
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 9, No. 2, 2024

IMPACT OF SERIALIZATION FORMAT

ON INTER-SERVICE LATENCY

Eduard Maltsev1, Riaz Ul Amin2

1 Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine,
2 Edinburgh Napier University, Merchiston Campus,

10 Colinton Rd, Edinburgh, EH10 5DT, United Kingdom

Authors’ e-mails: eduard.y.maltsev@lpnu.ua, riazulamin@mail.uk

https://doi.org/10.23939/acps2024.02.089

Submitted on 25.08.2024

© Maltsev E., Amin R., 2024

Abstract: This study provides an evaluation of the impact

of various serialization formats on inter-service commu-

nication performance, with a focus on serialization speed,

space efficiency, and latency in environments integrating

middleware, which are characteristics of microservice

architectures. Through an empirical analysis of a wide

range of serialization formats and comparison to the tradi-

tional standards, it highlights that the compactness of seri-

alized payloads is more critical in reducing end-to-end

latency than the sheer speed of serialization itself. Despite

their high serialization speeds, FlatBuffers and Cap’n Proto

underperform in distributed settings, in contrast to the

more balanced performance seen with Avro, Thrift, and

Protobuf. This study underscores the importance of mes-

sage size optimization in boosting network efficiency and

throughput1.

Index Terms: Data communication, Encoding, Informa-

tion exchange, Protocols, Performance evaluation.

I. INTRODUCTION

The ever-growing complexity of software systems
has necessitated a paradigm shift towards microservices
architectures [2, 4]. These architectures decompose func-
tionalities into independent, loosely coupled services that
communicate to achieve a unified goal. Inter-service
communication (ISC) acts as the lifeblood of distributed
systems, facilitating the seamless exchange of data bet-
ween services. However, the efficiency of this exchange
directly impacts the overall performance, scalability, and
resource utilization of the entire system [3].

One critical element influencing ISC efficiency is

the choice of serialization format. Serialization refers to

the process of transforming data structures into a trans-

mittable format, allowing data to traverse network

boundaries. The receiving service then deserializes the

data back into its original form [5]. Compact seriali-

1 This article uses the materials and results obtained by the

authors during the research work “Intelligent design methods and tools

for the modular autonomous cyber-physical systems”, state registration

number 0124U002340 dated 09.03.2024, which is carried out at the

Department of Electronic Computing Machines of the Institute of

Computer Technologies, Automation and Metrology of Lviv Poly-

technic National University in 2024–2028.

zation formats minimize the size of the transmitted data,

leading to reduced bandwidth usage and improved net-

work performance. However, this often comes at the cost

of increased processing overhead for serialization and

deserialization [23].

II. LITERATURE REVIEW AND PROBLEM

STATEMENT

Let us examine recent studies to understand the cur-

rent landscape of serialization formats and their impli-

cations for inter-service communication in distributed

systems. Research in [1] contrasts JSON/XML with

Protobuf for data serialization in web services, empha-

sizing efficiency, readability, and schema enforcement.

JSON/XML is preferred in REST for its text-based,

human-readable formats, enabling dynamic, schema-less

data interchange. Another interesting study in [2] focuses

on optimizing inter-service communication in a cloud-

native microservice architecture. The study presents

Protocol buffers as a language-neutral, platform-neutral,

extensible mechanism for serializing structured data.

The study [3] compares various serialization for-

mats, focusing on vehicle-to-cloud communication. The

paper evaluates Protobuf and Flatbuffers, two binary

serialization formats. It mentions Cap’n Proto as an

attractive zero-copy format, which performs similarly to

Flatbuffers but with a slight speed advantage. Another

alternative mentioned is MessagePack.

Source [4] explores binary versus textual seria-

lization formats for inter-service communication within

Java microservices under a K-Native, Kubernetes-

managed environment. The study suggests that Protocol

Buffers significantly improve response time and payload

size performance.

Source [5] evaluates different serialization proto-

cols for improving inter-service communication effi-

ciency within dCache, a distributed storage system.

Source [6] evaluates diverse data serialization for-

mats. The gap in this research is its focus on micro-

controllers with certain constraints, which may not be

generalizable to all IoT devices or distributed systems.

https://doi.org/%2010.23939/acps2022.

Eduard Maltsev, Riaz Ul Amin 90

Source [7] evaluates serialization formats’ effi-

ciency and performance in distributed systems, focusing

on IoT sensor networks. Protocol Buffers or Apache

Thrift were the most efficient means of encoding infor-

mation based on the information provided.

