
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 2, 2024

STUDY OF PATHFINDING APPROACH BASED ON A*
WITH ADAPTIVE OCCUPANCY GRID

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi

Ivan Franko National University of Lviv, 50, Drahomanova Str, Lviv, 79005, Ukraine.
Authors’ e-mail: oleh.sinkevych@lnu.edu.ua, yaroslav.boyko@lnu.edu.ua,

bohdan.sokolovskyy@lnu.edu.ua, oleksandr.rechynskyi@lnu.edu.ua
https://doi.org/10.23939/acps2024.02.095

Submitted on 30.09.2024

© Sinkevych O., Boyko Ya., Sokolovskyy B., Rechynskyi O., 2024

Abstract: This paper presents the results of a study on
the A* search algorithm applied to a two-dimensional map
with obstacles. Since, in typical cases, A* is implemented on
a map divided into cells of equal size, a scientific interest
has lies in investigating the efficiency of this algorithm on a
map with dynamically variable cell size. Such a map
representation increases the "resolution" of constructing a
better trajectory near obstacles. For this purpose, the paper
proposes an approach to representing the search space as a
dynamic adaptive grid using a QuadTree structure.
Additionally, a modification of the A* algorithm has been
proposed and investigated, which involves selecting the best
cell in the neighborhood of the agent's current position and
performing pathfinding from a starting point to a goal. The
paper considers maps of various sizes and complexities for
numerical experiments and compares the classical and
modified A* algorithms. It has been shown that the
proposed modification of the A* algorithm demonstrates
better computational properties than the classical version
of the algorithm on an adaptive grid.

Index Terms: A*, Pathfinding, Grid map, Graph
algorithms, Adaptive occupancy grid.

I. INTRODUCTION
The A* algorithm, a widely used pathfinding algo-

rithm in artificial intelligence and robotics, is commonly
implemented on maps with uniformly sized cells. While
this approach has proven effectiveness in many
applications, it can be suboptimal in scenarios where the
environment exhibits varying levels of complexity. For
instance, in environments with dense obstacles or areas
requiring high-precision navigation, a fixed-size grid
may not adequately capture the underlying spatial
variations [1, 2]. Several studies have explored the use of
adaptive grid structures to address this limitation. These
structures allow for dynamic adjustments in cell size,
enabling more efficient exploration and representation of
complex environments. For example, [3] proposed an
approach that improves the A* algorithm using
hexagonal grid mapping by addressing limitations such
as low degrees of freedom, inadequate consideration of
particular regions, and excessive nodes and turns. Also,
the agent that searches the map to reach the target using
A* can modify the grid resolution depending on the
complexity of the environment.

In this paper, we extend the range of research by
introducing the adaptive grid representation based on the
QuadTree data structure. The QuadTree allows for an
efficient hierarchical subdivision of the search space,
enabling the algorithm to focus computational resources
on regions with higher levels of details. We propose a
modified A* algorithm incorporating the adaptive grid
structure to improve the pathfinding performance in
complex environments.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

The A* pathfinding algorithm in many real-world
problems is viral and extensive [4]. Its popularity is
based on relative simplicity and comprehensive research
results. Nevertheless, due to significant computational
load and issues with real-time use, the A* algorithm
needs modifications like D* and D* Lite to enhance its
applicability. For instance, in [5], authors present a
comparative analysis of the A* and D* Lite algorithms
for UV (uncrewed vehicle) path planning through
simulation and experimentation, highlighting that while
D* Lite generally outperforms A* in terms of faster
computation time and shorter path generation, the choice
between algorithms ultimately depends on specific sys-
tem requirements. The paper [6] focuses on path planning
for a mobile robot using a grid map, introducing several
A* modifications and improvements aimed at enhancing
computational time and path optimality. An interesting
approach is presented in [7], where an A*-based zigzag
global planner for a novel self-reconfigurable Tetris-
inspired cleaning robot is designed to optimize coverage
path planning in complex environments. The study [8]
addresses the challenges of mapping, localization, and
navigation for an autonomous mobile robot designed to
assist the elderly by using RTABMap for mapping and
localization, A* for path planning, and the Dynamic-
Window Approach and cost map algorithms for obstacle
avoidance, enabling the robot to navigate and adapt to
new environments successfully.

