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In order to calculate the time dependence of polar coordinates of relative motion in the
problem of two bodies in the analytical form it was proposed variants of iterative algo-
rithms with fast convergence, which are based on the usage of approximating functions.
It was shown that an independent determining the time dependence of radial coordinate
in the elliptical motion, as well as at large distance from the pericenter in the case of
the hyperbolic motion yields good convergence using the method of ordinary successive
iterations.
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1. Introduction

As it was known from the celestial mechanics, the relative motion of the system of two point gravitating
bodies with masses my and my occurs by Keplerian orbits |1, 2]
p=p{l+e-cosv}! (1)

where p and v are polar coordinates, and the focal parameter p and eccentricity e are determined by
the masses of bodies and the motion integrals — angular momentum 1 and energy &:

p=DPu K™ e= {1+25l2u_3K_2}1/2. (2)
Here K = G(my +ma), G is the gravitational constant, u = mima(my + mso)~! is the reduced mass.
Using the definition of angular momentum

dv
1=pp’—n 3
pp’ oo, (3)
where n is the unit normal vector to the plane of the orbit, using equation (1) and the first of equa-

tions (2), we obtain equation for the time dependence of true anomaly v(¢) in the form
v(t)
pPPK 12 / [1+e-cosv]2dv =t. (4)
0

Here used the initial condition v(0) = 0, therefore equation (4) determines the time of motion from
the pericenter to the point of orbit with the given value of anomaly v(¢).

The integral in equation (4) is expressed in elementary functions, but it has a different images
depending on the eccentricity value. The trivial case e = 0 corresponds to the uniform motion by
circular orbit of the radius p with the angular velocity w, = K 1219312 w(t) = wpt. At the nonzero
eccentricities, the integral in equation (4) is calculated using the substitution x = tan(v/2). In the
case e = 1 (at £ = 0) the motion occurs by the parabolic orbit, and equation (4) takes the form

v 1 v13  2K1/2
tan g+ 5 [tan 5] = B

This equation is known as the Barker’s equation [3]. At the changing time in the region —oo < t < oo,
true anomaly changes in the interval —m < v < 7.

t=2wpt. (5)
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At 0 < e < 1, it is realized the motion by the elliptical orbit, and equation (4) takes the form
1— e\ /2 , .
arctan ¢ tan - b = = 4+ = (1- 62)1/2&, (6)
1+e 2 2 2 1+e-cosv

ty = 2mt)T = t K'/2(1 — €2)3/2 p=3/2 (7)
is the dimensionless time, and T is the orbital motion period. At e > 1, equation (4) has such an
image in elementary functions

where

1 1/2 _ -1 l/2t v .
(e+1) (e—1)"/?tan 3 e 1) sinwv 7 (8)
(e+1)Y/2 4 (e—1)tan} 1+e-cosv
where
1/2 (e* - 1)3/2 2 3/2
ty =t K2 ————— =t,(e” — 1)°/%, 9)

L

Solving equation (5) relative to tan(v/2) by the Cardano’s formulae [3], we find the exact expression
for true anomaly,

v(t) = 2arctan { [(1 + sz(t))1/2) + s(t)] Ve {(1 + 32(15))1/2 — s(t)] 1/3} , (10)

where s(t) = 3K'/2p=3/2t. Tt is shown from relation (10) that v(—t) = —v(t), and function v(t) has
the following asymptotics

4wt + ... t t s
v(t)—){ wpt + at  Jwpt] < 7, (11)

2arctan(6wyt) + ... at |wpt| > 7.
2. The elliptical motion
Using the substitution
1—e\ Y2 v B
tan — = tan — 12
(1 n e> an 5 an R (12)
equation (6) is reduced to the Kepler’s equation
E —esin E = t,, (13)

and the auxiliary function F is an eccentric anomaly. As it is shown from equation (13), the difference
E — t, is the periodic function with period 2w. Many works are devoted to finding approximate
solutions of this equation. The most famous is the Lagrange iterative method [4], in which the function
E©) (t.) = t is chosen as zero approximation, which corresponds to the uniform motion along a circular
orbit, and the term e-sin E is considered as perturbation. In such way, we obtain the analytical solution
in the form of infinity expansion by the powers of eccentricity

dk 1 L
—t*—i-z = — g {sin(t)}". (14)

