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Abstract: This study provides an evaluation of the impact 

of various serialization formats on inter-service commu-

nication performance, with a focus on serialization speed, 

space efficiency, and latency in environments integrating 

middleware, which are characteristics of microservice 

architectures. Through an empirical analysis of a wide 

range of serialization formats and comparison to the tradi-

tional standards, it highlights that the compactness of seri-

alized payloads is more critical in reducing end-to-end 

latency than the sheer speed of serialization itself. Despite 

their high serialization speeds, FlatBuffers and Cap’n Proto 

underperform in distributed settings, in contrast to the 

more balanced performance seen with Avro, Thrift, and 

Protobuf. This study underscores the importance of mes-

sage size optimization in boosting network efficiency and 

throughput1. 

Index Terms: Data communication, Encoding, Informa-

tion exchange, Protocols, Performance evaluation. 

I. INTRODUCTION 

The ever-growing complexity of software systems 
has necessitated a paradigm shift towards microservices 
architectures [2, 4]. These architectures decompose func-
tionalities into independent, loosely coupled services that 
communicate to achieve a unified goal. Inter-service 
communication (ISC) acts as the lifeblood of distributed 
systems, facilitating the seamless exchange of data bet-
ween services. However, the efficiency of this exchange 
directly impacts the overall performance, scalability, and 
resource utilization of the entire system [3]. 

One critical element influencing ISC efficiency is 

the choice of serialization format. Serialization refers to 

the process of transforming data structures into a trans-

mittable format, allowing data to traverse network 

boundaries. The receiving service then deserializes the 

data back into its original form [5]. Compact seriali-

 
1 This article uses the materials and results obtained by the 

authors during the research work “Intelligent design methods and tools 

for the modular autonomous cyber-physical systems”, state registration 

number 0124U002340 dated 09.03.2024, which is carried out at the 

Department of Electronic Computing Machines of the Institute of 

Computer Technologies, Automation and Metrology of Lviv Poly-

technic National University in 2024–2028. 

zation formats minimize the size of the transmitted data, 

leading to reduced bandwidth usage and improved net-

work performance. However, this often comes at the cost 

of increased processing overhead for serialization and 

deserialization [23]. 

II.  LITERATURE REVIEW AND PROBLEM 

STATEMENT 

Let us examine recent studies to understand the cur-

rent landscape of serialization formats and their impli-

cations for inter-service communication in distributed 

systems. Research in [1] contrasts JSON/XML with 

Protobuf for data serialization in web services, empha-

sizing efficiency, readability, and schema enforcement. 

JSON/XML is preferred in REST for its text-based, 

human-readable formats, enabling dynamic, schema-less 

data interchange. Another interesting study in [2] focuses 

on optimizing inter-service communication in a cloud-

native microservice architecture. The study presents 

Protocol buffers as a language-neutral, platform-neutral, 

extensible mechanism for serializing structured data. 

The study [3] compares various serialization for-

mats, focusing on vehicle-to-cloud communication. The 

paper evaluates Protobuf and Flatbuffers, two binary 

serialization formats. It mentions Cap’n Proto as an 

attractive zero-copy format, which performs similarly to 

Flatbuffers but with a slight speed advantage. Another 

alternative mentioned is MessagePack. 

Source [4] explores binary versus textual seria-

lization formats for inter-service communication within 

Java microservices under a K-Native, Kubernetes-

managed environment. The study suggests that Protocol 

Buffers significantly improve response time and payload 

size performance. 

Source [5] evaluates different serialization proto-

cols for improving inter-service communication effi-

ciency within dCache, a distributed storage system. 

Source [6] evaluates diverse data serialization for-

mats. The gap in this research is its focus on micro-

controllers with certain constraints, which may not be 

generalizable to all IoT devices or distributed systems. 

https://doi.org/%2010.23939/acps2022.
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Source [7] evaluates serialization formats’ effi-

ciency and performance in distributed systems, focusing 

on IoT sensor networks. Protocol Buffers or Apache 

Thrift were the most efficient means of encoding infor-

mation based on the information provided. 

Source [8] evaluates several schema-driven and 

schema-less binary serialization specifications that are 

JSON-compatible, including but not limited to ASN.1, 

Apache Avro, Microsoft Bond, Cap’n Proto, FlatBuffers, 

and others. 

Complementing these findings, [9] evaluates the 

performance impact of different communication proto-

cols (REST, gRPC, and Thrift) in microservices, focus-

ing on network, CPU, and memory utilization alongside 

response times. Thrift and gRPC outperformed REST 

based on response time and system resource efficiency, 

attributed to their compact binary serialization formats 

and efficient protocol designs. 

The study [10] investigates JSONBinPack’s effi-

ciency, particularly in schema-driven mode, and directly 

aligns with our research. The study suggests that 

JSONBinPack outperforms traditional JSON and binary 

serialization formats based on space efficiency. 