Our study aims to extend the basic A* algorithm
for the proposed adaptive occupancy grid maps and to
compare their performance with the naïve implemen-

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi 96

tation. In order to explore these ideas, different 2D maps
with obstacles are considered. The agent (virtual robot),
which is initialized at some starting point related to a
specific node, should reach the predefined target
dynamically, i.e., it scans the map in a short range
around itself, detects obstacles, and determines the
direction of movement using A* and the history of
movement points. The robot can dynamically dense the
grid by splitting nodes into four smaller ones. These
nodes are organized in a QuadTree [9] structure to
increase computational performance. Here, we set a
restriction to force the robot to move only in
neighborhood nodes if possible. If not, the robot picks a
random optimal position from the A* set of movements.

III. SCOPE OF WORK AND OBJECTIVES
In this paper, we consider two-dimensional grid

maps with multiple polygonal obstacles. The map is
initially split into rectangular nodes of predefined size

(),b x yr r r= according to axes X and Y (fig. 1, 2). The

agent, initialized in the starting coordinates ()0 0,x y , is
mapped to one of the nodes that hold these coordinates.
Each j-th node jn is defined via upper left corner
coordinates, width and height (), , ,j j j jn n x y w h= . The

agent’s task is to reach some target node Tn which holds
coordinates (),t tx y of the target. It does not know about
the whole map in advance.

Before each agent’s step, it runs the A* algorithm
to obtain a new optimal node to relocate based on
information about surrounding nodes. These nodes can
have three statuses: occupied when obstacles are inside,
accessible and unknown so that the agent can move only
to accessible ones. The agent scans the map around itself
at a certain distance s, significantly less than the map
size. It allows him to obtain the nodes’ statuses. If
surrounding nodes are either occupied or unknown, the
agent can split them into four smaller nodes in a
recursive way using the QuadTree data structure

,1 ,2 ,3 ,4, , ,j j j j jn n n n n → , (1)

which forms a parent-children tree. These splits can be
performed until the node's size reaches some predefined
limit value (),l l lr r r= . Note that the node's size cannot
be less than the agent's size because the agent is
positioned within the node.

Such splits allow the agent to build a more flexible
and granular trajectory. For instance, if all the nodes
around it are occupied, then the agent can split nodes and
find those that are accessible (Fig. 3). Note that the agent
can perform splitting only within its scanning range s.

Based on the proposed dynamic map represen-
tation, the agent utilizes the standard and modified A*
algorithms to calculate the quasy-optimal movement
points.

Fig. 1. Map representation

Fig. 2. Map represented as adaptive grid

Fig. 3. Examples of map splitting

Because the performance of A* is not widely
studied on such adaptive occupancy grids, we can
formulate the objective of the study. Given the 2D map
with the corresponding adaptive occupancy grid, the sea-
rch agent initialized in starting point ()0 0,x y must

compute sub-optimal path { }0 1, , , Tn n n… in order to

reach the target node Tn defined by coordinates (),t tx y
using the standard and modified A* algorithms. The
study's primary goal is to research and compare the
performance of the standard and modified versions of the
A* (discussed in the next section) and provide an
analysis of the obtained results.

Study of Pathfinding Approach Based on A* with Adaptive Occupancy Grid 97

IV. PATHFINDING ALGORITHMS
Using the proposed adaptive occupancy grid and

basic A*, it is possible to implement the latter modi-
fication to approximate the real-time search algorithm
with the priority of moving only to the nearest nodes.