Source [8] evaluates several schema-driven and

schema-less binary serialization specifications that are

JSON-compatible, including but not limited to ASN.1,

Apache Avro, Microsoft Bond, Cap’n Proto, FlatBuffers,

and others.

Complementing these findings, [9] evaluates the

performance impact of different communication proto-

cols (REST, gRPC, and Thrift) in microservices, focus-

ing on network, CPU, and memory utilization alongside

response times. Thrift and gRPC outperformed REST

based on response time and system resource efficiency,

attributed to their compact binary serialization formats

and efficient protocol designs.

The study [10] investigates JSONBinPack’s effi-

ciency, particularly in schema-driven mode, and directly

aligns with our research. The study suggests that

JSONBinPack outperforms traditional JSON and binary

serialization formats based on space efficiency.

Research in [11] provides comparative experiments

involving HDVM, Redis, and Protobuf for JSON data

serialization, assessing performance metrics to demon-

strate Protobuf’s efficiency.

The paper [12] focuses on Apache Arrow and its

Arrow Flight protocol.

The research [13] details the impact of SOAP seri-

alization on communication efficiency, particularly in

web services using HTTP and JMS protocols. The

study’s limitations include not considering the effect of

network conditions, not testing other serialization for-

mats like JSON or Protocol Buffers, and focusing only

on SOAP messages.

Research conducted in [14] explores the efficiency

of serialization formats in distributed systems, focusing

on IoT devices.

The study [15] evaluates a wide range of JSON-

compatible binary serialization formats. Schema-driven

specifications, especially ASN.1 PER Unaligned and

Apache Avro (unframed) are identified as the most

space-efficient.

Additionally, for our research, it is essential to un-

derstand the inner workings of various optimized for-

mats, like Protocol Buffers [16], to understand better the

scenarios they are suited for [17].

A recent study [18] highlighted that exploring al-

ternative web archival formats, specifically Parquet and

Avro, demonstrated significant performance improve-

ments over the traditional WARC format. The study [19]

emphasizes the unique advantages of HatRPC’s hint-

accelerated approach in optimizing Thrift RPC services

over RDMA transport.

Findings in [20] suggest that Cap’n proto is faster

than Flatbuffers in serialization/deserialization time.

Source [21] suggests that MessagePack (MsgPuck) ex-

cels and beats other libraries with formats like, e.g.,

Flatbuffers and NanoPB (Protobuf). It has been suggest-

ed that special hardware like FPGAs can be used, as it

has mentioned in [22]. To conduct benchmarks both for

serialization/deserialization speed and distributed delay

measurements, we will use the model and part of the

methodology we have designed in the study [23]. The

study [24] underlines the importance of efficient re-

source utilization for improving system performance.

Considering the gap in current literature and the

rapid evolution of serialization technologies, we aim to

provide new insights into the influence of serialization

format choice on inter-service communication latency.

This study will examine the feasibility of achieving a

50 % reduction in latency compared to JSON.

III. SCOPE OF WORK AND OBJECTIVES

The objective of this study is to assess whether the

latency of inter-service communication can be decreased

by at least 50 %, compared to JSON, by utilizing alterna-

tive binary and textual serialization formats. To achieve

this, we will break the objective into smaller parts. First-

ly, we will measure serialization / deserialization speed

to better understand better the influences of constituent

parts underlying the overall latency metric. Then, we

will conduct a distributed benchmark to measure latency

for each selected format in a distributed environment.

The last step is to perform a comparative analysis of the

gathered metrics and draw conclusions.

IV. METHODOLOGY

For the serialization and deserialization speed

benchmarks, we will present two separate results tables:

the first one showing results from epochs 1 through 15

and the second from epochs 16 to 30. The first test will

operate with smaller message sizes from ~0.5 kB to

~4 kB, and the second benchmark will have message

sizes from ~4 kB to ~30 kB.

The distributed benchmark will be conducted for

the first 15 epochs and will feature one results table,

message sizes from ~0.5 kB to ~4 kB, number of mes-

sages, Ne, is gradually increasing with each epoch, and is

determined as Ne = 2000 × e, where e is an epoch num-

ber. The median reduction Rf,m in comparison with JSON

is calculated as follows:




, ,

,

,

f m json m

f m

json m

V V
R

V
 , (1)

where m is a metric in the set {serialization speed s,

deserialization speed d, latency l}, Vjson,m is the median

value of the metric m for JSON and Vf,m represents the

median value of the metric m for a given serialization

format f. Results will be presented in descending order

by Rf,m.