Research in [11] provides comparative experiments 

involving HDVM, Redis, and Protobuf for JSON data 

serialization, assessing performance metrics to demon-

strate Protobuf’s efficiency. 

The paper [12] focuses on Apache Arrow and its 

Arrow Flight protocol. 

The research [13] details the impact of SOAP seri-

alization on communication efficiency, particularly in 

web services using HTTP and JMS protocols. The 

study’s limitations include not considering the effect of 

network conditions, not testing other serialization for-

mats like JSON or Protocol Buffers, and focusing only 

on SOAP messages.  

Research conducted in [14] explores the efficiency 

of serialization formats in distributed systems, focusing 

on IoT devices. 

The study [15] evaluates a wide range of JSON-

compatible binary serialization formats. Schema-driven 

specifications, especially ASN.1 PER Unaligned and 

Apache Avro (unframed) are identified as the most 

space-efficient. 

Additionally, for our research, it is essential to un-

derstand the inner workings of various optimized for-

mats, like Protocol Buffers [16], to understand better the 

scenarios they are suited for [17]. 

A recent study [18] highlighted that exploring al-

ternative web archival formats, specifically Parquet and 

Avro, demonstrated significant performance improve-

ments over the traditional WARC format. The study [19] 

emphasizes the unique advantages of HatRPC’s hint-

accelerated approach in optimizing Thrift RPC services 

over RDMA transport. 

Findings in [20] suggest that Cap’n proto is faster 

than Flatbuffers in serialization/deserialization time. 

Source [21] suggests that MessagePack (MsgPuck) ex-

cels and beats other libraries with formats like, e.g., 

Flatbuffers and NanoPB (Protobuf). It has been suggest-

ed that special hardware like FPGAs can be used, as it 

has mentioned in [22]. To conduct benchmarks both for 

serialization/deserialization speed and distributed delay 

measurements, we will use the model and part of the 

methodology we have designed in the study [23]. The 

study [24] underlines the importance of efficient re-

source utilization for improving system performance. 

Considering the gap in current literature and the 

rapid evolution of serialization technologies, we aim to 

provide new insights into the influence of serialization 

format choice on inter-service communication latency. 

This study will examine the feasibility of achieving a 

50 % reduction in latency compared to JSON. 

III. SCOPE OF WORK AND OBJECTIVES 

The objective of this study is to assess whether the 

latency of inter-service communication can be decreased 

by at least 50 %, compared to JSON, by utilizing alterna-

tive binary and textual serialization formats. To achieve 

this, we will break the objective into smaller parts. First-

ly, we will measure serialization / deserialization speed 

to better understand better the influences of constituent 

parts underlying the overall latency metric. Then, we 

will conduct a distributed benchmark to measure latency 

for each selected format in a distributed environment. 

The last step is to perform a comparative analysis of the 

gathered metrics and draw conclusions. 

IV. METHODOLOGY 

For the serialization and deserialization speed 

benchmarks, we will present two separate results tables: 

the first one showing results from epochs 1 through 15 

and the second from epochs 16 to 30. The first test will 

operate with smaller message sizes from ~0.5 kB to 

~4 kB, and the second benchmark will have message 

sizes from ~4 kB to ~30 kB. 

The distributed benchmark will be conducted for 

the first 15 epochs and will feature one results table, 

message sizes from ~0.5 kB to ~4 kB, number of mes-

sages, Ne, is gradually increasing with each epoch, and is 

determined as Ne = 2000 × e, where e is an epoch num-

ber. The median reduction Rf,m in comparison with JSON 

is calculated as follows: 
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where m is a metric in the set {serialization speed s, 

deserialization speed d, latency l}, Vjson,m is the median 

value of the metric m for JSON and Vf,m represents the 

median value of the metric m for a given serialization 

format f. Results will be presented in descending order 

by Rf,m. 

V. SERIALIZATION SPEED BENCHMARK 

Let us have a look at the serialization speed 

benchmark results presented in Table 1 and Table 2. 

Flatbuffers format consistently outperforms other proto-
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cols at all message sizes in this benchmark, maintaining 

a median below 2 μs/op across all tested message sizes. 

This finding contradicts the results presented in [3], 

which suggests that Protobuf has a faster serialization 

speed.  