Firstly, let us briefly outline the main steps of
standard A* adjusted to the proposed adaptive
occupancy grid. A* is a popular pathfinding algorithm
that efficiently finds the shortest path between a starting
node and a goal node in a weighted graph. The algorithm
utilizes two special sets: open and closed. The first is a
set of nodes that have been discovered but have yet to be
explored, and the latter is a set of nodes that have already
been explored. Each j-th node is assigned three functions

()jg n , ()jh n and () () (),j j k jf n g n n h n= + . Here

(),j kg n n is the cost of the path from the start node to

node jn and ()jh n is the heuristic estimate of the cost

of the cheapest path from node jn to the target node. In
this study, we have chosen functions as follows

() () () ()
1

1

1
, ,

j
j k j k j k i i

c c c c
i

g n n x x y y g n n
−

−

=

= − + − + ∑ , (2)

() ()1 1 2 22 min ,jh n cdx cdy cdx cdy= + + , (3)

where (),j kg n n is the Euclidean distance, (),k k
c cx y is

the center of node kn , (),j j
c cx y is the center of node jn .

The choice of the second function is more complicated
and took place on the basis of conducted numerical
experiments. It is a modified diagonal distance, where

1 1 2, ,cdx cdy cdx and 2cdy are the diagonal distances
from each corner of the current node to the center of the
goal node. They are calculated as

2j
c c c= − +cd n g n , (4)

where j
cn is the center coordinates of jn , cg is the

center coordinates of the target node, cn is the size of

node jn .
The steps of A* are straightforward [10]. Firstly,

during the initialization, the start node 0n is set as the
current node and is simultaneously added to the open set,
and all functions are set to zero. Secondly, we remove
the current node from the open set and add it to the
closed set. For each neighbor of the current node:

a) if the neighbor is in the closed set, we ignore it;
b) if the neighbor is not in the open set, we add it to

the open set, set its parent to the current node, and
calculate its h, g, and f values;

c) if the neighbor is already in the open set, we
check if this path to the neighbor is better than the
previous one based on f value; if so, we update the
neighbor's parent and recalculate its f, g, and h scores.

Fig.4. Pseudocode of Mod-A*

The second stage runs until the target node is
found, but with a few considerations applied in this
work. Because of the second A*, the agent performs two
actions: 1) it scans the surrounding area and detects
nodes of three types described in the previous section; b)
the agent can split nodes with occupied or unknown
statuses into four children nodes, but only if the size of
the minimum node does not reach the minimal resolution

(),l l lr r r= . To identify obstacles within the j-th node
jn , the agent verifies if the intersection of the scanning

circle and the obstacle defined as a polygon occurs. If so,
the corresponding node is marked as occupied. As in
real-world scenarios, the agent should move only within
the neighboring area and not ‘jump’ over the map to the
optimal node far away from the current node jn , we
propose the following modification of A* algorithm.

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi 98

Firstly, the next optimal node for the movement
from the current position should be picked up from the
adjacent leaves. If there are no such optimal nodes, i.e.,
all f -values of adjacent leaves are worse than others,
then a random node from free adjacent leaves is to be
taken. This step introduces randomness, which helps
avoid getting stuck. Secondly, we do not utilize the
closed set used in the standard A* because we want the
agent to re-explore already visited nodes. The one
iteration of the proposed modification of the algorithm
named Mod-A* is given in the pseudocode (Fig. 4).

V. NUMERICAL EXPERIMENTS
To investigate and compare the performance of the

standard and proposed modified A* algorithms, we
generated two 2D maps with different sizes and
difficulty levels.

The first map, #1, is of size 500x500. It has 200
polygonal obstacles with a maximum side length of 20.
The agent can scan the map in the range of 10, and the
agent’s diameter is 1. The base resolution br is ()10,10

and the smallest resolution is ()2, 2lr = . The results of
the standard and modified algorithms are shown in Fig.
5-6, where starting coordinates are ()1.2,1.2 and target

coordinates are ()430.2,477.2 .
As it is seen in Fig. 5-6, the agent splits

surrounding nodes near obstacles to build a more refined
path. Here, the standard A* algorithm is used with the
closed set, i.e., the agent is forbidden to revisit explored
nodes. As it is an exploration path, it may have detours
and local circles. The refined path is smoother than the
explored path; however, we have omitted it here due to
the paper's limited size.

The modified Mod-A* version (Fig. 7-8) produces
similar results but with one significant improvement: the
length of the explored path in all three experiments,
where targets occupied coordinates ()430.2, 477.2 ,

()430.2,35.2 and ()10.2,490.3 is less than the length of
the standard A* implementation (Table 1).

