
ADVANCES IN CYBER-PHYSICAL SYSTEMS

Vol. 9, No. 2, 2024

PERFORMANCE ANALYSIS

OF DIFFERENT TYPES OF NN MODELS

FOR TARGET RECOGNITION

Bohdan Tsiunyk, Oleksandr Muliarevych

Lviv Polytechnic National University, 12, S. Bandery str., Lviv, 79013, Ukraine

Authors’ e-mails: bohdan.s.tsiunyk@lpnu.ua, oleksandr.v.muliarevych@lpnu.ua

https://doi.org/10.23939/acps2024.02.101

Submitted on 26.08.2024.

© Tsiunyk B., Muliarevych O., 2024

Abstract: The objective of this research is to conduct a

comprehensive performance analysis of various types of

neural network (NN) models for target recognition. Speci-

fically, this study focuses on evaluating the effectiveness

and efficiency of yolov8n, yolov8s, yolov8m models in target

recognition tasks. Leveraging cutting-edge technologies

such as OpenCV, the research is aimed at developing a

robust methodology for assessing the performance of these

NN models. Through meticulous analysis, this study aims to

provide insights into the strengths and weaknesses of each

model, facilitating informed decision-making for practical

applications1. This paper presents the process of designing

and conducting the performance analysis. The study

discusses the implications of the findings for future

developments in target recognition systems.

Index Terms: yolov8, YOLO, OpenCV, NN model.

I. INTRODUCTION

In today’s world, ensuring the safety and security of

our communities has become more imperative than ever.

Residents’ lives and general well-being depend on how

well their environment is protected. This aspect stands as

one of the fundamental pillars of everyone’s existence, as

it underpins the essence of peace and stability.

The significance of addressing home security

resonates deeply in the deployment of various security

measures, encompassing electronics, equipment, and

other resources. In situations where there is a risk to a

person’s health or life, it is imperative to warn and

protect those who might be vulnerable to emergencies,

home invasions, or theft. Furthermore, enhancing this

process to actively engage ordinary citizens in safe-

guarding their security and improving their community’s

welfare is paramount. To fulfill this mission, the deve-

lopment of a surveillance camera movement monitoring

system has been envisioned as the core objective and

primary task of the software system under consideration.

1 This article uses the materials and results obtained by the

authors during the research work “Intelligent design methods and tools

for the modular autonomous cyber-physical systems” (0124U002340),
which is carried out at the Department of Electronic Computing

Machines of Lviv Polytechnic National University in 2024-2028.

This system aims to leverage advanced techno-

logies, particularly neural network (NN) models, to

analyze and recognize targets efficiently. By conducting

a comprehensive performance analysis of various NN

models, including yolov8n, yolov8s, yolov8m, and

YOLO, this research endeavors to provide insights into

their effectiveness and efficiency in target recognition

tasks.

According to ADCIS, a target recognition system

[1] comprises an amalgamation of software-based

utilities, components, and hardware, tailored to cater to

the requirements of distinct user groups within a desig-

nated software ecosystem, all housed within a shared

user repository.

The Automated Imaging Association (AIA) defines

machine vision as the integration of hardware and

software to guide devices in executing tasks based on

image capture and processing across industrial and non-

industrial applications [2]. While industrial computer

vision shares algorithms with academic and govern-

mental sectors, it faces unique constraints. Machine

vision systems rely on digital sensors within industrial

cameras, paired with specialized optics, to capture

images for subsequent processing, analysis, and deci-

sion-making [3]. Consequently, industrial machine

vision entails achieving low cost, maintaining acceptable

accuracy, and ensuring high robustness, reliability, and

mechanical and thermal stability. Over the years, the

fruits of Artificial Intelligence (AI) research have

yielded numerous small-scale benefits [4]. From ATMs

reading checks autonomously to cameras auto-focusing

on faces and social media auto-tagging friends based on

facial recognition, AI’s reach continues to expand.