As it was shown by Laplace, this expansion c01nc1des only in the region 0 < e < € =0.66274... [4].
Application of Fourier series leads to the solution in the form [4]

E(ty) =t.+ i Iy (ke) sin(kt,), (15)
k=1
where
I (ke) = % /0 cos{k(z —e-sinz)}dz (16)

are the Bessel functions of first kind with an integer index value [3]. The necessity to numerically
calculate a large number of these functions makes this approach cumbersome and irrational.
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Usage the theory of complex variable function allows us to obtain the solutions of equation (13) in
the form of quadratures depending on e and ¢ [5,6]. For example, in the interval /2 — e < ¢, < m, the
solution is represented by one quadrature,

1
E:t*—(t*—ﬂ)exp{l/ argQar(n]e,t*)d—n}, (17)
T Jo n

where
arg Qg (nle, t.) = arctan ¥(nle, t.),
—1
W(le,t) = {~2C) [e+ 2]} { e+ 2" —nPlC?) + (- m} ; (18)

C(n) =In[f(n)+n", fln)=n>-1)""2

In the region 0 < t, < /2 — e, the solution is represented by three cumbersome quadratures. This
approach can be considered as a proof of existence of exact analytical solution of the Kepler’s equation,
but it is too cumbersome for practical use. The work [5] has not interested astronomers and there are
no references to it in the literature.

To obtain the approximate analytical solutions of equation (13) using the iterative method with
fast convergence, in the work [7] it was proposed the approach of approximating functions. With this
purpose, equation (13) is presented in the equivalent form

E—ef(E)—ti=e{sinE— f(E)}. (19)
The auxiliary function f(F) is chosen in the form of a low-degree polynomial, so that the zero approx-
imation equation
EO —ef(E)—t, =0 (20)
has the analytical solution, and the right-hand side of equation (19) would be a small perturbation,
which is taken into account using the successive iterations.
In connection with the periodicity of the function (E —t,), it is enough to consider equation (13) in
the region 0 < (t, ) < 27. Moreover, from equation (13) it follows that in the interval = < ¢, < 27

E(t.) =27 — E(2m — t,), (21)
therefore, it is enough to find the solution in the region 0 < ¢, < w. With a sufficiently large value

of eccentricity, we can to distinguish two regions in which the behavior of the function E(t.) has a
different character: the region of fast change of E(t,)

I. 0<E@)<% 0<te < ue), (22)
and the region of slow change of E(t,)
L. g SE(t) <m fle) <t.<m fule) = g —e. (23)
It is appropriate to make substitutions
E:g—ﬂ (24)
in the region I,
E:g+B (25)
in the region II. Equation for the functions F; and F5 are written in the form
Fi +e-cos Fy :g—t*,
T (26)
FQ—G‘COSFQZt*—E.
In the role of the function f(F') described above, it is used a polynomial of fourth degree
fa(F) =1+ agF? 4+ a3F3 + ay F4, (27)
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which at
as = —0.503491,

asz = 0.011168,

as = 0.032752 (28)

is well approximate cos F' on the interval 0 < F < 7/2, and the deviation does not exceed 3-10~* even
in the vicinity F' = 7/2. We will consider in more detail equation for the function Fy, presented it in

the form
T
Fg(t*) — €f4(F2(t*)) =1 — 5 + e{ COS Fg(t) — f4(F2(t*))} (29)
The zero approximate for the function Fy(t,) is the root of algebraic equation of the fourth degree
7T
FO(t) — e fa (V1) — te + 3=0. (30)
The refined solution of equation (29) (in the first iteration)
1 0) /(1
F () = FO (1), (31)
where
tH =t +e {cos F2(0) (ts) — fa (F(O) (t*))} , (32)

and etc. According to the Cardano’s formulae [3], the solution satisfying the condition 0 < F2(0) (t) <

