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In order to calculate the time dependence of polar coordinates of relative motion in the
problem of two bodies in the analytical form it was proposed variants of iterative algo-
rithms with fast convergence, which are based on the usage of approximating functions.
It was shown that an independent determining the time dependence of radial coordinate
in the elliptical motion, as well as at large distance from the pericenter in the case of
the hyperbolic motion yields good convergence using the method of ordinary successive
iterations.
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1. Introduction

As it was known from the celestial mechanics, the relative motion of the system of two point gravitating
bodies with masses m1 and m2 occurs by Keplerian orbits [1, 2]

ρ = p {1 + e · cos v}−1, (1)

where ρ and v are polar coordinates, and the focal parameter p and eccentricity e are determined by
the masses of bodies and the motion integrals – angular momentum l and energy E :

p = l2µ−2K−1, e =
{

1 + 2El2µ−3K−2
}1/2

. (2)

Here K = G(m1 +m2), G is the gravitational constant, µ = m1m2(m1 +m2)
−1 is the reduced mass.

Using the definition of angular momentum

l = µ ρ2
dv

dt
n, (3)

where n is the unit normal vector to the plane of the orbit, using equation (1) and the first of equa-
tions (2), we obtain equation for the time dependence of true anomaly v(t) in the form

p3/2K−1/2

∫ v(t)

0
[1 + e · cos v]−2dv = t. (4)

Here used the initial condition v(0) = 0, therefore equation (4) determines the time of motion from
the pericenter to the point of orbit with the given value of anomaly v(t).

The integral in equation (4) is expressed in elementary functions, but it has a different images
depending on the eccentricity value. The trivial case e = 0 corresponds to the uniform motion by
circular orbit of the radius p with the angular velocity ωp = K1/2/p3/2, v(t) = ωp t. At the nonzero
eccentricities, the integral in equation (4) is calculated using the substitution x = tan(v/2). In the
case e = 1 (at E = 0) the motion occurs by the parabolic orbit, and equation (4) takes the form

tan
v

2
+

1

3

[

tan
v

2

]3
=

2K1/2

p3/2
t ≡ 2ωp t. (5)

This equation is known as the Barker’s equation [3]. At the changing time in the region −∞ < t < ∞,
true anomaly changes in the interval −π < v < π.
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At 0 < e < 1, it is realized the motion by the elliptical orbit, and equation (4) takes the form

arctan

{

(

1− e

1 + e

)1/2

tan
v

2

}

=
t∗
2
+

e

2
(1− e2)1/2

sin v

1 + e · cos v
, (6)

where

t∗ = 2πt/T = tK1/2(1− e2)3/2 p−3/2 (7)

is the dimensionless time, and T is the orbital motion period. At e > 1, equation (4) has such an
image in elementary functions

ln
(e+ 1)1/2 − (e− 1)1/2 tan v

2

(e+ 1)1/2 + (e− 1) tan v
2

= tH − e(e2 − 1)1/2
sin v

1 + e · cos v
, (8)

where

tH = tK1/2 (e
2 − 1)3/2

p3/2
≡ tp(e

2 − 1)3/2. (9)

Solving equation (5) relative to tan(v/2) by the Cardano’s formulae [3], we find the exact expression
for true anomaly,

v(t) = 2 arctan

{

[

(

1 + s2(t)
)1/2

) + s(t)
]1/3

−
[

(

1 + s2(t)
)1/2

− s(t)
]1/3

}

, (10)

where s(t) = 3K1/2p−3/2t. It is shown from relation (10) that v(−t) = −v(t), and function v(t) has
the following asymptotics

v(t) →

{

4ωpt+ . . . at |ωpt| ≪
π
2 ,

2 arctan(6ωpt) + . . . at |ωpt| ≫
π
2 .