Consider coffee: brewing a pot only to find it bitter can

be disappointing. By allowing AI to streamline crucial

aspects of coffee or data consumption, we ensure every

cup is perfect. With machines parsing through hours of

video data, translating languages instantaneously, and

executing commands seamlessly, AI proves its capability

to tackle specific, time-consuming tasks. While we are

yet to achieve generalized AI, modern Machine Learning

(ML) displays its adeptness in addressing specific

challenges.

https://doi.org/%2010.23939/acps2022.

Bohdan Tsiunyk, Oleksandr Muliarevych 102

In recent years, there has been significant progress

in the automatic analysis of visual data using computer

algorithms, which is largely due to the progress of

convolutional neural networks (CNN). The success of

these models can be attributed in part to their biological

design. The classical artificial neuron is a simplified

version of its biological counterpart [5]. Furthermore, the

neural computational models used are only partially

inspired by biological structures and connections. In

contrast, human visual analysis involves the transfer of

information between cortical areas of the brain via

feedforward and feedback pathways.

Computer vision systems are widely used in vari-

ous areas of everyday life. They provide visual per-

ception and modeling with the help of computing tools.

These systems use single, stereo, or multiple camera

setups to perform visual tasks [6]. Stereo vision systems

using dual or multi-camera configurations allow

complex computer vision operations to be performed.

Vision systems serve as vital imaging tools used in a

wide range of applications, including portable autono-

mous robotics, 3D measurement, object tracking, the

entertainment industry, augmented reality, and object

recognition [7]. These systems, dual in nature and

dependent on multiple visions, play a key role in

enhancing spatial perception and facilitating a variety of

visual tasks in different sectors.

II. LITERATURE REVIEW AND PROBLEM

STATEMENT

Python stands out as a programming language that

embodies simplicity and power, making it a favorite

choice among developers. Its intuitive nature allows

users to focus on solving problems rather than struggling

with complex syntax and structure. The official

introduction to Python emphasizes its simplicity and

efficiency, describing it as a powerful programming

language with high-level data structures and a simple

approach to object-oriented programming. The elegance

of Python lies in its minimalist design, reminiscent of the

English language with strict rules. This pseudocode-like

quality simplifies problem-solving by emphasizing

functionality over complexity. Its user-friendly syntax

makes it extremely accessible even for beginners. In

addition, Python’s status as free and open-source

software (FLOSS) emphasizes its collaborative nature,

fostering a community focused on continuous impro-

vement. With Python, developers are free from worrying

about low-level details like memory management owing

to its open-source framework. Python’s versatility

extends to many platforms, including GNU/Linux,

Windows, macOS, and others, making it a ubiquitous

tool for software development. Its adaptability even

covers gaming platforms such as PlayStation and mobile

devices such as iPhone, iPad, and Android, further

cementing its status as a universal and widely accessible

programming language [8].

A program written in a compiled language such as

C or C++ goes through a process where it is translated

from source code into binary code (0s and 1s) that a

computer can understand, using a compiler along with

various flags and parameters. Subsequently, the linker /

loader software moves the program from the hard disk

into memory and begins its execution after startup. In

contrast, Python does not require binary compilation.

Instead, you can directly execute the program from its

source code. Internally, Python translates source code

into an intermediate form known as bytecodes, which is

then converted to the computer’s native language before

execution. This simplified process removes the worry of

compiling your application and managing library

dependencies, increasing Object-oriented programming,

on the other hand, revolves around objects that

encapsulate both data and functionality. Despite its

simplicity, Python provides a robust framework for

object-oriented programming, offering a powerful yet

simple approach compared to larger languages such as

C++ or Java.