Table 1 

Serialization time distribution (μs/op), epoch 1–15 

Format Mean Max Rs,% 

Flatbuffers 0.22 0.5 97.59 

Protocol Buffers 2.80 8.04 89.54 

Cap’n (unpacked) 0.80 1.84 89.54 

Avro 2.62 5.56 61.66 

CBOR 3.71 7.59 45.58 

Smile 5.05 10.7 32.44 

Thrift 5.11 10.75 17.69 

Json 6.59 13.91 0.00 

Cap’n (packed) 7.70 16.39 –1.34 

MessagePack 7.53 14.01 –32.98 

BSON 11.07 21.83 –76.94 

XML 13.33 26.4 –92.76 

AmazonIon 14.26 29.54 –116.09 

YAML 67.65 139.53 –866.49 

 

While not as performant as Flatbuffers, Protobuf 

demonstrates excellent efficiency, particularly at smaller 

message sizes, but has a significant increase with larger 

messages, suggesting that Protobuf is optimized for small to 

medium-sized messages. Thrift shows higher μs/op for 

smaller messages than Avro and Protobuf. However, a 

study presented in [9] suggests that the Thrift protocol out-

performed others due to rapid serialization and deserializa-

tion of the packets for communication. 

Though, in this study, we are not evaluating proto-

col efficiency, we argue that the sheer serialization speed 

of the format might not be a main contributor to Thrift 

protocol performance. 

Cap’n Proto (unpacked) performs comparably to 

Protobuf and Flatbuffers for smaller messages but shows 

a larger increase in μs/op with larger messages. This 

suggests that while Cap’n Proto is designed for speed 

and efficiency, it may not be as well-suited for larger 

messages as Flatbuffers. Our testing scenario results 

contradict the results in [20], where it was suggested that 

Cap’n Proto has a slight speed advantage over FlatBuf-

fers. 

BSON shows inferior results compared to JSON, 

with serialization times reaching 21 μs/op for smaller 

messages and 52.17 μs/op for larger ones. 

We may notice that Avro performs relatively well 

compared to Protobuf and Thrift across a range of large 

message sizes, as it has been seen in Table 2. Avro’s 

serialization time increase is more gradual than Proto-

buf’s, which sees a more dramatic growth as message 

sizes grow. Although Protobuf’s times are higher than 

Avro’s for larger messages, it is still within a competi-

tive range for smaller messages.  

Table 2 

Serialization time distribution (μs/op), epoch 16–30 

Format Median Mean Rs, % 

Flatbuffers 1.52 1.61 95.42 

Cap’n (unpacked) 5.51 6.35 83.40 

Avro 14.36 14.93 56.75 

CBOR 17.9 18.74 46.08 

Smile 24.07 25.81 27.50 

Thrift 25.73 25.03 22.50 

Protocol Buffers 26.86 27.23 19.10 

MessagePack 30.02 32.44 9.58 

Json 33.2 36.78 0.00 

Cap’n (packed) 41.9 43.48 –26.20 

BSON 52.17 55.76 –57.14 

XML 64.89 68.09 –95.45 

AmazonIon 74.54 84.92 –124.52 

YAML 351.93 379.37 –960.03 

 

Additionally, in this scenario, Cap’n (unpacked) 

performs inferior to Flatbuffers, which contradicts the 

results presented in [20].  

Notably, in tests on larger messages from epochs 

16–30, schema-less CBOR outperformed the schema-

based binary format Thrift, with a median speed of 17.9 

compared to Thrift’s 25.73. 

Cap’n Proto (packed) presents moderate serializa-

tion times for smaller messages but shows the largest 

relative increase in time as message sizes increase. Let’s 

compare this with the result in Table 1. The us efficiency 

trend of CBOR and Smile is consistent even as the mes-

sage size scales up. In contrast, the relative inefficiency 

of BSON and Cap’n Proto (packed) becomes more pro-

nounced with larger messages.  

MessagePack remains a middle-ground option but 

is not superior to Protobuf as opposed to the results men-

tioned in [21], though it was much closer with larger 

messages. Overall, as it has been expected, textual for-

mats performed much worse than binary formats, espe-

cially when compared to Zero-copy serialization formats 

like FlatBuffers and Cap’n Proto. 

VI. DESERIALIZATION SPEED BENCHMARK 

Let us examine the results of the deserialization 

speed benchmark with smaller test messages first pre-

sented in Table 3. 

Flatbuffers exhibit exceptionally low deserializa-

tion times, consistently outperforming other formats 

across all epochs. This confirms findings from [3], where 

it was suggested that Flatbuffers wins in deserialization 

time compared to Protobuf 

Cap’n Proto (unpacked) follows closely with a me-

dian time of 0.06 μs/op and an Rd = 99.1 %. Like Flat-

buffers, it provides extremely efficient data access with-

out a deserialization step, which contributes to its high 

performance. 
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Table 3 

Deserialization time distribution, epoch 1–15, μs/op 

Format Median Mean Rd,% 

Flatbuffers 0.02 0.02 99.7 

Cap’n (unpacked) 0.06 0.06 99.1 

Protobuf 0.88 3.61 87.1 

Thrift 1.15 2.97 83.1 

Avro 2.39 5.60 64.9 

Cap’n (packed) 3.92 6.80 42.4 

Smile 4.44 7.42 34.7 

CBOR 4.69 7.81 31.0 

MessagePack 6.49 11.18 4.6 

JSON 6.8 13.66 0.0 

BSON 10.26 20.15 –50.9 

XML 19.36 38.32 –184.7 

AmazonIon 25.22 41.65 –270.9 

YAML 65.21 118.46 –859.0 

 

The results for medium messages in Table 4 follow 

the same pattern as for smaller messages, showing that 

Flatbuffers and Cap’n Proto (unpacked) consistently 

excel, with minimal increases in deserialization times. 