(11)

2. The elliptical motion

Using the substitution
(

1− e

1 + e

)1/2

tan
v

2
= tan

E

2
, (12)

equation (6) is reduced to the Kepler’s equation

E − e sinE = t∗, (13)

and the auxiliary function E is an eccentric anomaly. As it is shown from equation (13), the difference
E − t∗ is the periodic function with period 2π. Many works are devoted to finding approximate
solutions of this equation. The most famous is the Lagrange iterative method [4], in which the function
E(0)(t∗) = t∗ is chosen as zero approximation, which corresponds to the uniform motion along a circular
orbit, and the term e·sinE is considered as perturbation. In such way, we obtain the analytical solution
in the form of infinity expansion by the powers of eccentricity

E(t∗) = t∗ +

∞
∑

k=1

ek

k!
·
dk−1

dtk−1
∗

{sin(t∗)}
k. (14)

As it was shown by Laplace, this expansion coincides only in the region 0 < e < ē = 0.66274 . . . [4].
Application of Fourier series leads to the solution in the form [4]

E(t∗) = t∗ +

∞
∑

k=1

Ik(ke) sin(kt∗), (15)

where

Ik(ke) =
1

π

∫ π

0
cos{k(z − e · sin z)} dz (16)

are the Bessel functions of first kind with an integer index value [3]. The necessity to numerically
calculate a large number of these functions makes this approach cumbersome and irrational.
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Usage the theory of complex variable function allows us to obtain the solutions of equation (13) in
the form of quadratures depending on e and t [5,6]. For example, in the interval π/2− e 6 t∗ < π, the
solution is represented by one quadrature,

E = t∗ − (t∗ − π) exp

{

1

π

∫ 1

0
arg Ω+

0 (η|e, t∗)
dη

η

}

, (17)

where

arg Ω+
0 (η|e, t∗) = arctanΨ(η|e, t∗),

Ψ(η|e, t∗) =
{

−2η C(η)
[

e+
π

2
η
]}

{

[

e+
π

2
η
]2

− η2[C2(η) + (π − t∗)
2]

}−1

;

C(η) = ln[f(η) + η−1], f(η) = (η−2 − 1)−1/2.

(18)

In the region 0 6 t∗ 6 π/2 − e, the solution is represented by three cumbersome quadratures. This
approach can be considered as a proof of existence of exact analytical solution of the Kepler’s equation,
but it is too cumbersome for practical use. The work [5] has not interested astronomers and there are
no references to it in the literature.

To obtain the approximate analytical solutions of equation (13) using the iterative method with
fast convergence, in the work [7] it was proposed the approach of approximating functions. With this
purpose, equation (13) is presented in the equivalent form

E − e f(E)− t∗ = e {sinE − f(E)}. (19)

The auxiliary function f(E) is chosen in the form of a low-degree polynomial, so that the zero approx-
imation equation

E(0) − e f(E)− t∗ = 0 (20)

has the analytical solution, and the right-hand side of equation (19) would be a small perturbation,
which is taken into account using the successive iterations.

In connection with the periodicity of the function (E− t∗), it is enough to consider equation (13) in
the region 0 6 (t∗, E) 6 2π. Moreover, from equation (13) it follows that in the interval π 6 t∗ 6 2π

E(t∗) = 2π − E(2π − t∗), (21)

therefore, it is enough to find the solution in the region 0 6 t∗ 6 π. With a sufficiently large value
of eccentricity, we can to distinguish two regions in which the behavior of the function E(t∗) has a
different character: the region of fast change of E(t∗)

I. 0 6 E(t∗) 6
π

2
; 0 6 t∗ < t̄∗(e), (22)

and the region of slow change of E(t∗)

II.
π

2
6 E(t∗) 6 π; t̄∗(e) 6 t∗ 6 π; t̄∗(e) =

π

2
− e. (23)

It is appropriate to make substitutions

E =
π

2
− F1 (24)

in the region I,

E =
π

2
+ F2 (25)

in the region II. Equation for the functions F1 and F2 are written in the form

F1 + e · cosF1 =
π

2
− t∗,

F2 − e · cosF2 = t∗ −
π

2
.