The results of three experiments with different
target’s coordinates are presented in Table 1. Mod-A*
generates a reasonably shorter exploration path in each
experiment, which is much better, for instance, for the
agent’s power savings. Nevertheless, as the agent can
revisit nodes, the revised shortest paths built over the
explored path are larger than the paths generated via A*.

Table 1

Path length for A* and Mod-A* (map # 1)
A* Mod-A*

Explored
length

Shortest
length

Explored
length

Shortest
length

1277 810 1112 817
1175 499 952 490
3311 589 1380 641

Fig. 5. Agent’s adaptive grid (A*)

Fig. 6. Agent’s exploration route (A*)

Fig. 7. Agent’s adaptive grid (Mod-A*)

The second map, #2, is twice as extensive and is of
size 1000x1000. It consists of 200 obstacles with a
maximum side length of 45. The scanning range of the
agent is the same as for map #1. The results for this
configuration of the standard and modified algorithms,
where target coordinates are ()970.2,820.7 , are visua-
lized in Fig. 9-12.

Study of Pathfinding Approach Based on A* with Adaptive Occupancy Grid 99

Fig. 8. Agent’s exploration route (Mod-A*)

Fig. 9. Agent’s adaptive grid (A*)

Fig. 10. Agent’s exploration route (A*)

Table 2

Path length for A* and Mod-A* (map # 2)
A* Mod-A*
Explored
length

Shortest
length

Explored
length

Shortest
length

8644 1684 2100 1620
22156 1172 6064 1130
6486 1016 4193 1043

Fig. 11. Agent’s adaptive grid (Mod-A*)

Fig. 12. Agent’s exploration route (Mod-A*)

The results of the other three experiments done for
map # 2, also with different target coordinates
()970.2,820.7 , ()970.2,35.3 and ()90.2,820.7 corres-
pondingly, are presented in Table 2. With the increase in
map complexity and size, Mod-A* generates a much
shorter exploration path in each experiment. Besides, the
revised shortest paths built over the explored path are
shorter in two of three experiments.

The conducted numerical modeling demonstrates a
few intriguing outcomes. Firstly, the dynamic splitting of
the searching grid impacts the A* implementation and
increases the complexity. Although this modification
complicates the search for the shortest path and leads to
constructing a quasi-optimal trajectory, it allows more
flexible processing of the map and the environment
closest to the agent. Secondly, the proposed Mod-A*
modification with slight randomness, focusing only on
the neighboring nodes and skipped closed set, outper-
forms standard A* under a given configuration.

VI. CONCLUSION
In this paper, we presented and explored an

integrated approach to the dynamic pathfinding problem.
As part of this approach, a scheme for combining an
adaptive occupancy grid with a variable resolution,

Oleh Sinkevych, Yaroslav Boyko, Bohdan Sokolovskyy, Oleksandr Rechynskyi 100

which is superimposed on the map, and a modification of
the A* algorithm was proposed.

The software agent, whose goal was to build a path
from the start point to the goal, moved along a two-
dimensional map with dense obstacles. The agent can
scan the surrounding space in some predefined range
and, if necessary, thicken the grid within the reach of the
scanning radius. Since in real-world tasks the agent must
move only within the range of the scanning device, we
modified the standard A* algorithm and compared it
with the standard implementation.

It is shown that the proposed modification of A*
named Mod-A* in the context of the track length of map
exploration is superior to the standard A* algorithm.
Such a modification can serve as a basis for the
implementation of a multi-agent pathfinding system in
the conditions of complex maps.

Also, in the future, we plan to compare the
proposed modification with the family of D* algorithms.

References
[1] X. Sun, S. Deng, B. Tong, S. Wang, C. Zhang, & Y. Jiang.

“Hierarchical framework for mobile robots to effectively
and autonomously explore unknown environments”. ISA
Trans., vol. 134, pp. 1–15, Sep. 2023. DOI: https://doi.org/
10.1016/j.isatra.2022.09.005.

