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Abstract: This paper presents the results of a study on 
the A* search algorithm applied to a two-dimensional map 
with obstacles. Since, in typical cases, A* is implemented on 
a map divided into cells of equal size, a scientific interest 
has lies in investigating the efficiency of this algorithm on a 
map with dynamically variable cell size. Such a map 
representation increases the "resolution" of constructing a 
better trajectory near obstacles. For this purpose, the paper 
proposes an approach to representing the search space as a 
dynamic adaptive grid using a QuadTree structure. 
Additionally, a modification of the A* algorithm has been 
proposed and investigated, which involves selecting the best 
cell in the neighborhood of the agent's current position and 
performing pathfinding from a starting point to a goal. The 
paper considers maps of various sizes and complexities for 
numerical experiments and compares the classical and 
modified A* algorithms. It has been shown that the 
proposed modification of the A* algorithm demonstrates 
better computational properties than the classical version 
of the algorithm on an adaptive grid. 

Index Terms: A*, Pathfinding, Grid map, Graph 
algorithms, Adaptive occupancy grid. 

I. INTRODUCTION
The A* algorithm, a widely used pathfinding algo-

rithm in artificial intelligence and robotics, is commonly 
implemented on maps with uniformly sized cells. While 
this approach has proven effectiveness in many 
applications, it can be suboptimal in scenarios where the 
environment exhibits varying levels of complexity. For 
instance, in environments with dense obstacles or areas 
requiring high-precision navigation, a fixed-size grid 
may not adequately capture the underlying spatial 
variations [1, 2]. Several studies have explored the use of 
adaptive grid structures to address this limitation. These 
structures allow for dynamic adjustments in cell size, 
enabling more efficient exploration and representation of 
complex environments. For example, [3] proposed an 
approach that improves the A* algorithm using 
hexagonal grid mapping by addressing limitations such 
as low degrees of freedom, inadequate consideration of 
particular regions, and excessive nodes and turns. Also, 
the agent that searches the map to reach the target using 
A* can modify the grid resolution depending on the 
complexity of the environment.  

In this paper, we extend the range of research by 
introducing the adaptive grid representation based on the 
QuadTree data structure. The QuadTree allows for an 
efficient hierarchical subdivision of the search space, 
enabling the algorithm to focus computational resources 
on regions with higher levels of details. We propose a 
modified A* algorithm incorporating the adaptive grid 
structure to improve the pathfinding performance in 
complex environments. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

The A* pathfinding algorithm in many real-world 
problems is viral and extensive [4]. Its popularity is 
based on relative simplicity and comprehensive research 
results. Nevertheless, due to significant computational 
load and issues with real-time use, the A* algorithm 
needs modifications like D* and D* Lite to enhance its 
applicability. For instance, in [5], authors present a 
comparative analysis of the A* and D* Lite algorithms 
for UV (uncrewed vehicle) path planning through 
simulation and experimentation, highlighting that while 
D* Lite generally outperforms A* in terms of faster 
computation time and shorter path generation, the choice 
between algorithms ultimately depends on specific sys-
tem requirements. The paper [6] focuses on path planning 
for a mobile robot using a grid map, introducing several 
A* modifications and improvements aimed at enhancing 
computational time and path optimality. An interesting 
approach is presented in [7], where an A*-based zigzag 
global planner for a novel self-reconfigurable Tetris-
inspired cleaning robot is designed to optimize coverage 
path planning in complex environments. The study [8] 
addresses the challenges of mapping, localization, and 
navigation for an autonomous mobile robot designed to 
assist the elderly by using RTABMap for mapping and 
localization, A* for path planning, and the Dynamic-
Window Approach and cost map algorithms for obstacle 
avoidance, enabling the robot to navigate and adapt to 
new environments successfully. 

