-pH + + 1-8

n—m—1
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—gp— 2 2 TP g ).

n—m

Substituting k£ = 0 into formula (27), we obtain formula

|€(f) < Sp(w),

10,1
for the relative error of the nth approximant (6), where S, (w) is defined by (19).
For the difference between approximants Sy41(w) and S, (w), the formula

n(, 2
prw+qw+p
Sn—l—l(w) - Sn(w) = ( n—1 12 )
Tn(w) =0 Ti (w)
is valid. If » > 0 and the inequality (23) holds, then conditions (12) and (13) of Lemma 1 are fulfilled.
Then

P (w? + qw + p)

—1
T () TT=a T2(w)
and sequence {Sy,(w)}5°, increases monotonically. Therefore, for the relative error of the nth approx-
imant of the branched continued fraction (6), the estimate holds

el <8,

%0,

where

S = lim S,(w).

n—oo

Let (14 2n)%(1 — B8)? —4n(1 +n)(1 + ) > 0. Since

u};/,é_qu\/q?—ﬁlp
2 )

then according to Lemma 2
g—Va@—4p _145+28 - (1 +20)°(1 = B)° — (1 +n)(1+a)
2 2(1+n)

This proves the validity of the estimate (24).
Consider the function

S=qy+

_1+8+mB— (1 +20)°(A - )2 —4n(1 +n)(1 + )

Since
ali>n-l}0 (,0(0[, ﬁ) - 0’
B—+0

then for any & > 0 there exists d. > 0 such that for all a > OAand B > 0 such that \/a2 + 32 < 4., the
inequality (a, B) < € is valid. If & < 6./+/2, then for each Py € C,i(k) € Iy, 1 < k < n, such that

Oe
\/57

and each Qi(k) € C, i(k) € I, 0 < k < n, such that

By — P
Zitk) Tk |y i(k) € Iy, 1<k<n,

Py

Qitk) — Qi) Oe
Cik) 2R <0<« P2 (k) e, 0<k<n,
Qi(k) V2 (k) & I
the inequality
e < ol B) <,

that proves the numerical stability of the branched continued fraction (6).
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Assume that (1 +27)%(1 — 8)? —4n(1 +n)(1 + «) = 0. Then

VA +a)(a+B2—-p8)—a—p2-p)
2(a+B(2—B))

and according to Lemma 2

1-8 _BVIitat/a+pB2-5)
1+n)  VIta+/a+pBE-H)

Thus, for the relative error of the computation of the nth approximant of the branched continued
fraction (6), the estimate (25) is valid and, as in the previous case, we obtain its numerical stability. m

. q
1 n = —_ =
im Sy, (w) qo+2 6—1—2

n—oo

4. The set of numerical stability of branched continued fraction expansions of ratios
of Horn's confluent hypergeometric functions Hg

Definition 2. A functional branched continued fraction (1) is called numerically stable at the point
z = 7o € Q) if the numerical branched continued fraction (6) is numerically stable.

Definition 3. A set Q is called a set of numerical stability of the branched continued fraction (1) if
it is numerically stable at every point z € Q.

The following theorem is true.
Theorem 2. Let ig € Iy and a, ¢ be the real constants such that
a>0, c>a+1+4d. (28)
A set

N

Q:{Z€R2Z — L1 <2 <£0,-Lo
where L1, Lo are positive constants such that
2L < c+1, (29)

is a set of numerical stability of the branched continued fraction (1), if the relative errors of the
computation of its elements satisfy the conditions (21) and the inequality (23) holds, where

20c+ 1)Ly c+1+ Lo
C(C+1—L2)’C+1—2L2 '

In addition, for the relative error of its nth approximants, the estimates (24) and (25) are valid.