[2] H. Ryu. Hierarchical Path-Planning for Mobile Robots
Using a Skeletonization-Informed Rapidly Exploring
Random Tree*. Appl. Sci., vol. 10, no. 21, p. 7846, Nov.
2020. DOI: https://doi.org/10.3390/app10217846.

[3] Z. An, X. Rui, and C. Gao. Improved A* Navigation Path-
Planning Algorithm Based on Hexagonal Grid. ISPRS Int.

J. Geo-Inf., vol. 13, no. 5, p. 166, May 2024.
DOI: https://doi.org/10.3390/ijgi13050166.

[4] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, &
E. Gunawan. A Systematic Literature Review of A*
Pathfinding. Procedia Comput. Sci., vol. 179, pp. 507–
514,. DOI: https://doi.org/10.1016/j.procs.2021.01.034.

[5] Y. D. Setiawan, P. S. Pratama, S. K. Jeong, V. H. Duy, &
S. B. Kim. Experimental Comparison of A* and D* Lite
Path Planning Algorithms for Differential Drive
Automated Guided Vehicle. AETA 2013: Recent
Advances in Electrical Engineering and Related Sciences.
Berlin, Heidelberg: Springer Berl. Heidelb., 2014,
pp. 555–564. DOI: https://doi.org/10.1007/978-3-642-
41968-3_55.

[6] F. Duchoň et al. Path Planning with Modified a Star
Algorithm for a Mobile Robot. Procedia Eng., vol. 96, pp.
59–69, 2014.
DOI: https://doi.org/10.1016/j.proeng.2014.12.098.

[7] A. Le, V. Prabakaran, V. Sivanantham, & R. Mohan.
Modified A-Star Algorithm for Efficient Coverage Path
Planning in Tetris Inspired Self-Reconfigurable Robot with
Integrated Laser Sensor. Sensors, vol. 18, no. 8, p. 2585,
Aug. 2018. DOI: https://doi.org/10.3390/s18082585.

[8] Muhtadin, R. M. Zanuar, I. K. E. Purnama, &
M. H. Purnomo. Autonomous Navigation and Obstacle
Avoidance For Service Robot. 2019 Int. Conf. Comput.
Eng., Netw., Intell. Multimedia (CENIM), Surabaya,
Indonesia, Nov. 19–20, 2019. IEEE, 2019.
DOI: https://doi.org/10.1109/cenim48368.2019.8973360.

[9] S. Sahni and D. P. Mehta. Handbook of Data Structures
and Applications. Taylor Francis Group, 2018.

[10] R. Wang, Z. Lu, Y. Jin, and C. Liang. Application of A*
algorithm in intelligent vehicle path planning. Math.
Models Eng., Aug. 2022. DOI: https://doi.org/10.21595/
mme.2022.22828.

Oleh Sinkevych, PhD, was born
in Lviv, Ukraine, in 1988. Starting
from 2023, he has been working as
an Associate Professor at the Facul-
ty of Electronics and Computer
Technologies of Ivan Franko Natio-
nal University of Lviv. His research
interests encompass machine lear-
ning, natural language processing,
swarm AI algorithms, numerical
optimization, and metaheuristics.

Yaroslav Boyko, PhD, was born
in Lviv region, Ukraine, in 1967.
Since 2017, he has been working as
an Asssociate Professor at the
Faculty of Electronics and
Computer Technologies of Ivan
Franko National University of Lviv.
His research interests encompass
Internet of Things and Fog/Edge
computing.

Bohdan Sokolovskyy, PhD,
was born in Kulykiv, Lviv region,
Ukraine, in 1950. Since 2014, he has
been working as an Associate Pro-
fessor at the Faculty of Electronics
and Computer Technologies of Ivan
Franko National University of Lviv.
His research interests encompass
computer modeling of nonuniform
semiconductor structures and me-
thods of stochastic optimization.

Oleksandr Rechynskyi, was
born in Kropyvnytskyi, Ukraine, in
2000. Starting from 2024, he has
been studying as a PhD student at
the Faculty of Electronics and Com-
puter Technologies of Ivan Franko
National University of Lviv. His
research interests encompass machi-
ne learning, natural language pro-
cessing, audio processing, swarm
AI, and metaheuristics algorithms.