Our study aims to extend the basic A* algorithm 
for the proposed adaptive occupancy grid maps and to 
compare their performance with the naïve implemen-
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tation. In order to explore these ideas, different 2D maps 
with obstacles are considered. The agent (virtual robot), 
which is initialized at some starting point related to a 
specific node, should reach the predefined target 
dynamically, i.e., it scans the map in a short range 
around itself, detects obstacles, and determines the 
direction of movement using A* and the history of 
movement points. The robot can dynamically dense the 
grid by splitting nodes into four smaller ones. These 
nodes are organized in a QuadTree [9] structure to 
increase computational performance. Here, we set a 
restriction to force the robot to move only in 
neighborhood nodes if possible. If not, the robot picks a 
random optimal position from the A* set of movements.  

III. SCOPE OF WORK AND OBJECTIVES
In this paper, we consider two-dimensional grid 

maps with multiple polygonal obstacles. The map is 
initially split into rectangular nodes of predefined size 

( ),b x yr r r=  according to axes X and Y (fig. 1, 2). The 

agent, initialized in the starting coordinates ( )0 0,x y , is 
mapped to one of the nodes that hold these coordinates. 
Each j-th node jn  is defined via upper left corner 
coordinates, width and height ( ), , ,j j j jn n x y w h= . The 

agent’s task is to reach some target node Tn  which holds 
coordinates ( ),t tx y  of the target. It does not know about 
the whole map in advance. 

Before each agent’s step, it runs the A* algorithm 
to obtain a new optimal node to relocate based on 
information about surrounding nodes. These nodes can 
have three statuses: occupied when obstacles are inside, 
accessible and unknown so that the agent can move only 
to accessible ones. The agent scans the map around itself 
at a certain distance s, significantly less than the map 
size. It allows him to obtain the nodes’ statuses. If 
surrounding nodes are either occupied or unknown, the 
agent can split them into four smaller nodes in a 
recursive way using the QuadTree data structure  

,1 ,2 ,3 ,4, , ,j j j j jn n n n n →   ,  (1) 

which forms a parent-children tree. These splits can be 
performed until the node's size reaches some predefined 
limit value ( ),l l lr r r= . Note that the node's size cannot 
be less than the agent's size because the agent is 
positioned within the node.  

Such splits allow the agent to build a more flexible 
and granular trajectory. For instance, if all the nodes 
around it are occupied, then the agent can split nodes and 
find those that are accessible (Fig. 3). Note that the agent 
can perform splitting only within its scanning range s. 

Based on the proposed dynamic map represen-
tation, the agent utilizes the standard and modified A* 
algorithms to calculate the quasy-optimal movement 
points.  

Fig. 1. Map representation 

Fig. 2. Map represented as adaptive grid 

Fig. 3. Examples of map splitting 

Because the performance of A* is not widely 
studied on such adaptive occupancy grids, we can 
formulate the objective of the study. Given the 2D map 
with the corresponding adaptive occupancy grid, the sea-
rch agent initialized in starting point ( )0 0,x y  must 

compute sub-optimal path { }0 1, , , Tn n n…  in order to

reach the target node Tn  defined by coordinates ( ),t tx y
using the standard and modified A* algorithms. The 
study's primary goal is to research and compare the 
performance of the standard and modified versions of the 
A* (discussed in the next section) and provide an 
analysis of the obtained results. 
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IV. PATHFINDING ALGORITHMS
Using the proposed adaptive occupancy grid and 

basic A*, it is possible to implement the latter modi-
fication to approximate the real-time search algorithm 
with the priority of moving only to the nearest nodes. 

Firstly, let us briefly outline the main steps of 
standard A* adjusted to the proposed adaptive 
occupancy grid. A* is a popular pathfinding algorithm 
that efficiently finds the shortest path between a starting 
node and a goal node in a weighted graph. The algorithm 
utilizes two special sets: open and closed. The first is a 
set of nodes that have been discovered but have yet to be 
explored, and the latter is a set of nodes that have already 
been explored. Each j-th node is assigned three functions 

( )jg n , ( )jh n  and ( ) ( ) ( ),j j k jf n g n n h n= + . Here 

( ),j kg n n  is the cost of the path from the start node to

node jn  and ( )jh n  is the heuristic estimate of the cost

of the cheapest path from node jn  to the target node. In 
this study, we have chosen functions as follows 