If there is an important piece of code that needs to

be executed quickly, or if you want to keep certain

algorithms proprietary, you can develop that particular

part of your program in C or C++ and easily integrate it

into your Python code base. Python's appeal lies in its

exciting combination of performance and functionality,

which makes the process of writing Python programs

both enjoyable and easy. The benefits of 3D vision-

based technology extend to numerous fields, including

3D shape measurement, visual inspection, medical

imaging, robot control, and more. It serves as a core

component of industrial camera calibration to obtain

internal and external parameters for further measurement

or detection tasks. The accuracy of these measurements

depends on the accuracy of the camera calibration,

especially in precision industrial applications. Common

camera calibration methods such as direct linear

transform (DLT), Tsai's method, and Zhang’s planar

calibration method are used to effectively reconstruct

local or full 3D profile information. Although DLT crea-

tes a basic camera perspective model using 3D points in

space, it often does not account for lens distortion. Tsai’s

method, on the other hand, involves radial alignment

constraints to calculate external camera parameters,

followed by nonlinear optimization to account for radial

distortions. The Zhang method, known for its flexibility,

imposes minimal constraints on the spatial position of

the calibration object and is favored for its adaptability

and efficiency in camera calibration tasks [9].

OpenCV (Open-Source Computer Vision Library)

is a freely available open-source software library

designed for computer vision and machine learning

tasks. It was started with the goal of creating a unified

platform for computer vision applications and

accelerating the integration of machine perception into

commercial products. With the Apache 2 license,

OpenCV offers companies a straightforward way to use

and modify their code base. With over 2,500 optimized

algorithms, the library contains a wide range of both

traditional and state-of-the-art computer vision and

Performance Analysis of Different Types of NN Models for Target Recognition 103

machine learning algorithms. These algorithms enable

users to perform a variety of tasks such as face detection

and recognition, object identification, human action

classification in video, camera motion tracking, object

motion tracking, 3D object modeling, 3D point cloud

creation based on a stereo camera, and combining

images for panoramic scenes, searching for image simi-

larities from databases, eliminating red-eye when

shooting with flash, tracking eye movements, scene

recognition, and setting markers to influence the algo-

rithm’s behavior. With a thriving user community of

over 47,000 and estimated over 18 million downloads

[10], OpenCV has become a cornerstone tool used by

companies, research institutions, and government agen-

cies around the world. Most computer vision programs

involve image input and output. Interactive applications

may require a camera as an input source and a display

window as a destination. Image files, video files, and

raw byte data can serve as input and output sources,

enabling a wide variety of application scenarios,

including network transmission or procedural graphics

generation.

The last and crucial step in application develop-

ment is testing. It enables us to detect and fix common

bugs early in the development process. Typically, testers

perform this type of work. Testers are those who oversee

application testing. They should simulate all possible

user workflow scenarios. It allows you to go through all

the functions that the application offers, testing them all.

There are two main types of testing: manual and

automated. However, the disadvantage is that the

development of automated tests usually requires a

significant investment of development time and

resources. On the other hand, manual testing involves

testers running the tests. Although manual testing takes

more time, it is highly regarded for its flexibility,

reliability, and security. It is widely used throughout the

development process, allowing developers to imme-

diately test newly implemented features. Performance

testing of the developed program requires special tools.

One such tool is Desktop Studio Profiler, which

facilitates the monitoring of CPU resource usage, RAM

consumption, network activity, and its impact on battery

life [11]. The main characteristic of such NN model for

target recognition is the amount of memory, which

should be from up to 20 GB of total memory allocation.

III. SCOPE OF WORK AND PROBLEM

STATEMENT

In the context of target recognition systems, there is

a critical need to thoroughly analyze the performance of

different types of neural network (NN) models. The

main topic of this research is to conduct an in-depth

study of the effectiveness and efficiency of different

mesh network architectures for target recognition tasks.

This requires a systematic evaluation of the performance

characteristics of NN models, including factors such as

accuracy, resource utilization, and computational effici-

ency.

The problem under consideration is the selection and

optimization of NN models to achieve superior

performance in target recognition applications. Given the

variety of mesh network architectures available, a comp-

lete understanding of their comparative performance in

real-world scenarios is lacking. Therefore, the main goal

of this study is to address this gap by conducting a detai-

led analysis of mesh network models, focusing on their

performance and suitability for target recognition tasks.