V. SERIALIZATION SPEED BENCHMARK

Let us have a look at the serialization speed

benchmark results presented in Table 1 and Table 2.

Flatbuffers format consistently outperforms other proto-

Impact of Serialization Format on Inter-Service Latency 91

cols at all message sizes in this benchmark, maintaining

a median below 2 μs/op across all tested message sizes.

This finding contradicts the results presented in [3],

which suggests that Protobuf has a faster serialization

speed.

Table 1

Serialization time distribution (μs/op), epoch 1–15

Format Mean Max Rs,%

Flatbuffers 0.22 0.5 97.59

Protocol Buffers 2.80 8.04 89.54

Cap’n (unpacked) 0.80 1.84 89.54

Avro 2.62 5.56 61.66

CBOR 3.71 7.59 45.58

Smile 5.05 10.7 32.44

Thrift 5.11 10.75 17.69

Json 6.59 13.91 0.00

Cap’n (packed) 7.70 16.39 –1.34

MessagePack 7.53 14.01 –32.98

BSON 11.07 21.83 –76.94

XML 13.33 26.4 –92.76

AmazonIon 14.26 29.54 –116.09

YAML 67.65 139.53 –866.49

While not as performant as Flatbuffers, Protobuf

demonstrates excellent efficiency, particularly at smaller

message sizes, but has a significant increase with larger

messages, suggesting that Protobuf is optimized for small to

medium-sized messages. Thrift shows higher μs/op for

smaller messages than Avro and Protobuf. However, a

study presented in [9] suggests that the Thrift protocol out-

performed others due to rapid serialization and deserializa-

tion of the packets for communication.

Though, in this study, we are not evaluating proto-

col efficiency, we argue that the sheer serialization speed

of the format might not be a main contributor to Thrift

protocol performance.

Cap’n Proto (unpacked) performs comparably to

Protobuf and Flatbuffers for smaller messages but shows

a larger increase in μs/op with larger messages. This

suggests that while Cap’n Proto is designed for speed

and efficiency, it may not be as well-suited for larger

messages as Flatbuffers. Our testing scenario results

contradict the results in [20], where it was suggested that

Cap’n Proto has a slight speed advantage over FlatBuf-

fers.

BSON shows inferior results compared to JSON,

with serialization times reaching 21 μs/op for smaller

messages and 52.17 μs/op for larger ones.

We may notice that Avro performs relatively well

compared to Protobuf and Thrift across a range of large

message sizes, as it has been seen in Table 2. Avro’s

serialization time increase is more gradual than Proto-

buf’s, which sees a more dramatic growth as message

sizes grow. Although Protobuf’s times are higher than

Avro’s for larger messages, it is still within a competi-

tive range for smaller messages.

Table 2

Serialization time distribution (μs/op), epoch 16–30

Format Median Mean Rs, %

Flatbuffers 1.52 1.61 95.42

Cap’n (unpacked) 5.51 6.35 83.40

Avro 14.36 14.93 56.75

CBOR 17.9 18.74 46.08

Smile 24.07 25.81 27.50

Thrift 25.73 25.03 22.50

Protocol Buffers 26.86 27.23 19.10

MessagePack 30.02 32.44 9.58

Json 33.2 36.78 0.00

Cap’n (packed) 41.9 43.48 –26.20

BSON 52.17 55.76 –57.14

XML 64.89 68.09 –95.45

AmazonIon 74.54 84.92 –124.52

YAML 351.93 379.37 –960.03

Additionally, in this scenario, Cap’n (unpacked)

performs inferior to Flatbuffers, which contradicts the

results presented in [20].

Notably, in tests on larger messages from epochs

16–30, schema-less CBOR outperformed the schema-

based binary format Thrift, with a median speed of 17.9

compared to Thrift’s 25.73.

Cap’n Proto (packed) presents moderate serializa-

tion times for smaller messages but shows the largest

relative increase in time as message sizes increase. Let’s

compare this with the result in Table 1. The us efficiency

trend of CBOR and Smile is consistent even as the mes-

sage size scales up. In contrast, the relative inefficiency

of BSON and Cap’n Proto (packed) becomes more pro-

nounced with larger messages.