( ) ( ) ( ) ( )
1

1

1
, ,

j
j k j k j k i i

c c c c
i

g n n x x y y g n n
−

−

=

= − + − + ∑ , (2) 

( ) ( )1 1 2 22 min ,jh n cdx cdy cdx cdy= + +  ,   (3) 

where ( ),j kg n n  is the Euclidean distance, ( ),k k
c cx y  is 

the center of node kn , ( ),j j
c cx y  is the center of node jn . 

The choice of the second function is more complicated 
and took place on the basis of conducted numerical 
experiments. It is a modified diagonal distance, where 

1 1 2, ,cdx cdy cdx  and 2cdy  are the diagonal distances 
from each corner of the current node to the center of the 
goal node. They are calculated as  

2j
c c c= − +cd n g n , (4) 

where j
cn  is the center coordinates of jn , cg  is the 

center coordinates of the target node, cn  is the size of 

node jn . 
The steps of A* are straightforward [10]. Firstly, 

during the initialization, the start node 0n  is set as the 
current node and is simultaneously added to the open set, 
and all functions are set to zero. Secondly, we remove 
the current node from the open set and add it to the 
closed set. For each neighbor of the current node:  

a) if the neighbor is in the closed set, we ignore it;
b) if the neighbor is not in the open set, we add it to 

the open set, set its parent to the current node, and 
calculate its h, g, and f values; 

c) if the neighbor is already in the open set, we
check if this path to the neighbor is better than the 
previous one based on f value; if so, we update the 
neighbor's parent and recalculate its f, g, and h scores. 

Fig.4. Pseudocode of Mod-A* 

The second stage runs until the target node is 
found, but with a few considerations applied in this 
work. Because of the second A*, the agent performs two 
actions: 1) it scans the surrounding area and detects 
nodes of three types described in the previous section; b) 
the agent can split nodes with occupied or unknown 
statuses into four children nodes, but only if the size of 
the minimum node does not reach the minimal resolution 

( ),l l lr r r= . To identify obstacles within the j-th node 
jn , the agent verifies if the intersection of the scanning 

circle and the obstacle defined as a polygon occurs. If so, 
the corresponding node is marked as occupied.  As in  
real-world scenarios, the agent should move only within 
the neighboring area and not ‘jump’ over the map to the 
optimal node far away from the current node jn , we 
propose the following modification of A* algorithm. 
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Firstly, the next optimal node for the movement 
from the current position should be picked up from the 
adjacent leaves. If there are no such optimal nodes, i.e., 
all f -values of adjacent leaves are worse than others, 
then a random node from free adjacent leaves is to be 
taken. This step introduces randomness, which helps 
avoid getting stuck. Secondly, we do not utilize the 
closed set used in the standard A* because we want the 
agent to re-explore already visited nodes. The one 
iteration of the proposed modification of the algorithm 
named Mod-A* is given in the pseudocode (Fig. 4). 

V. NUMERICAL EXPERIMENTS
To investigate and compare the performance of the 

standard and proposed modified A* algorithms, we 
generated two 2D maps with different sizes and 
difficulty levels.  

The first map, #1, is of size 500x500. It has 200 
polygonal obstacles with a maximum side length of 20. 
The agent can scan the map in the range of 10, and the 
agent’s diameter is 1. The base resolution br is ( )10,10

and the smallest resolution is ( )2, 2lr = . The results of 
the standard and modified algorithms are shown in Fig. 
5-6, where starting coordinates are ( )1.2,1.2  and target

coordinates are ( )430.2,477.2 .
As it is seen in Fig. 5-6, the agent splits 

surrounding nodes near obstacles to build a more refined 
path. Here, the standard A* algorithm is used with the 
closed set, i.e., the agent is forbidden to revisit explored 
nodes. As it is an exploration path, it may have detours 
and local circles. The refined path is smoother than the 
explored path; however, we have omitted it here due to 
the paper's limited size. 