(26)

In the role of the function f(F ) described above, it is used a polynomial of fourth degree

f4(F ) = 1 + a2F
2 + a3F

3 + a4F
4, (27)

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1179–1188 (2024)



1182 Vavrukh M., Dzikovskyi D., Stelmakh O.

which at

a2 = −0.503491, a3 = 0.011168, a4 = 0.032752 (28)

is well approximate cosF on the interval 0 6 F 6 π/2, and the deviation does not exceed 3 ·10−4 even
in the vicinity F = π/2. We will consider in more detail equation for the function F2, presented it in
the form

F2(t∗)− e f4(F2(t∗)) = t∗ −
π

2
+ e

{

cosF2(t)− f4(F2(t∗))
}

. (29)

The zero approximate for the function F2(t∗) is the root of algebraic equation of the fourth degree

F
(0)
2 (t∗)− e f4

(

F
(0)
2 (t∗)

)

− t∗ +
π

2
= 0. (30)

The refined solution of equation (29) (in the first iteration)

F
(1)
2 (t∗) = F

(0)
2

(

t
(1)
∗

)

, (31)

where

t
(1)
∗ ≡ t∗ + e

{

cosF
(0)
2 (t∗)− f4

(

F (0)(t∗)
)

}

, (32)

and etc. According to the Cardano’s formulae [3], the solution satisfying the condition 0 6 F
(0)
2 (t∗) 6

π/2, and determined by expression

F
(0)
2 (t∗) = c−

{

c2 −
1

2
u+

[

u2

4
− α0

]1/2
}1/2

. (33)

Here, the following notations is used

c = −
1

2

{

1

2
α3 −

(

1

4
α2
3 + u− α2

)1/2
}

;

u =
{

g + (g2 + q3)1/2
}1/3

+
{

g − (g2 + q3)1/2
}1/3

−
1

3
b2;

q =
1

3
b1 −

1

9
b22; g =

1

6
{b1b2 − 3b0} −

1

27
b32;

b0 = 4α0α2 − α2
1 − α0α

2
3; b1 = α1α3 − 4α0; b2 = −α2;

α0 =
1

a4

{

1 +
1

e

(

t∗ −
π

2

)

}

; α1 = −
1

e a4
; α2 =

a2
a4

; α3 =
a3
a4

.

(34)

0

π/2

π

0 t
−

*(e) π/2 π

F1
 (0)(t*)

F2
 (0)(t*)

E
 (0)(t*)

e=0.9

t*

Fig. 1. The time dependence of functions F
(0)
1 (t∗) and

F
(0)
2 (t∗) and eccentric anomaly E(0)(t∗) at e = 0.9.

In the region I, the solution of zero approxima-
tion is

F
(0)
1 (t∗) = −c+

{

c2 −
1

2
u+

[

u2

4
− α0

]1/2
}1/2

,

(35)
if in the notations (34) we make the replacement
α1 → −α1, α3 → −α3.

The time dependence of functions F
(0)
1 (t∗)

and F
(0)
2 (t∗) at e = 0.9 and eccentric anomaly in

this approximation are shown in Figure 1. The
maximal deviation E(0)(t∗) from the equation
solution (13) found numerically does not exceed
5 · 10−4.
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3. The hyperbolic motion

Using the substitution

tan
v

2
=

(

e+ 1

e− 1

)1/2

tanh
H

2
, (36)

equation (8) reduces to the form

e · sinhH −H = tH, (37)

where the auxiliary function H is the analog of eccentric anomaly. Herewith −∞ < tH < ∞, and
−∞ < H < ∞. However, H(−tH) = −H(tH), then it is enough to find the solution of equation (37) in
the region 0 6 tH < ∞. Unfortunately, the function sinhH is not possible to approximate a polynomial
of low degree in a sufficiently wide region of change H, because sinhH increases exponentially at
H & 2.5. However, approximation is possible for the region near the pericenter, which has the greatest
practical interest. For this region, we will rewrite equation (37) in the form

e f3(H)−H − tH = e {f3(H)− sinhH}, (38)

and be choosing the approximation function in the form

f3(H) = H + aH3 (39)

at a = 0.188479. The solution of equation (38), we search by iteration method using the root of
equation in the role of zero approximation

e f3
(

H(0)
)