/2, and determined by expression

1 u? 12 12
e fo s £ o] 1" ®

Here, the following notations is used

u= {g + (¢? +q3)1/2}1/3 + {g — (¢ +q?’)1/2}1/3 _ Ly,

1 1 1
q= 551 - 5535 g= 6{b1b2 —3bo} —

bg = dagag — oz% — ozoozg;

1 1 T
ay = — 1+—<t*——) ;
aq e 2

¢=0.9

/2

Ft)

0
)

t,
0 7.(¢) /2 n

0

Fig. 1. The time dependence of functions Fl(o) (t+) and
F{9(t,) and eccentric anomaly E©(t,) at e = 0.9.

b1 = aaz — 4ayg;

o] = ——

3
1 3
7%
by = —ag;
1 a2,

3 Qp = ) Qg = .
€ aq a4 a4

as

In the region I, the solution of zero approxima-
tion is

1 u? 212
Fl(o)(t*) = —C+{62 — U + [Z - ao] ,

(35)
if in the notations (34) we make the replacement
o] — —Q1, g — —Q3.

The time dependence of functions Fl(o) (ts)
and F2(0) (t«) at e = 0.9 and eccentric anomaly in
this approximation are shown in Figure 1. The
maximal deviation E(®)(t,) from the equation

solution (13) found numerically does not exceed
51074
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3. The hyperbolic motion

Using the substitution

N\ H
tan — = (& + tanh —, (36)
2 e—1 2
equation (8) reduces to the form
e-sinh H — H = ty, (37)

where the auxiliary function H is the analog of eccentric anomaly. Herewith —oo < ty < oo, and
—00 < H < oo. However, H(—ty) = —H (tu), then it is enough to find the solution of equation (37) in
the region 0 < t; < oo. Unfortunately, the function sinh H is not possible to approximate a polynomial
of low degree in a sufficiently wide region of change H, because sinh H increases exponentially at
H = 2.5. However, approximation is possible for the region near the pericenter, which has the greatest
practical interest. For this region, we will rewrite equation (37) in the form

efs(H) — H =ty =e{f3(H) — sinh H}, (38)
and be choosing the approximation function in the form
f3(H) = H +a H’ (39)

at a = 0.188479. The solution of equation (38), we search by iteration method using the root of
equation in the role of zero approximation
efs(HO) - HO — 1, =0, (40)
which determined by the Cardano’s formula,
HO(t) = {(g* + )" + g} = {(g* + )2 = g},
tu e—1 (41)

9= %a 17 3ea-

Refinement of this solution can be performed by the method of iterations of equation (38),
HO () = HO (¢),
t0 =ty + e { fs(HO (ty)) — sinh HO ()}

(42)
H® () = HO (7)),
8 = tu+ e { fs(HO{)) = sinh HO (¢{))}],
and etc. The iterative algorithm based on equation (37) has even better convergence,
HY (ty) = arsinh{é [tu + HO (tw)] },
(43)

1
H () = arsinh{ - [ta + H(l)(tH)} },

and etc. In Table 1, it is shown the convergence of iterative process of equation (43) for the case
e = 1.4. In the second column of Table, the solution of equation (37), found by the numerical method,
is given.

Table 1. Dependence of the function H(ty) on time in different approximations.
ty | HO™(ty) | HO(ty) | HO(ty) | H® (ty)
0.5 0.86210 0.84789 | 0.85481 | 0.85836
1.0 1.25444 1.24056 | 1.24919 | 1.25246
1.5 1.50824 1.50432 | 1.50706 | 1.50789
2.0 1.69869 1.70874 | 1.70123 | 1.69933
3.0 1.98161 2.02469 | 1.98991 | 1.98321
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4. An alternative approach for the description of Keplerian motion

The described above methods of calculating of the coordinate time dependence of material point in
Keplerian motion based on the determination of time dependence of angular variable — true anomaly
v(t). If the function v(t) is known, then the time dependence of radial coordinate p(t) is determined
with help of orbit equation. Such an algorithm is generally accepted. But at the same time, the
physical reason is veiled for the existence of different types of motion — elliptical, parabolic, hyperbolic
or one-dimensional radial. Because of that, it is useful to derive the relation that corresponds to the
time dependence of radial coordinate, directly from equations of relative motion.
Using the energy integral of relative motion &, which is written in the polar coordinates,