The main challenges include optimizing resource

allocation, such as memory usage, and CPU load, to

ensure efficient performance of NN models in target

recognition systems. In addition, benchmarks should be

established to evaluate performance, considering factors

such as detection accuracy, processing speed, and

scalability in different environments. By systematically

evaluating and comparing the performance of different

NM models, this study aims to provide valuable

information that will inform decision-making processes

in the selection and deployment of NM-based target

recognition systems. The goal is to identify the most

effective and efficient NN model for target recognition,

which will contribute to the advancement of surveil-

lance, security, and related fields.

The purpose of this work is to systematically

evaluate and compare the effectiveness and efficiency of

various neural network (NN) models in the domain of

target recognition. The aim is to identify the most

resource efficient and effective NN model for target

recognition tasks. This research endeavors to provide

valuable insights into the performance characteristics of

different NN architectures, such as yolov8n, yolov8s,

and yolov8m, with a focus on their ability to recognize

targets accurately and efficiently in diverse environ-

ments. Through meticulous analysis and experimen-

tation, the objective is to inform decision-making

processes regarding the selection and deployment of NN

models in real-world target recognition applications,

ultimately contributing to the advancement of sur-

veillance and security systems.

A critical consideration for the system entails

program optimization, particularly due to the intensive

computations and video stream rendering involved RAM

usage, memory allocation and CPU load often pose

challenges in such scenarios. Typically, the standard NN

model for target recognition allocates memory up to

20 GB. Additionally, swift calculation times are

essential, with the detection of moving objects typically

accomplished within 0.1ms.

The result of the research work is to find the best

solution NN model that meets all the requirements above

and returns the best result of target recognition.

IV. ALGORITHM FOR CONVERTING VIDEO

BASED ON NN MODEL THREAD

INTO CV OBJECT

The main goal and guiding principle of the

development of this software system was the use of

modern technologies that are popular today for such

Bohdan Tsiunyk, Oleksandr Muliarevych 104

implementations. Python was chosen as the program-

ming language for the development of the entire system,

and PyCharm IDE serves as the development environ-

ment.

After carefully studying the advantages and

disadvantages of different technologies, it was decided to

adopt the following technology stack for implementing

neural network (NN) models: Python, OpenCV, YOLO,

and PyCharm.

This algorithm describes the steps to convert a

neural network model stream-based video into OpenCV

objects for target recognition. It involves continuously

processing frames from an input video stream, using an

NN model for target recognition, and converting the

results into CV objects for visualization and analysis (see

Fig. 1).

Fig. 1. Video thread converting scheme

Finally, an integral aspect of program development

is testing. It is noteworthy that the testing phase is of

primary importance in the development process, allo-

wing the identification and correction of common errors

during the development stage. Performance testing is

used to ensure optimal functionality and performance.

V. CREATION CUSTOM DATASET BASED ON

REAL PHOTOS AND IMPORT IT TO THE NN

MODEL TRAINING

Creating a custom dataset based on real photos and

importing it into a neural network (NN) model training

process is a crucial step in analyzing the performance of

several types of NN models for target recognition.

Start by collecting a diverse set of real-world

photos that match target recognition tasks. Ensure that

the images cover a wide range of scenarios and

conditions that the NN model is expected to encounter in

real-world applications. Use the annotation tools to mark

objects or targets of interest in each image.

Assign appropriate labels or classes to annotated

objects to facilitate supervised learning during training.

Resize all images to a standardized size of 640x640

pixels to ensure uniformity and compatibility with the

NN model architecture.

Additionally, perform image pre-processing as

needed, such as normalization or augmentation, to

improve model reliability and generalization capabilities.

Divide the annotated images into training, validation,

and testing sets. Dedicate a sizable portion of the training

dataset to ensure sufficient access to a variety of

examples. The validation set is used to tune the

hyperparameters and estimate the model, while the test

set evaluates the final performance of the model on

unseen data.