−H(0) − tH = 0, (40)

which determined by the Cardano’s formula,

H(0)(tH) =
{

(g2 + q3)1/2 + g
}1/3

−
{

(g2 + q3)1/2 − g
}1/3

,

g =
tH
2e a

, q =
e− 1

3e a
.

(41)

Refinement of this solution can be performed by the method of iterations of equation (38),

H(1)(tH) = H(0)
(

t
(1)
H

)

,

t
(1)
H = tH + e

{

f3(H
(0)(tH))− sinhH(0)(tH)

}

;

H(2)(tH) = H(0)
(

t
(2)
H

)

,

t
(2)
H = tH + e

{

f3
(

H(0)(t
(1)
H )

)

− sinhH(0)
(

t
(1)
H

)}

,

(42)

and etc. The iterative algorithm based on equation (37) has even better convergence,

H(1)(tH) = arsinh

{

1

e

[

tH +H(0)(tH)
]

}

,

H(2)(tH) = arsinh

{

1

e

[

tH +H(1)(tH)
]

}

,

(43)

and etc. In Table 1, it is shown the convergence of iterative process of equation (43) for the case
e = 1.4. In the second column of Table, the solution of equation (37), found by the numerical method,
is given.

Table 1. Dependence of the function H(tH) on time in different approximations.

tH H(num)(tH) H(0)(tH) H(1)(tH) H(2)(tH)

0.5 0.86210 0.84789 0.85481 0.85836

1.0 1.25444 1.24056 1.24919 1.25246

1.5 1.50824 1.50432 1.50706 1.50789

2.0 1.69869 1.70874 1.70123 1.69933

3.0 1.98161 2.02469 1.98991 1.98321
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4. An alternative approach for the description of Keplerian motion

The described above methods of calculating of the coordinate time dependence of material point in
Keplerian motion based on the determination of time dependence of angular variable – true anomaly
v(t). If the function v(t) is known, then the time dependence of radial coordinate ρ(t) is determined
with help of orbit equation. Such an algorithm is generally accepted. But at the same time, the
physical reason is veiled for the existence of different types of motion – elliptical, parabolic, hyperbolic
or one-dimensional radial. Because of that, it is useful to derive the relation that corresponds to the
time dependence of radial coordinate, directly from equations of relative motion.

Using the energy integral of relative motion E , which is written in the polar coordinates,

E =
µ

2
(ρ̇2 + ρ2v̇2)−

µK

ρ
, (44)

and the integral of angular momentum (3), we obtain the relation

E =
µ

2
ρ̇2 + Veff(ρ), (45)

where

Veff(ρ) = −
µK

ρ
+

l2

2µρ2
≡

µK

p

{

−
1

ξ
+

1

2ξ2

}

(46)

is the effective potential energy of relative motion, and ξ = ρ/p is the dimensionless radial coordinate.
From relations (44)–(46), we find equation for the time dependence of radial coordinate

dξ

dt
= ±

(

2K

p3

)1/2 {

Ẽ +
1

ξ
−

1

2ξ2

}1/2

, (47)

where Ẽ = E(µK)−1p is the dimensionless energy of relative motion. The condition

Ẽ +
1

ξ
−

1

2ξ2
= 0 (48)

determines the turning points that have restricted the region of motion relative to the radial variable.
The minimum of potential of equation (46) will be found at ξ = 1/2 that corresponds to a circular
motion with radius R = p, and Ẽ = −1/2. At the elliptical motion (E = −µK(2a)−1, where a is the
semimajor axis of ellipse)