Koo 2.2 p K
= _ 0 44
e =Lt -8 (44)
and the integral of angular momentum (3), we obtain the relation
&=L+ Verr(p), (45)
where
uK 12 ukK { 1 1 }
Ve =—-——+ =— =zts5 46
(°) p o 2up®*  p £ 282 (46)

is the effective potential energy of relative motion, and £ = p/p is the dimensionless radial coordinate.
From relations (44)—(46), we find equation for the time dependence of radial coordinate

d¢ ok\NYV2 (. 1 1 Y2
Dt (it E4+ - — — 47
dt <p3 > TeT e n
where £ = & (1K)~ 'p is the dimensionless energy of relative motion. The condition
s 1 1
. 4
E+ £ 2 0 (48)

determines the turning points that have restricted the region of motion relative to the radial variable.
The minimum of potential of equation (46) will be found at & = 1/2 that corresponds to a circular
motion with radius R = p, and £ = —1/2. At the elliptical motion (€ = —pu K (2a)~!, where a is the
semimajor axis of ellipse)

2
5 P e —1
=2 = 0 49
o0 5— <0, (49)
and the radial coordinate varies in the region
1 1
< ¢ < &, = ) = 50
Si<E<&, & Tre 2= (50)
At the parabolic motion
1 -
and at the hyperbolic (e > 1)
2
= e“—1 1
_ < , 2
& 5 > 0, P} £ < oo (52)

Assuming that the material point is at the pericenter at the moment ¢ = 0, from equation (47), we
find the time dependence of radial coordinate, which is written in the quadratures,

K 1/2,5—/6 s (53)
p3 Je (€2 —1) 22 + 22 — 1]1/2

that the analog of equation (4).
In the case of elliptical motion (0 < e < 1), equation (53) reduces to the transcendental equation

e\ 2 (2 _ —
2arctan{<i ) (2= 1) +2¢ 1]1/2}—(1—62)[(62—1)52-1-25—1]1/2:t*. (54)

+e 1+&(e—1)
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To analyze and find the solutions of equation (54), it is convenient to pass from the eccentricity to the
dimensionless turning points & = (1 +e)7!, & = (1 — e)~!. Taking into account that
1/2 _
(2= 1) € +2¢ = 1] = (66) V(€ - &1)(& - O,
1+£ (6_1) :1_5/627
we rewrite equation (54) in the form, that is convenient to find the approximate analytical solution,
namely

(55)

§-¢ 1 ~
& _é — tan? {5 [t* + (5152) 1(5 . 51)1/2(52 . 5)1/2] } . (56)

Let us note that equation (54) is equivalent to equation (6), which is easy to see if we pass from
the variable £ = £(t) to true anomaly v(t), using the orbit equation. But equation (54) is convenient
for finding the approximate analytical solutions. One of the simplest variants of this approach is the
iterative method.

Neglecting the second term of the square brackets in 2
equation (56), we find the zero approximation

o L (1 L (1 181
6 (t*) = 61 COS <§t*> + 52 S1n <§ t*> s (57) 16
which is an exact in the vicinity of points & (t.) = &1, 1]
€ (tx) = &. In the first iteration '
6(1) (t*) _ 6(0) (tg})), 1.2
58 11
NN 0 1%52 s (58)
(€O (t) — &) "7 (&2 — £O(t)) 058 1
In general n > 2 06 L
Mt = ¢O (tfk")), o o5 1 15 2 25 3
€169 Fig.2. Dependence of the function £(t.) on

ty =t + . the variable t, in different approximation at
_ 1/2 — 1/2

(5(0) (t(kn 1)) - 51) / (52 —£©) (t>(kn 1))) / e = 0.5. Curve 1 corresponds to the approx-

(59)  imation (57), curve 2 corresponds to the ap-

proximation (58) and curve 3 corresponds to

The speed of convergence of the iterative process illus- the approximation (59) at n — 3.

trates in Figure 2. Curve 1 in this Figure corresponds
to the approximation (57), curve 2 to the approximation (58), curve 3 to the approximation (59) at
n = 3. The relative deviation of curve 3 from the numerical solution of equation (56) does not exceed
0.03%.