MessagePack remains a middle-ground option but

is not superior to Protobuf as opposed to the results men-

tioned in [21], though it was much closer with larger

messages. Overall, as it has been expected, textual for-

mats performed much worse than binary formats, espe-

cially when compared to Zero-copy serialization formats

like FlatBuffers and Cap’n Proto.

VI. DESERIALIZATION SPEED BENCHMARK

Let us examine the results of the deserialization

speed benchmark with smaller test messages first pre-

sented in Table 3.

Flatbuffers exhibit exceptionally low deserializa-

tion times, consistently outperforming other formats

across all epochs. This confirms findings from [3], where

it was suggested that Flatbuffers wins in deserialization

time compared to Protobuf

Cap’n Proto (unpacked) follows closely with a me-

dian time of 0.06 μs/op and an Rd = 99.1 %. Like Flat-

buffers, it provides extremely efficient data access with-

out a deserialization step, which contributes to its high

performance.

Eduard Maltsev, Riaz Ul Amin 92

Table 3

Deserialization time distribution, epoch 1–15, μs/op

Format Median Mean Rd,%

Flatbuffers 0.02 0.02 99.7

Cap’n (unpacked) 0.06 0.06 99.1

Protobuf 0.88 3.61 87.1

Thrift 1.15 2.97 83.1

Avro 2.39 5.60 64.9

Cap’n (packed) 3.92 6.80 42.4

Smile 4.44 7.42 34.7

CBOR 4.69 7.81 31.0

MessagePack 6.49 11.18 4.6

JSON 6.8 13.66 0.0

BSON 10.26 20.15 –50.9

XML 19.36 38.32 –184.7

AmazonIon 25.22 41.65 –270.9

YAML 65.21 118.46 –859.0

The results for medium messages in Table 4 follow

the same pattern as for smaller messages, showing that

Flatbuffers and Cap’n Proto (unpacked) consistently

excel, with minimal increases in deserialization times.

Table 4

Deserialization time distribution, epoch 16–30, μs/op

Format Median Mean Rd, %

Flatbuffers 0.03 0.03 99.96

Cap’n (unpacked) 0.1 0.10 99.86

Thrift 18.09 18.72 74.04

Protobuf 25.17 26.06 63.88

Avro 33.12 35.61 52.48

Cap’n (packed) 35.04 37.01 49.72

Smile 35.83 37.62 48.59

CBOR 39.05 39.07 43.97

MessagePack 48.24 52.89 30.78

JSON 69.69 76.20 0.00

BSON 102.06 109.94 –46.45

XML 214.64 1545.24 –207.99

AmazonIon 245.89 264.31 –252.83

YAML 583.51 578.50 –737.29

VII. DISTRIBUTED BENCHMARK FRAMEWORK

For this benchmark, we will employ three Java Vir-

tual Machine (JVM) threads that act as distinct compo-

nents of a distributed system; they will be referred to as

Thread A, B, and C.

Fig. 1. A designed test scenario for distributed benchmark

Impact of Serialization Format on Inter-Service Latency 93

These threads are designed to imitate the roles of

producers and consumers within a distributed architec-

ture, utilizing Kafka as the middleware for message

passing. A designed test scenario is depicted as a UML

sequence in Fig. 1.

VIII. DISTRIBUTED BENCHMARK

Now, let us analyze the resulting lag metrics for

several key formats, presented in Table 5. Avro, Proto-

buf, and Thrift showed the best performance in this dis-

tributed benchmark, significantly reducing median delay

in distributed communication scenarios compared to

JSON, a traditional serialization format. Avro decreased

median delay by Rl = 84.3 %, Protobuf by 82.4 %, and

Thrift by 80.4 %. Cap’n (packed) was able to reduce

median latency by 70.8 %. Flatbuffers decreased median

latency by 17.1 %, and MessagePack, CBOR, and Smile

decreased median latency by 10–13 %. The rest of the

formats did not decrease latency significantly (<10 %) or

increased compared to JSON. For example, YAML

increased median latency by 14.5 %. In future research,

one might consider improving simulation by including

additional test scenarios, message complexity, message

nesting variations, and serialization formats like Mi-

crosoft Bond, PSON, and UBJSON.