Ẽ = −
p

2a
=

e2 − 1

2
< 0, (49)

and the radial coordinate varies in the region

ξ1 6 ξ 6 ξ2, ξ1 =
1

1 + e
, ξ2 =

1

1− e
. (50)

At the parabolic motion
1

2
6 ξ < ∞; Ẽ = 0, (51)

and at the hyperbolic (e > 1)

Ẽ =
e2 − 1

2
> 0,

1

e+ 1
6 ξ < ∞. (52)

Assuming that the material point is at the pericenter at the moment t = 0, from equation (47), we
find the time dependence of radial coordinate, which is written in the quadratures,

(

K

p3

)1/2

t =

∫ ξ

ξ1

x dx

[(e2 − 1) x2 + 2x− 1]1/2
, (53)

that the analog of equation (4).
In the case of elliptical motion (0 < e < 1), equation (53) reduces to the transcendental equation

2 arctan

{

(

1− e

1 + e

)1/2 [(e2 − 1) ξ2 + 2ξ − 1]1/2

1 + ξ (e− 1)

}

− (1− e2)
[

(e2 − 1) ξ2 + 2ξ − 1
]1/2

= t∗. (54)
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To analyze and find the solutions of equation (54), it is convenient to pass from the eccentricity to the
dimensionless turning points ξ1 = (1 + e)−1, ξ2 = (1− e)−1. Taking into account that

[

(e2 − 1) ξ2 + 2ξ − 1
]1/2

= (ξ1ξ2)
−1/2[(ξ − ξ1)(ξ2 − ξ)]1/2,

1 + ξ (e− 1) = 1− ξ/ξ2,
(55)

we rewrite equation (54) in the form, that is convenient to find the approximate analytical solution,
namely

ξ − ξ1
ξ2 − ξ

= tan2
{

1

2

[

t∗ + (ξ1ξ2)
−1(ξ − ξ1)

1/2(ξ2 − ξ)1/2
]

}

. (56)

Let us note that equation (54) is equivalent to equation (6), which is easy to see if we pass from
the variable ξ = ξ(t) to true anomaly v(t), using the orbit equation. But equation (54) is convenient
for finding the approximate analytical solutions. One of the simplest variants of this approach is the
iterative method.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5  3

1

2

3

ξ(t*)

t*

Fig. 2. Dependence of the function ξ(t∗) on
the variable t∗ in different approximation at
e = 0.5. Curve 1 corresponds to the approx-
imation (57), curve 2 corresponds to the ap-
proximation (58) and curve 3 corresponds to

the approximation (59) at n = 3.

Neglecting the second term of the square brackets in
equation (56), we find the zero approximation

ξ(0)(t∗) = ξ1 cos
2

(

1

2
t∗

)

+ ξ2 sin
2

(

1

2
t∗

)

, (57)

which is an exact in the vicinity of points ξ (t∗) = ξ1,
ξ (t∗) = ξ2. In the first iteration

ξ(1)(t∗) = ξ(0)
(

t
(1)
∗

)

,

t
(1)
∗ = t∗ +

ξ1ξ2
(

ξ(0)(t∗)− ξ1
)1/2(

ξ2 − ξ(0)(t∗)
)1/2

.
(58)

In general n > 2

ξ(n)(t∗) = ξ(0)
(

t
(n)
∗

)

,

t
(n)
∗ = t∗ +

ξ1ξ2
(

ξ(0)(t
(n−1)
∗ )− ξ1

)1/2(
ξ2 − ξ(0)(t

(n−1)
∗ )

)1/2
.

(59)

The speed of convergence of the iterative process illus-
trates in Figure 2. Curve 1 in this Figure corresponds
to the approximation (57), curve 2 to the approximation (58), curve 3 to the approximation (59) at
n = 3. The relative deviation of curve 3 from the numerical solution of equation (56) does not exceed
0.03%.