If we use the orbit equation and pass from the variable £(t,) to true anomaly v(t), then we see that

(162) 1 (E(t) — €)M (& — ()2 = (1= )2 sinv(){1 + e cosv(t)} ' = e sin B(t),  (60)
where E(t,) is eccentric anomaly. Using the analytical solution of the Kepler’s equation in the form (33)
and (35), the solution of equation (56) we can rewrite in the form

£(ty) = & cos? %(t* +e- sinE(t*))} + &9 sin? E(t* +e-sin E(ty))

=(1—e)"H1l —e cos[ty +e-sin E(t,)]} = (1 — e?)"H1 —e-cos E(t,)}. (61)

It follows from here that equation (56) is equivalent to the Kepler’s equation, and in the role of zero
approximation of equation (56) we can use expression (61) with the eccentric anomaly in the form of
the equation of solution (20).

In the parabolic motion (e = 1), equation (53) takes the form of cubic algebraic equation

oo o) 3]+
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Its solution is rewritten in the form

£(t) = % {—1 + [1425%(8) + 2s(6) (1 + s2(1))Y2]® + [1+ 252(t) — 2s(6)(1 + 32(t))1/2]1/3} (63)

and has the asymptotics

271 at t—0
60 = {2_1/3 32/3(t) . =27 B32BRY3p12B L at t— o0 (64)

As a result of integration over the variable x, in the case of hyperbolic motion, equation (53) takes
the form

D — arsinh (£2) = ¢,,. (65)
Here, the auxiliary function is introduced
D(ty) = {1+ &(ta) (> — 1)]* — €2}, (66)
from which it follows that the solution of equation (53) is rewritten in the form
E(tn) = (2 — 1) [D(tx) + 2] /> =1}, (67)

From equation (65), we obtain the asymptotlcs

Dt — {tH(l Te 4. at ty<e, (©8)
ty +In(2e My) +... at ty>>e.
It determines the asymptotics of the equation solution (53) at e > 1 in the form
£(tn) {fl +27 1 2eB e+ 1)(e—1) 4. at ty<e, (69)
(e — D)ty +1In 2tge ™ V] +... at ty>e.

As with finding solutions of the Kepler’s equation (13), in the case of hyperbolic motion, it is also
appropriate to consider the solution of equation (65) in two regions: in the region of fast change of
the function D(tg) (in the pericenter vicinity, at small values of ¢y), and in the region far from the
pericenter. In the first region, we will use the method of approximating functions. The function

1/2
arsinh (£) = In [g + [1 + (%)2] / ] (70)
in equation (65), we approximate by the polynomial of a third degree
f3(2) =242 (2)" a3 (2)°,

(71)
as = —0.124789, a3 = —0.00596395,
and equation (65), we represent in the equivalent form
“ D+ £3(2) = £ (2) - arsink (2). 72)
In the role of zero approximation, we will choose the root of equation of third degree
f3(2) =D+t =0. (73)

By the Cardano’s formulae we find that equation (73) has three real roots, two of them are negative.
The third root is a monotonically increasing function of time, that has the zero asymptotics at t; — 0
and corresponds to the physical content of the problem

1
DO (ty) =e {2|q|1/2 Cos [3_1 arctan ([|q|3 - 7"2]1/27"_1)] - ng} . (74)
Here are used the notations

by b3 b3

9= -2 biby — 3by — ==

3 9 27
1—e a (e? — 1)3/2 (75)

b = . by = —2, by = ——~—t,,
as as as
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To specify the found solution, we use equation (65). By the analogy with formulae (43) in the case of
the hyperbolic motion

DW(ty) =ty + arsinh <m> ,
(76)

e

D) (tg) = ty + arsinh (7D(n71)(tH)>
at n > 2. In Table 2 is illustrated the convergence of iterative process (76) for the case e = 1.3.