Table 5

Distributed simulation latency distribution

Format
Mean,

ms

Median,

ms
Rl, %

Range,

ms

Avro 1566.5 1526.0 84.3 2326

Protobuf 1750.5 1664.4 82.4 2278

Thrift 1948.5 2035.6 80.4 3085

Cap’n (packed) 2904.5 3075.6 70.8 11749

Flatbuffers 8255.5 8411.8 17.1 11512

Smile 8744.5 8634.6 12.2 12588

MessagePack 8814 8803.6 11.5 12700

CBOR 8900.5 8570.7 10.6 11811

Cap’n

(unpacked)

9103.5 8667.1 8.6 5090

AmazonIon 9122.5 9141.4 8.4 12300

BSON 9338.5 8986.2 6.2 12318

XML 9864 9545.2 1.0 13048

JSON 9959 8929.6 0.0 15476

YAML 11399 11447 –14.5 12898

VIII. CONCLUSION

Our findings confirm that transitioning to an alter-

native data serialization format can yield a substantial

latency reduction, surpassing Rl = 50 % when compared

to traditional JSON. This result is particularly relevant

for systems where real-time performance is critical, as

each millisecond gained or lost in latency can signifi-

cantly impact overall system efficiency. Our distributed

benchmark analysis further highlights that message

compactness plays a more decisive role in reducing dis-

tributed latency than the raw speed of serialization and

deserialization processes. This insight underscores the

importance of format selection based on message struc-

ture and overhead, rather than focusing solely on seriali-

zation / deserialization speeds.

Additionally, our research indicates that schema-

based binary formats such as Avro, Protocol Buffers, and

Thrift outperform schema-less formats when the goal is

to minimize latency in distributed systems.

References

[1] Marii, B., Zholubak, I. (2022). Features of Development and

Analysis of REST Systems. Advances in Cyber-Physical

Systems, vol. 7, no. 2, 121–129. DOI: 10.23939/

acps2022.02.121.

[2] Weerasinghe, S., Perera, I. (2024). Optimized Strategy in

Cloud-Native Environment for Inter-Service Communica-

tion in Microservices. International Journal of Online and

Biomedical Engineering, vol. 20, no. 01, 40–57.

 DOI: 10.3991/ijoe.v20i01.44021.

[3] Proos, D. P., Carlsson, N. (2020). Performance Comparison

of Messaging Protocols and Serialization Formats for Digital

Twins in IoV. In 2020 IFIP Networking Conference (Net-

working), Paris, France, 10–18 [Electronic resource]. Avail-

able at: https://ieeexplore.ieee.org/document/9142787 (Ac-

cessed: 03/22/2024).

[4] Buono, V., Petrovic, P. (2021). Enhance Inter-service

Communication in Supersonic K-Native REST-based Java

Microservice Architectures. URN: https://urn.kb.se/

resolve?urn=urn:nbn:se:hkr:diva-22135

[5] Morschel, L. (2020). dCache – Efficient Message Encoding

For Inter-Service Communication in dCache: Evaluation of

Existing Serialization Protocols as a Replacement for Java

Object Serialization. EPJ Web Conf., vol. 245, 05017.

DOI: 10.1051/epjconf/202024505017.

[6] Friesel, D., Spinczyk, O. (2021). Data Serialization Formats

for the Internet of Things. In Electronic Communications of

the EASST, vol. 20, 1–4. DOI: https://doi.org/10.14279/

tuj.eceasst.80.1134.

[7] Luis, Á., Casares, P., Cuadrado-Gallego, J. J.,

Patricio, M. A. (2021). PSON: A Serialization Format for

IoT Sensor Networks. In Sensors, vol. 21, no. 13, 4559.

DOI: 10.3390/s21134559.

[8] Viotti, J. C., Kinderkhedia, M. (2022). A Survey of JSON-

compatible Binary Serialization Specifications. DOI:

10.48550/arXiv.2201.02089.

[9] Kumar, P. K., Agarwal, R., Shivaprasad, R., Sitaram, D.,

Kalambur, S. (2021). Performance Characterization of

Communication Protocols in Microservice Applications. In

International Conference on Smart Applications, Communi-

cations and Networking (SmartNets), 1–5. DOI: 10.1109/

SmartNets50376.2021.9555425.

[10] Viotti, J. C., Kinderkhedia, M. (2022). Benchmarking JSON

BinPack. DOI: 10.48550/ARXIV.2211.12799.