If we use the orbit equation and pass from the variable ξ(t∗) to true anomaly v(t), then we see that

(ξ1ξ2)
−1(ξ(t∗)− ξ1)

1/2(ξ2 − ξ(t∗))
1/2 = (1− e2)1/2 sin v(t){1 + e · cos v(t)}−1 = e · sinE(t∗), (60)

where E(t∗) is eccentric anomaly. Using the analytical solution of the Kepler’s equation in the form (33)
and (35), the solution of equation (56) we can rewrite in the form

ξ(t∗) = ξ1 cos
2

[

1

2
(t∗ + e · sinE(t∗))

]

+ ξ2 sin
2

[

1

2
(t∗ + e · sinE(t∗))

]

= (1− e2)−1{1 − e · cos[t∗ + e · sinE(t∗)]} = (1− e2)−1{1− e · cosE(t∗)}. (61)

It follows from here that equation (56) is equivalent to the Kepler’s equation, and in the role of zero
approximation of equation (56) we can use expression (61) with the eccentric anomaly in the form of
the equation of solution (20).

In the parabolic motion (e = 1), equation (53) takes the form of cubic algebraic equation

1

3

(

1 + ξ

)2(

2ξ − 1

)

=

[

K

p3

]

· t2. (62)
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Its solution is rewritten in the form

ξ(t) =
1

2

{

−1 +
[

1 + 2s2(t) + 2s(t)(1 + s2(t))1/2
]1/3

+
[

1 + 2s2(t)− 2s(t)(1 + s2(t))1/2
]1/3

}

(63)

and has the asymptotics

ξ(t) →

{

2−1 + . . . at t → 0,

2−1/3 s2/3(t) + . . . = 2−1/332/3K1/3p−1t2/3 + . . . at t → ∞.
(64)

As a result of integration over the variable x, in the case of hyperbolic motion, equation (53) takes
the form

D − arsinh
(

D
e

)

= tH. (65)

Here, the auxiliary function is introduced

D(tH) =
{[

1 + ξ(tH)(e
2 − 1)

]2
− e2

}1/2
, (66)

from which it follows that the solution of equation (53) is rewritten in the form

ξ(tH) = (e2 − 1)−1
{[

D2(tH) + e2
]1/2

− 1
}

. (67)

From equation (65), we obtain the asymptotics

D(tH) →

{

tH(1 + e−1) + . . . at tH ≪ e,

tH + ln(2e−1tH) + . . . at tH ≫ e.
(68)

It determines the asymptotics of the equation solution (53) at e > 1 in the form

ξ(tH) →

{

ξ1 + 2−1t2
H
e−3 (e+ 1)(e − 1)−1 + . . . at tH ≪ e,

ξ1(e− 1)−1[tH + ln (2tHe
−1)] + . . . at tH ≫ e.

(69)

As with finding solutions of the Kepler’s equation (13), in the case of hyperbolic motion, it is also
appropriate to consider the solution of equation (65) in two regions: in the region of fast change of
the function D(tH) (in the pericenter vicinity, at small values of tH), and in the region far from the
pericenter. In the first region, we will use the method of approximating functions. The function

arsinh
(

D
e

)

≡ ln
[

D
e +

[

1 +
(

D
e

)2
]1/2 ]

(70)

in equation (65), we approximate by the polynomial of a third degree

f3
(

D
e

)

= D
e + a2

(

D
e

)2
+ a3

(

D
e

)3
,

a2 = −0.124789, a3 = −0.00596395,
(71)

and equation (65), we represent in the equivalent form

tH −D + f3
(

D
e

)

= f3
(

D
e

)

− arsinh
(

D
e

)

. (72)

In the role of zero approximation, we will choose the root of equation of third degree

f3
(

D
e

)

−D + tH = 0. (73)

By the Cardano’s formulae we find that equation (73) has three real roots, two of them are negative.
The third root is a monotonically increasing function of time, that has the zero asymptotics at tH → 0
and corresponds to the physical content of the problem

D(0)(tH) = e

{

2|q|1/2 cos
[

3−1 arctan
(

[|q|3 − r2]1/2r−1
)]

−
1

3
b2

}

. (74)

Here are used the notations

q =
b1
3

−
b22
9
, r =

1

6

{

b1b2 − 3b0 −
b32
27

}

,

b1 =
1− e

a3
, b2 =

a2
a3

, b0 =
(e2 − 1)3/2

a3
tp.