Organize annotated images and corresponding

labels in a structured format compatible with popular

deep learning frameworks such as TensorFlow or

PyTorch. This usually involves creating separate

directories for the training, validation, and test sets, with

each directory containing subdirectories for different

classes or labels. Implement data loaders or generators to

efficiently load image and label packets during the

training process. Ensure that the data loading pipeline is

optimized for performance to prevent bottlenecks during

model training. Train the NN model with a custom

dataset created from real photos. Use state-of-the-art

architectures such as YOLO (You Look Only Once) for

efficient and accurate target recognition (see Fig. 2).

Fig. 2. Visualization of YOLOv8S model movement target

recognition status detection

Fine-tune model parameters and architecture based

on performance metrics obtained during training.

Evaluate the performance of the trained model on

validation and test sets to evaluate its accuracy,

precision, recall, and other relevant metrics. Repeat the

training process as it is needed to improve the model’s

performance and generalization capabilities.

The metrics based on different yolov8 models for

target recognition are presented in Fig. 3.

Performance Analysis of Different Types of NN Models for Target Recognition 105

VI. FINE-TUNING THE YOLOV8 NN MODEL

BASED ON METRICS FOR BEST PERFORMANCE

RESULTS OF TARGET RECOGNITION

Start by selecting appropriate performance metrics

to evaluate the performance of the YOLOv8 model for

target recognition. Common measures include precision,

accuracy, recall, F1 score, and mean average precision

(mAP).

These metrics provide insight into the model’s

ability to accurately detect and classify targets in a

variety of environments. Train the baseline YOLOv8

model using a standardized dataset and default hyper-

parameters. This serves as an initial benchmark for

evaluating model performance before fine-tuning.

Fig. 3. NN models YOLOv8 metrics

Evaluate the performance of the base model using

selected metrics. Identify areas for improvement and

specific target recognition scenarios where the model

may fall short. Fine-tune the hyperparameters of the

YOLOv8 model to optimize its performance for target

recognition.

This may include adjusting parameters such as

learning rate, batch size, optimizer selection, binding

block sizes, and expansion methods. Implement data

augmentation strategies to improve the model’s ability to

generalize unseen data and improve performance in a

variety of target recognition scenarios.

Common zoom methods include random cropping,

rotation, scaling, and color variation. Use transfer

learning techniques to initialize the YOLOv8 model with

pre-trained weights from a larger dataset or related task.

Fine-tune the model on the target recognition dataset to

adapt its features to the specific characteristics of the

target objects.

Use cross-validation techniques to assess the

robustness of the fine-tuned YOLOv8 model on different

subsets of the dataset. This helps to ensure consistency

and robustness of the model across different data

distributions.

Evaluate the performance of the tuned YOLOv8

model using selected validation metrics and test datasets.

Compare the results to the baseline model to quantify

improvements in target recognition accuracy and other

relevant metrics. Iterate through the fine-tuning process,

adjusting hyperparameters, expansion strategies, and

other factors based on observed performance.

Continuously monitor the performance of the model and

improve its configuration to achieve optimal results.

Document the fine-tuning procedure, detailing

chosen hyperparameters, expansion methods, and

performance metrics. Prepare a detailed report with the

conclusion and improvements achieved by fine-tuning

the YOLOv8 model for target recognition.

VII. ALGORITHM FOR TRAINING NN MODELS

Compile and preprocess a diverse image dataset

containing relevant target objects for a recognition task.

Add bounding boxes to the dataset to specify the

location and class labels of the target objects. Divide the

dataset into training, validation, and testing sets for

model evaluation. Select the prebuilt YOLOv8 (YOLO

version 8) model as the base architecture.

Include pre-trained weights in the model to benefit

from learned features from a large dataset. Establish a

fine-tuning approach to adapt the pre-trained YOLO

model to the target recognition task. Determine if you

need to immobilize certain layers or perform end-to-end

training. Select the appropriate loss function configured

for the target recognition task. Adjust the loss function to

emphasize certain aspects of target recognition. View

mini-packages of images and corresponding annotations

from the training set.