[11] Huang B., Tang Y. (2021). Research on optimization of real-

time efficient storage algorithm in data information serializa-

tion. PLoS ONE, vol. 16, no. 12, e0260697.

DOI: 10.1371/journal.pone.0260697.

[12] Ahmad, T., Ars, Z. A., Hofstee, H. P. (2022). Benchmarking

Apache Arrow Flight – A wire-speed protocol for data trans-

fer, querying and microservices. DOI: 10.48550/

arXiv.2204.03032.

[13] Dauda, A. B., Adam, M. S., Mustapha, M. A., Mabu, A.

M., and Mustafa S. (2020). Soap serialization effect on

communication nodes and protocols.

DOI: 10.48550/ARXIV.2012.12578.

Eduard Maltsev, Riaz Ul Amin 94

[14] Evans D. (2020). Energy-Efficient Transaction Serialization

for IoT Devices. Journal of Computer Science Research,

vol. 2, no. 2, 1–16. DOI: 10.30564/jcsr.v2i2.1620.

[15] Viotti, J. C., Kinderkhedia, M., (2022). A Benchmark of

JSON-compatible Binary Serialization Specifications.

DOI: 10.48550/ARXIV.2201.03051.

[16] Protocol Buffers Version 3 Language Specification.

[Electronic resource]. Available at: https://protobuf.

dev/reference/protobuf/proto3-spec/ (Accessed:

03/22/2024).

[17] Currier, C. (2022). Protocol Buffers. In Mobile Foren-

Їsics – The File Format Handbook: Common File For-

mats and File Systems Used in Mobile Devices, Springer

International Publishing, 223–260.

DOI: 10.1007/978-3-030-98467-0_9.

[18] Wang, X., Xie, Z. (2020). The Case For Alternative Web

Archival Formats To Expedite The Data-To-Insight Cy-

cle. In Proceedings of the ACM/IEEE Joint Conference

on Digital Libraries in 2020. In JCDL ’20. New York,

NY, USA: Association for Computing Machinery, 177–

186. DOI: 10.1145/3383583.3398542.

[19] Li, T., Shi, H., Lu, X. (2021). HatRPC: hint-accelerated

thrift RPC over RDMA. In Proceedings of the Interna-

tional Conference for High Performance Computing,

Networking, Storage and Analysis, in SC ’21. New York,

NY, USA: Association for Computing Machinery, pp. 1–

14. DOI: 10.1145/3458817.3476191.

[20] Sorokin, K. (2023). Benchmark comparing various data

serialization libraries [Electronic resource]. Available at:

https://github.com/thekvs/cpp-serializers (Accessed:

03/22/2024).

[21] Hamerski, J. C., Domingues, R. P., Moraes F. G., Amory

A. (2018). “Evaluating Serialization for a Publish-

Subscribe Based Middleware for MPSoCs”, in 25th IEEE

International Conference on Electronics, Circuits, and

Systems (ICECS), Bordeaux, France, pp. 773–776,

DOI: 10.1109/ICECS.2018.8618003.

[22] Peltenburg, J., Hadnagy, Á., Brobbel, M., Morrow, R.,

Al-Ars Z. (2021). Tens of gigabytes per second JSON-to-

Arrow conversion with FPGA accelerators. In 2021

ICFPT, 1–9. DOI: 10.1109/ICFPT52863.2021.9609833.

[23] Maltsev, E., Muliarevych, O. (2024). Beyond JSON:

Evaluating Serialization Formats for Space-Efficient

Communication. Advances in Cyber-Physical Systems,

vol. 9, no. 1, 9–15. DOI: 10.23939/acps2024.01.009.

[24] Kniazhyk, T., Muliarevych O. (2023). Cloud Computing

With Resource Allocation Based on Ant Colony Optimi-

zation. Advances in Cyber-Physical Systems, vol. 8,

no. 2, 104–110. DOI: 10.23939/acps2023.02.104.

Maltsev Eduard obtained his

Master’s in Computer Engineering,

specializing in Computer Systems

and Networks, from Lviv Polytech-

nic National University in 2013. In

2021, he became a Certified Cloud

Architect and is currently working

towards a Ph.D. in Computer Engi-

neering.

Dr. Riaz Ul Amin completed his

PhD in Computing Science at the

University of Glasgow. He is cur-

rently a Postdoctoral Research Fel-

low at Edinburgh Napier University,

UK, specializing in Applied AI in

Distributed Computing.