(75)
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To specify the found solution, we use equation (65). By the analogy with formulae (43) in the case of
the hyperbolic motion

D(1)(tH) = tH + arsinh
(

D(0)(tH)
e

)

,

D(n)(tH) = tH + arsinh
(

D(n−1)(tH)
e

) (76)

at n > 2. In Table 2 is illustrated the convergence of iterative process (76) for the case e = 1.3.

Table 2. Dependence of the function D(tH) on time in different approximations.

tH D(num)(tH) D(0)(tH) D(1)(tH) D(3)(tH)

0.5 0.98724 0.94571 0.96161 0.97755

1.0 1.61681 1.60773 1.61243 1.61579

1.5 2.12821 2.14193 2.13370 2.12909

2.0 2.58466 2.59917 2.58967 2.58526

3.0 3.41202 3.36914 3.40021 3.41113
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Fig. 3. Dependence of the function D(tH)
on time tH in the region far from the peri-
center in different approximation at e = 1.3.
Curve 1 corresponds to the zero approxima-
tion of D(0)(tH), curve 2 – D(1)(tH), curve 3 –
D(4)(tH). The dashed curve is the exact solu-

tion of equation (65).

In the region that is far from the pericenter, it is
possible to use the ordinary iterations of equation (65),

D(0)(tH) = tH,

D(1)(tH) = tH + arsinh
(

tH
e

)

,

D(n)(tH) = tH + arsinh
(

D(n−1)(tH)
e

)

.

(77)

In Figure 3, the convergence of such iterative algorithm
is illustrated at e = 1.3.

5. Conclusions

The determination of time dependence of true anomaly
in the two-bodies problem is the traditional approach
in the theory of Keplerian motion. We have proposed
a fast-converging algorithm for finding solutions of the
Kepler’s equation (13) (or (26)) and its analogue (37).
In the role of zero approximations are used solutions of
algebraic equations (30) or (40), obtained by replacing
cosF or sinhH by approximating polynomials f4(F ) or
f3(H). In such approach, the role of small parameter plays the differences cosF − f4(F ) or sinhH −
f3(H), which insures the fast convergence of iterations regardless of the eccentricity.

The alternative approach consists of independently determining the time dependence of the radial
coordinate. In the case of elliptical motion, this leads to equation (56), which equivalent to the
Kepler’s equation. As it is shown in Figure 2, the approximate solution of this equation can be
obtained with help of ordinary iterations, using in the role of zero approximation expression (57). In
the case of hyperbolic motion, the time dependence of radial variable is determined by equations (65)
and (67). To find the solution of equation (65) near the pericenter, it is convenient to use the method
of approximating functions, the convergence of which is illustrated in Table 2. In the region far from
the pericenter, it is enough to use the method of ordinary iterations, which can be seen in Figure 3.
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Аналiтичнi зображення часової залежностi координат
кеплерiвського руху

Ваврух М., Дзiковський Д., Стельмах О.

Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Кирила i Мефодiя, 8, 79005 Львiв, Україна

З метою розрахунку часової залежностi полярних координат вiдносного руху у за-
дачi двох тiл в аналiтичнiй формi запропоновано варiанти iтерацiйних алгоритмiв зi
швидкою збiжнiстю, що грунтуються на використаннi апроксимуючих функцiй. Крiм
того, показано, що при незалежному визначеннi часової залежностi радiальної коор-
динати в елiптичному русi, а також на великих вiддалях вiд перицентру у випадку
гiперболiчного руху добру збiжнiсть дає метод звичайних послiдовних iтерацiй.

Ключовi слова: задача двох тiл; часова залежнiсть координат; аналiтичнi ме-

тоди.
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