22<0}7

7 = max {2L1 +

Proof. Let ig € Iy, n be an arbitrary natural number and z be an arbitrary fixed point in Q. If the
conditions (28), (29) are valid, then for the quantities
™) 3—[(ik—1)/2] )
Gy i(k) €Ly, 1<k<n, and > |9ihsy (@), i(k) € Ik, 1<k <n—1,
ipr1=2—[(ix—1)/2]
the estimates

Glo@ =1, k) ely, 1<k<n, ix#3,

GE&))(Z) 2 % >0, i(k)el, 1<k<n, i=3,
3—[(ix—1)/2]
> !gf&)ﬂ)(Z)\ <%, i(k)ely, 1<k<n—1,
inp1=2—[(ik—1)/2] g
are valid (see, [15, Theorem 3.2]).
We prove that
3—[(io—1)/2]
Yoo i@ <, el (30)

in=2-1(io~1)/2] L+n
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Note that the inequality (30) is equivalent to

3— [(&1 /2] Mén ‘G(n)(z)‘_ 3—[(7502—:1)/2} M .
| 20

|
i1=2—[(i0—1)/2] |Gi 1H\Z i1=2—[(i0—1)/2] ‘G (z |
If ig = 1, then
)| = ) = v 3 )y 20 T,j)'zl' 'f,;' > 1,
=2 G1 4 (2) cGiy(z)  cGis(2)
3
(n) |PLi, (2)]
‘Gl (Z)‘ - Z (n)l Ql — 17
21:2 17’i1 (Z)‘
and
i Pui(2)| 2@+ Dla] |zl _ 2@+ 1L 2(c+ 1D
=A@ G cGV() c c(c+1— Ly)
2(6 + 1)L2
oLy + T2 o
S cle+1—Loy)
Thus,
= w n
g\gl,il(zﬂ <Ti
1=
If ig = 2, then
(2¢ —a)(a+ 1)|z] (c—a)|z|

3
n n P i1
G5V ()| = GS(2) = Qo+ Y G?;L) =) _ 1y

=68 (2) e+ 1)GYY () cle+ )G (2)

3
P. i1 \Z
|G§n)(z)‘ —12% =Q2=1,

2,1
and
Z |P2 i (2) _ (2¢ —a)(a+ 1)|z| n (c —a)|z|
o G ,1<z> cle+1)G59(@)  cle+1)Gy5(2)
(2c—a)(a+ 1)Ly 2(c —a)Lo 2(c+ 1)L
<2l 4+ ——"—=<
c(c+1) clc+1— Loy) clc+1— Loy)
Thus,
Z ‘92 i
i1=2 ' 1 + 77
If i = 3, then
n P (z a a alz
G4 (2)| = G Q3+Z B (2) b - |2|(n)
i1=1 G3 1(2) 2cGy(z) 2c(c+1)G3,(z)
T
2¢ 9c(c+ 1)@&“2)@) 2 2c(c+1) 2(c+1)
2
n Ps; (z) a alz a alL c+1-—2L
EROEDY % T2 % ST C(c+21) 2(c+1) .
o1 G3 (2) c(c+1)Gy5(z)
and
2 [Py, ()] a alz)| a als c+1+ Lo
Z (n) - o oI 2% " 2¢(c+1) < 2(c+1)
o1 G, (z)  2cGii(z)  2c(c+1)Gy5(2)

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1152-1166 (2024)



Numerical stability of the branched continued fraction expansions of the ratios of Horn's . .. 1163

_C+1+L20+1—2L2<C+1—2L2
e+ 1-2Ly 2(c+1) T 2(c+1)

Thus,

2
(n) n
2 ‘93,i1(z)| < 1+7
i1=1
Finally, according to the conditions (21)—(23) of Theorem 1, for each iy € Iy, the set € is the set
of numerical stability of the branched continued fraction (1), in addition, the estimates (24) and (25)

are valid for the relative error of its nth approximants. [

5. Numerical experiments

In the analytical theory of branched continued fractions, there are two algorithms for computing
approximants: the backward recurrence algorithm and the algorithm of continuants [1,39]. For ig = 1,
let us investigate the errors of computing the approximants of the branched continued fraction (1) using

1. x 10744
6.x 107144
8. x 10714 5. % 107144
4.x 107144
6.x 1071 M

w

relative error
relative error

b VA a )
x 107144
4. %107 \/W v
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Fig. 1. Relative errors of the computing of nth approximants of (1).
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these algorithms. For computations, we will use floating-point arithmetic (IEEE 754-2019 standard)
with t = 15 accuracy and rounding mode to the nearest [25]. Figures la and 1b show the computation
errors of the first 100 and 1000 approximants, respectively, at the point z = (—1.5,—1.0) for the
parameters ¢ = 1 and ¢ = 3. Similarly, Figures 1¢ and 1d show the computation errors of the first
100 and 1000 approximants, respectively, at the point z = (—10.0, —2.0) for the parameters a = 1 and
c=3.