Table 2. Dependence of the function D(t¢y) on time in different approximations.
ty | D™ (t) | DO(ty) | DD (ty) | DO (ty)
0.5 0.98724 0.94571 | 0.96161 | 0.97755
1.0 1.61681 1.60773 | 1.61243 | 1.61579
1.5 2.12821 2.14193 | 2.13370 | 2.12909
2.0 2.58466 2.59917 | 2.58967 | 2.58526
3.0 3.41202 3.36914 | 3.40021 | 3.41113

In the region that is far from the pericenter, it is
possible to use the ordinary iterations of equation (65),

DW(ty) = ty + arsinh (4) | (77)
D™ (ty) = t, + arsinh (D(L 1)(tH)) .

D(t,)

In Figure 3, the convergence of such iterative algorithm
is illustrated at e = 1.3.

5. Conclusions

O B N W b~ OO O N 00 ©
! ! ! ! ! ! ! !

The determination of time dependence of true anomaly
in the two-bodies problem is the traditional approach
in the theory 'of Keple.rian motion. .We haV(.e proposed on time # in the region far from the peri-
a fast-converging algorithm for finding solutions of the .. ter in different approximation at e = 1.3.
Kepler’s equation (13) (or (26)) and its analogue (37).  Curve 1 corresponds to the zero approxima-
In the role of zero approximations are used solutions of  tion of D (ty), curve 2 — DM (ty), curve 3 —
algebraic equations (30) or (40), obtained by replacing ~ D™ (tn). The dashed curve is the exact solu-
cos F' or sinh H by approximating polynomials f4(F’) or tion of equation (65).

f3(H). In such approach, the role of small parameter plays the differences cos F' — f4(F') or sinh H —
f3(H), which insures the fast convergence of iterations regardless of the eccentricity.

The alternative approach consists of independently determining the time dependence of the radial
coordinate. In the case of elliptical motion, this leads to equation (56), which equivalent to the
Kepler’s equation. As it is shown in Figure 2, the approximate solution of this equation can be
obtained with help of ordinary iterations, using in the role of zero approximation expression (57). In
the case of hyperbolic motion, the time dependence of radial variable is determined by equations (65)
and (67). To find the solution of equation (65) near the pericenter, it is convenient to use the method
of approximating functions, the convergence of which is illustrated in Table 2. In the region far from
the pericenter, it is enough to use the method of ordinary iterations, which can be seen in Figure 3.

0 1 2 3 4 5 6 7 8 9 10
Fig.3. Dependence of the function D(ty)
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AHaniTu4Hi 300pa>keHHs1 4acoBOI 3a/1€)XKHOCTI KOOpAUHaT
KenJiepiBCbKOro pyxy

Baspyx M., HzikoBcbkwuit ., Creapmax O.

JIveiecorutl nayionarvrul yrwisepcumem iment leana Pparxa,
eyn. Kupuna i Mepodia, 8, 79005 Jlveis, Yrpaina

3 MeTOI0 pO3paxyHKy YacOBOI 3aJIeXKHOCTI MOJISIPHUX KOODIWHAT BiTHOCHOTO PYXY y 3a-
Jadi IBOX TiJT B aHAJMITUYHIN (opMi 3aIIpOITOHOBAHO BapiaHTH iTepaliifHuX aJropuTMis 3i
MIBUIKOIO 3012KHICTIO, 110 T'PYHTYIOTHCS Ha BUKOPUCTAHHI anrpokcuMyoanx dyukiii. Kpim
TOTO, IIOKA3aHO, IO IIPU HE3aJIEXKHOMY BU3HAYEHHI 4aCOBOI 3aJIE2KHOCTI pa/liajbHOI KOOP-
JUHATH B €JIITUYHOMY PYCi, a TaKOXK Ha BEJUKHUX BI/IJIAJISAX BiJ MEPUIIEHTPY YV BUIIAJIKY
rimepbosigHOrO pyXy H0OPY 301KHICTH /1a€ METO[ 3BUYAWHNX MMOCIJOBHUX iTepariiii.

Kntouosi cnosa: zadava 060x min; “acosa 3anedCHICTG KOOPOUHAM, AHAAIMUYHT ME-
moou.
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