Do a forward pass: feed the image to the YOLO

model and calculate the predicted bounding boxes and

class probabilities. Calculate the loss between predicted

and actual annotations. Perform a backward pass:

Review the model weights using gradient descent

optimization. Repeat the training process for several

epochs. Refine hyperparameters such as learning rate,

batch size, and optimizer parameters. Conduct an

experiment to determine optimal hyperparameter

configurations. Evaluate the trained YOLO model on the

validation set. Evaluate performance measures such as

accuracy, precision, recall, and mean average precision

(mAP). Analyze performance in a variety of target

recognition scenarios. Conduct a comprehensive

performance analysis to compare the performance of

different YOLO variants. Measure metrics like inference

speed, memory usage, and accuracy. Use a learning

algorithm based on the information obtained from the

performance analysis (see Fig. 4).

Bohdan Tsiunyk, Oleksandr Muliarevych 106

In the first line, import the YOLO class from the

Ultralytics library, which allows you to use the YOLO

object for object detection tasks. Then initialize a new

YOLO object called model using the specified

“yolov8.yaml” configuration file. It loads the configu-

ration settings for the YOLOv8m model. The training

process for the YOLO model uses the specified training

data configuration file “config.yaml” and trains it for

500 epochs. It updates the weights and parameters of the

model based on the training data to improve its

performance in object detection.

Fig. 4. Using the YOLOv8 model with Python script

VIII. NN MODEL TESTING

For evaluating the current system, manual testing

was chosen due to its flexibility and reliability, allowing

for comprehensive bug identification and resolution.

Performance testing utilized the Studio Profiled

instrument integrated within the IDE, eliminating the

need for external tools.
To assess the application’s performance

thoroughly, stress testing was conducted, aiming to
gauge system stability under maximum load. This testing
type involves executing operations that push application
resource usage to its limit.

During stress testing, resource-intensive operations
included calculating the location of moving objects
within the entire image and live frame conversion from
the video stream. The maximum CPU load recorded was
75 %, with RAM usage peaking at 20 GB (see Fig. 5).
Additionally, the frame transformation rate reached up to
0.0125 milliseconds per frame. The speed and efficiency
of these models were almost identical, so the overall
efficiency comes down to resource efficiency.

CPU efficiency can be found by subtracting the

percentage of CPU load from 100 %:

 CPUiCi L - % 100 =E , (1)

where LCPUi is CPU load of model i. By using CPU load

percentages in Fig. 5: EC8n = 100–62 = 38 %,

accordingly: EC8m = 100–67 = 33 %, in much the same

way: EC8s = 100–76 = 24 %.

Memory efficiency can be found in an equivalent

way:

MEMiMi L - % 100 =E , (2)

where LMEMi is percentage of used memory of model i.

So EM8n = 100–52 = 48 %, and EM8m = 100–58 = 42 %,

finally: EM8s = 100–49 = 51 %.

Fig. 5. NN models resource usage test in stress mode

Comparative efficiency calculated similarly, by

subtracting usage efficiency from one another:

 jiij E - E =E , (3)

where Ei is efficiency of model i and Ej is efficiency of

model j. By using test data in Fig. 5: EC8nm = 38–

33 = 5 %, so yolo8n is 5 % more CPU efficient than

yolo8m. In the same way EC8ns = 38–24 = 14 %, and

EC8ms = 33–24 = 9 %. As for memory usage: EM8nm = EM8n

– EM8m = 48–42 = 6 %, EM8ns = 48–51 =

–3 %, and EM8ms = 42–51 = –9 %, so yolo8m is 9 % less

memory efficient than yolo8s. Comparative efficiency is

bidirectional, so yolo8s is also 9 % more memory

efficient than yolo8m. This way, those values are all we

need to compile a complete dataset.

Comparative resource usage efficiency can be

found by averaging CPU and memory efficiencies:

2

E +E
 = E

MijCij

ij , (4)

where ECij is comparative CPU efficiency of model i

over model j and EMij is comparative memory efficiency

of model i over model j. With that

E8nm = (5+6)/2 = 5.5 %, E8ns = (14+3)/2 = 5.5 %,

E8ms = (9+–9)/2 = 0 %, so yolo8m and yolo8s have same

overall effectiveness, while yolo8n is 5.5 % more overall

effective than the other two.