 

Table 4 

Deserialization time distribution, epoch 16–30, μs/op 

Format Median Mean Rd, % 

Flatbuffers 0.03 0.03 99.96 

Cap’n (unpacked) 0.1 0.10 99.86 

Thrift 18.09 18.72 74.04 

Protobuf 25.17 26.06 63.88 

Avro 33.12 35.61 52.48 

Cap’n (packed) 35.04 37.01 49.72 

Smile 35.83 37.62 48.59 

CBOR 39.05 39.07 43.97 

MessagePack 48.24 52.89 30.78 

JSON 69.69 76.20 0.00 

BSON 102.06 109.94 –46.45 

XML 214.64 1545.24 –207.99 

AmazonIon 245.89 264.31 –252.83 

YAML 583.51 578.50 –737.29 

VII. DISTRIBUTED BENCHMARK FRAMEWORK 

For this benchmark, we will employ three Java Vir-

tual Machine (JVM) threads that act as distinct compo-

nents of a distributed system; they will be referred to as 

Thread A, B, and C.  

 

 

Fig. 1. A designed test scenario for distributed benchmark 
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These threads are designed to imitate the roles of 

producers and consumers within a distributed architec-

ture, utilizing Kafka as the middleware for message 

passing. A designed test scenario is depicted as a UML 

sequence in Fig. 1.  

VIII.  DISTRIBUTED BENCHMARK 

Now, let us analyze the resulting lag metrics for 

several key formats, presented in Table 5. Avro, Proto-

buf, and Thrift showed the best performance in this dis-

tributed benchmark, significantly reducing median delay 

in distributed communication scenarios compared to 

JSON, a traditional serialization format. Avro decreased 

median delay by Rl = 84.3 %, Protobuf by 82.4 %, and 

Thrift by 80.4 %. Cap’n (packed) was able to reduce 

median latency by 70.8 %. Flatbuffers decreased median 

latency by 17.1 %, and MessagePack, CBOR, and Smile 

decreased median latency by 10–13 %. The rest of the 

formats did not decrease latency significantly (<10 %) or 

increased compared to JSON. For example, YAML 

increased median latency by 14.5 %. In future research, 

one might consider improving simulation by including 

additional test scenarios, message complexity, message 

nesting variations, and serialization formats like Mi-

crosoft Bond, PSON, and UBJSON. 

Table 5 

Distributed simulation latency distribution 

Format 
Mean, 

ms 

Median, 

ms 
Rl, % 

Range, 

ms 

Avro 1566.5 1526.0 84.3 2326 

Protobuf 1750.5 1664.4 82.4 2278 

Thrift 1948.5 2035.6 80.4 3085 

Cap’n (packed) 2904.5 3075.6 70.8 11749 

Flatbuffers 8255.5 8411.8 17.1 11512 

Smile 8744.5 8634.6 12.2 12588 

MessagePack 8814 8803.6 11.5 12700 

CBOR 8900.5 8570.7 10.6 11811 

Cap’n  

(unpacked) 

9103.5 8667.1 8.6 5090 

AmazonIon 9122.5 9141.4 8.4 12300 

BSON 9338.5 8986.2 6.2 12318 

XML 9864 9545.2 1.0 13048 

JSON 9959 8929.6 0.0 15476 

YAML 11399 11447 –14.5 12898 

VIII. CONCLUSION 

Our findings confirm that transitioning to an alter-

native data serialization format can yield a substantial   

latency reduction, surpassing Rl = 50 % when compared 

to traditional JSON. This result is particularly relevant 

for systems where real-time performance is critical, as 

each millisecond gained or lost in latency can signifi-

cantly impact overall system efficiency. Our distributed 

benchmark analysis further highlights that message 

compactness plays a more decisive role in reducing dis-

tributed latency than the raw speed of serialization and 

deserialization processes. This insight underscores the 

importance of format selection based on message struc-

ture and overhead, rather than focusing solely on seriali-

zation / deserialization speeds. 

Additionally, our research indicates that schema-

based binary formats such as Avro, Protocol Buffers, and 

Thrift outperform schema-less formats when the goal is 

to minimize latency in distributed systems. 
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