The modified Mod-A* version (Fig. 7-8) produces 
similar results but with one significant improvement: the 
length of the explored path in all three experiments, 
where targets occupied coordinates ( )430.2, 477.2 , 

( )430.2,35.2  and ( )10.2,490.3  is less than the length of
the standard A* implementation (Table 1).

The results of three experiments with different 
target’s coordinates are presented in Table 1. Mod-A* 
generates a reasonably shorter exploration path in each 
experiment, which is much better, for instance, for the 
agent’s power savings. Nevertheless, as the agent can 
revisit nodes, the revised shortest paths built over the 
explored path are larger than the paths generated via A*. 

Table 1 

Path length for A* and Mod-A* (map # 1) 
A* Mod-A* 

Explored 
length 

Shortest 
length 

Explored 
length 

Shortest 
length 

1277 810 1112 817 
1175 499 952 490 
3311 589 1380 641 

Fig. 5. Agent’s adaptive grid (A*) 

Fig. 6. Agent’s exploration route (A*) 

Fig. 7. Agent’s adaptive grid (Mod-A*) 

The second map, #2, is twice as extensive and is of 
size 1000x1000. It consists of 200 obstacles with a 
maximum side length of 45. The scanning range of the 
agent is the same as for map #1. The results for this 
configuration of the standard and modified algorithms, 
where target coordinates are ( )970.2,820.7 , are visua-
lized in Fig. 9-12.  
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Fig. 8. Agent’s exploration route (Mod-A*) 

Fig. 9. Agent’s adaptive grid (A*) 

Fig. 10. Agent’s exploration route (A*) 

Table 2 

Path length for A* and Mod-A* (map # 2) 
A* Mod-A* 
Explored 
length 

Shortest 
length 

Explored 
length 

Shortest 
length 

8644 1684 2100 1620 
22156 1172 6064 1130 
6486 1016 4193 1043 

Fig. 11. Agent’s adaptive grid (Mod-A*) 

Fig. 12. Agent’s exploration route (Mod-A*) 

The results of the other three experiments done for 
map # 2, also with different target coordinates 
( )970.2,820.7 , ( )970.2,35.3  and ( )90.2,820.7  corres-
pondingly, are presented in Table 2. With the increase in 
map complexity and size, Mod-A* generates a much 
shorter exploration path in each experiment. Besides, the 
revised shortest paths built over the explored path are 
shorter in two of three experiments. 

The conducted numerical modeling demonstrates a 
few intriguing outcomes. Firstly, the dynamic splitting of 
the searching grid impacts the A* implementation and 
increases the complexity. Although this modification 
complicates the search for the shortest path and leads to 
constructing a quasi-optimal trajectory, it allows more 
flexible processing of the map and the environment 
closest to the agent. Secondly, the proposed Mod-A* 
modification with slight randomness, focusing only on 
the neighboring nodes and skipped closed set, outper-
forms standard A* under a given configuration. 

VI. CONCLUSION
In this paper, we presented and explored an 

integrated approach to the dynamic pathfinding problem. 
As part of this approach, a scheme for combining an 
adaptive occupancy grid with a variable resolution, 
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which is superimposed on the map, and a modification of 
the A* algorithm was proposed.  

The software agent, whose goal was to build a path 
from the start point to the goal, moved along a two-
dimensional map with dense obstacles. The agent can 
scan the surrounding space in some predefined range 
and, if necessary, thicken the grid within the reach of the 
scanning radius. Since in real-world tasks the agent must 
move only within the range of the scanning device, we 
modified the standard A* algorithm and compared it 
with the standard implementation. 

It is shown that the proposed modification of A* 
named Mod-A* in the context of the track length of map 
exploration is superior to the standard A* algorithm. 
Such a modification can serve as a basis for the 
implementation of a multi-agent pathfinding system in 
the conditions of complex maps. 

Also, in the future, we plan to compare the 
proposed modification with the family of D* algorithms. 
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