IX. CONCLUSION

As a result of this work, these efforts culminated in

a comprehensive analysis of various neural network

(NN) models for target recognition. In particular,

yolov8n, yolov8s, and yolov8m were thoroughly tested

to determine their performance in this area.

The speed and efficiency of these models were

almost identical, so the overall efficiency comes down to

resource efficiency. Yolov8n overall was 5.5 % more

resource-effective than other options. It also has 5 %

better CPU efficiency over yolov8m EC8nm = 5 %, and

14 % over yolov8s, EC8ns = 14 %. Yolov8m uses way too

much memory for the minor improvement in CPU

efficiency: EC8mn = –5 %, EC8ms = 9 %, EM8mn = –6 %,

EM8ms = –9 %, and has the same overall efficiency as

yolo8s. While yolo8s is the most memory-efficient

option, that loses in CPU efficiency EM8sm = 9 %,

EM8sn = 3 %, EC8sm = –9 %, EC8sn = –14 %.

Among these models, yolov8s proved to be the

optimal choice for this research, primarily due to its

memory-efficient nature. Because the tests were done on

a general-purpose CPU, the difference in CPU usage was

greater than it would be on a specialized CPU with better

Performance Analysis of Different Types of NN Models for Target Recognition 107

multithreading. Conversely, an upgrade in memory type

would not impact the total memory consumption. Hence,

YOLOv8 was deemed the optimal choice, over yolo8n

that had 5.5 % better overall efficiency. In parallel with

the development of motion detection and environmental

tracking systems, the use of advanced technologies

ensured relevance and ease of maintenance for future

iterations. Adopting a cross-platform approach and using

Python frameworks contributed to flawless integration

and user interaction. The integration of OpenCV services

has extended the functionality, enabling real-time

authorization and monitoring.

A key aspect of the system’s design was its

adaptability, allowing users to customize their moni-

toring and tracking configurations. This flexibility

emphasizes the system’s usefulness and user-oriented

approach. In addition, strict optimization measures have

been implemented to eliminate resource constraints,

particularly in terms of RAM usage when rendering the

video stream.

The current NN models meet the requirements for

standard target recognition models. In general, all yolov8

models meet the basic requirements based on memory

usage but the most efficient for this task is the yolov8s

type.

References

[1] Das, S., Saha, S., Coello Coello, C. A., Bansal, J. C. (2023).

“Deep Neural Network Based Performance Evaluation and

Comparative Analysis of Human Detection in Crowded

Images Using YOLO Models”. In International Conference

on Advances in Data-Driven Computing and Intelligent

Systems. ADCIS. Lecture Notes in Networks and Systems,

vol. 893. Springer, Singapore, pp. 508–509. DOI:

10.1007/978-981-99-9518-9_37.

[2] Delleji, T., Slimeni, F., Fekih, H. (2022). “An Upgraded-

YOLO with Object Augmentation: Mini-UAV Detection

Under Low-Visibility Conditions by Improving Deep

Neural Networks”. Oper. Res. Forum 3, 60, pp. 3–5.

DOI: 10.1007/s43069-022-00163-7.

[3] Tattari, J., Donthi, V. R., Mukirala, D., Komar Kour, S.

(2021). “Deep Neural Networks Based Object Detection

for Road Safety Using YOLO-V3”. In Smart Computing

Techniques and Applications. Smart Innovation, System

and Technologies, vol. 225. Springer, Singapore, pp. 731–

733. DOI: 10.1007/978-981-16-0878-0_71.

[4] Poskart, B., Iskierka, G., Krot, K. (2024). “Logistics

4.0 – Monitoring of Transport Trolley in the Factory

Through Vision Systems Using the YOLO Model Based

on Convolution Neural Networks”, In International

Conference on Intelligent Systems in Production

Engineering and Maintenance III. ISPEM 2023. Lecture

Notes in Mechanical Engineering, Springer, Cham.,

pp. 348–350. DOI: 10.1007/978-3-031-44282-7_27.