Numerical experiments show that the backward recurrence algorithm is stability to the accumula-
tion of errors, and the maximum value of the relative error of the approximant computation does not
exceed the rounding unit u = 0.5 - 10!~*, which ensures high accuracy of computations. Instead, the
errors of approximant computations using the algorithm of continuants tend to accumulate and exceed
the value of the rounding unit.

6. Conclusions

The formulas for the relative errors of calculating the approximant of the branched continued fractions
using the backward recurrence algorithm have been established. The obtained formulas are shown in
the form of branched continued fractions (10). Using the methods of the analytical theory of continued
fractions, estimates of these errors in the form of periodic continued fractions were obtained and the
conditions for numerical stability of a branched continued fractions were established. The obtained
results are used to study of the stability of the branched continued fraction expansions of the ratios
of Horn’s confluent hypergeometric functions Hg with real parameters in the region of convergence.
Further studies on the numerical stability of these expansions with complex parameters of the Horn’s
confluent hypergeometric function Hg are relevant.
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OGuuncnoBanbHa CTIRKICTb FISICTUX SIAHLIOFOBUX ApP000BUX
pPO3BMHEHb BiiHOLLEHb BUPOAXKEHUNX rinepreomMmeTpudHmnx
cpyHkuii NopHa Hg

Cnagyn B. P, Tyurpummus M. B.2, Kpasnis B. B.3, Pycun P. C.3

! Hayionanrvruti ynisepcumem “JIveiecvra noaimexnixa’,
eyn. C. Bandepu, 12, 79013, Jlveis, Yxpaina
2 Bazidnoykpaincoruti nayionavrul yrisepcumen,
eya. JIveiecvka, 11, 46009, Teproniav, Ykpaina
3 puxapnamevrutds nayionarviutd ynisepcumem imeni Bacuas Cmegdanuxa,
eya. Hlesuenxa, 57, 76018, Isaro-Dparxiscor, Yrpaira

B pob6oTi, BUKOpUCTOBYIOYMM HOBUiT METO/T OIMIHKHU BiITHOCHUX TMOXUOOK OOYUMC/ICHHS aIllpOK-
CHMAaHT 33 JIOIMOMOIrOI0 ODEPHEHOI'0 PEKYPEHTHOI'O aJrOPUTMY, BCTAHOBJIEHO YMOBH 0O0-
YUCIOBAJIBHOI CTIfIKOCTI 9MCJIOBOTO TI/LISICTOTO JIAHITIOIOBOTO apoby. BukopucroByrodn
X, mO0OYyI0BAHO 00/IACTH OOYMCIIIOBAJIBHOI CTIHKOCTI TJISICTAX JIAHIIOTOBUX IPOOiB, sKi
€ DO3BUHEHHSIMH BHPOJKeHUX rinepreomerpudnux byskniii I'opua Hg 3 aificaumn ma-
pamerpamu. OKpiM TOTO, €KCIIEPUMEHTAIBHO JIOC/I?KEHO IIOBEJIHKY BiIHOCHUX HOXHUOOK
OOYHUCIEHHST alPOKCUMAHT TiJIJIICTOrO JIAHITIOTOBOTO JIPOOY 3a JTOTIOMOT0I0 00EpPHEHOTO pe-
KYPEHTHOTO AJITOPUTMY Ta aJropuTMy KOHTmHYyaHT. OTpuMaHi pe3y/bTaTh LIIOCTPYIOTH
CTIKiCTE OGEPHEHOTO PEKYPEHTHOTO AJTOPUTMY.

Kntouosi cnosa: ziaascmul aanuytozosutl 0pio; zinepzecomempuuna dynxyis Lopra; wu-
CEALHA ANPOKCUMAULA; NOTUOKA 3GOKPY2NEHHA.
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