[5] Priyankan, K. and Fernando, T. G. I. (2021). “Mobile

Application to Identify Fish Species Using YOLO and

Convolutional Neural Networks.” In Proceedings of

International Conference on Sustainable Expert Systems:

ICSES 2020, volume 176. Springer, Singapore, pp. 304–

308. DOI: 10.1007/978-981-33-4355-9_24.

[6] Ayob, A. F., Khairuddin, K., Mustafah, Y. M.,

Salisa, A. R., Kadir, K. (2021). “Analysis of Pruned

Neural Networks (MobileNetV2-YOLOv2) for

Underwater Object Detection”. In: Proceedings of the

11th National Technical Seminar on Unmanned System

Technology 2019. NUSYS 2019. Lecture Notes in

Electrical Engineering, vol. 666. Springer, Singapore,

pp. 87–88. DOI: 10.1007/978-981-15-5281-6_7.

[7] A Byte of Python (2022). [Electronic resource].

Available at: https://homepages.uc.edu/~becktl/byte_

of_python.pdf. (Accessed: March 29, 2024).

[8] Bansal, J. C. and Uddin, M. S. (2023). “Computer Vision

and Machine Learning in Agriculture, Vol. 3”. In:

Algorithms for Intelligent Systems, pp. 120–125. DOI:

10.1007/978-981-99-3754-7.

[9] Learning OpenCV (2022). [Electronic resource].

Available at: https://www.bogotobogo.com/cplusplus/

files/OReilly%20Learning%20OpenCV.pdf. (Accessed:

March 29, 2024).

[10] Huang, D. S., Premaratne, P., Jin, B., Qu, B., Jo, K. H.

and Hussain, A. (2023). “Advanced Intelligent

Computing Technology and Application”. Springer,

Singapore, pp. 83–88. DOI: 10.1007/978-981-99-4742-3

[11] Lys, R., Opotyak, Y. (2023). “Development of a Video

Surveillance System for Motion Detection and Object

Recognition”. Advances in Cyber-Physical Systems, 8(1),

pp. 50–53. DOI: 10.23939/acps2023.01.050.

Bohdan Tsiunyk is a graduate

student pursuing a Master of Scien-

ce degree in Computer Engineering

at Lviv Polytechnic National Uni-

versity. Concurrently, he serves as a

senior AQA engineer at n-ix. His

areas of expertise and research inte-

rests encompass computer vision,

machine learning, computer engi-

neering, and the development of Py-

thon frameworks.

Oleksandr Muliarevych holds

a Ph. D. in Computer Systems and

Components and serves as an Asso-

ciate Professor at the Computer Engi-

neering Department of Lviv Poly-

technic National University. His re-

search interests encompass a wide

array of fields, including distributed

highly scalable microservice systems,

swarm intelligence, Internet of Things

(IoT), cloud computing, parallel

computing technologies, computer

vision, machine learning, and appli-

cations of multi-agent systems.

https://www.doi.org/10.1007/978-981-99-9518-9_37
https://www.doi.org/10.1007/s43069-022-00163-7
https://www.doi.org/10.1007/978-981-16-0878-0_71
https://www.doi.org/10.1007/978-3-031-44282-7_27
https://www.doi.org/10.1007/978-981-33-4355-9_24
https://www.doi.org/10.1007/978-981-15-5281-6_7
https://homepages.uc.edu/~becktl/byte_of_python.pdf
https://homepages.uc.edu/~becktl/byte_of_python.pdf
https://www.doi.org/10.1007/978-981-99-3754-7
https://www.bogotobogo.com/cplusplus/files/OReilly%20Learning%20OpenCV.pdf
https://www.bogotobogo.com/cplusplus/files/OReilly%20Learning%20OpenCV.pdf
https://www.doi.org/10.1007/978-981-99-4742-3
https://www.doi.org/10.23939/acps2023.01.050

