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Abstract: The objective of this research is to conduct a 

comprehensive performance analysis of various types of 

neural network (NN) models for target recognition. Speci-

fically, this study focuses on evaluating the effectiveness 

and efficiency of yolov8n, yolov8s, yolov8m models in target 

recognition tasks. Leveraging cutting-edge technologies 

such as OpenCV, the research is aimed at developing a 

robust methodology for assessing the performance of these 

NN models. Through meticulous analysis, this study aims to 

provide insights into the strengths and weaknesses of each 

model, facilitating informed decision-making for practical 

applications1. This paper presents the process of designing 

and conducting the performance analysis. The study 

discusses the implications of the findings for future 

developments in target recognition systems. 

Index Terms: yolov8, YOLO, OpenCV, NN model. 

I. INTRODUCTION 

In today’s world, ensuring the safety and security of 

our communities has become more imperative than ever. 

Residents’ lives and general well-being depend on how 

well their environment is protected. This aspect stands as 

one of the fundamental pillars of everyone’s existence, as 

it underpins the essence of peace and stability. 

The significance of addressing home security 

resonates deeply in the deployment of various security 

measures, encompassing electronics, equipment, and 

other resources. In situations where there is a risk to a 

person’s health or life, it is imperative to warn and 

protect those who might be vulnerable to emergencies, 

home invasions, or theft. Furthermore, enhancing this 

process to actively engage ordinary citizens in safe-

guarding their security and improving their community’s 

welfare is paramount. To fulfill this mission, the deve-

lopment of a surveillance camera movement monitoring 

system has been envisioned as the core objective and 

primary task of the software system under consideration. 

 
1 This article uses the materials and results obtained by the 

authors during the research work “Intelligent design methods and tools 

for the modular autonomous cyber-physical systems” (0124U002340), 
which is carried out at the Department of Electronic Computing 

Machines of Lviv Polytechnic National University in 2024-2028. 

This system aims to leverage advanced techno-

logies, particularly neural network (NN) models, to 

analyze and recognize targets efficiently. By conducting 

a comprehensive performance analysis of various NN 

models, including yolov8n, yolov8s, yolov8m, and 

YOLO, this research endeavors to provide insights into 

their effectiveness and efficiency in target recognition 

tasks. 

According to ADCIS, a target recognition system 

[1] comprises an amalgamation of software-based 

utilities, components, and hardware, tailored to cater to 

the requirements of distinct user groups within a desig-

nated software ecosystem, all housed within a shared 

user repository.  

The Automated Imaging Association (AIA) defines 

machine vision as the integration of hardware and 

software to guide devices in executing tasks based on 

image capture and processing across industrial and non-

industrial applications [2]. While industrial computer 

vision shares algorithms with academic and govern-

mental sectors, it faces unique constraints. Machine 

vision systems rely on digital sensors within industrial 

cameras, paired with specialized optics, to capture 

images for subsequent processing, analysis, and deci-

sion-making [3]. Consequently, industrial machine 

vision entails achieving low cost, maintaining acceptable 

accuracy, and ensuring high robustness, reliability, and 

mechanical and thermal stability. Over the years, the 

fruits of Artificial Intelligence (AI) research have 

yielded numerous small-scale benefits [4]. From ATMs 

reading checks autonomously to cameras auto-focusing 

on faces and social media auto-tagging friends based on 

facial recognition, AI’s reach continues to expand. 

Consider coffee: brewing a pot only to find it bitter can 

be disappointing. By allowing AI to streamline crucial 

aspects of coffee or data consumption, we ensure every 

cup is perfect. With machines parsing through hours of 

video data, translating languages instantaneously, and 

executing commands seamlessly, AI proves its capability 

to tackle specific, time-consuming tasks. While we are 

yet to achieve generalized AI, modern Machine Learning 

(ML) displays its adeptness in addressing specific 

challenges. 

https://doi.org/%2010.23939/acps2022.
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In recent years, there has been significant progress 

in the automatic analysis of visual data using computer 

algorithms, which is largely due to the progress of 

convolutional neural networks (CNN). The success of 

these models can be attributed in part to their biological 

design. The classical artificial neuron is a simplified 

version of its biological counterpart [5]. Furthermore, the 

neural computational models used are only partially 

inspired by biological structures and connections. In 

contrast, human visual analysis involves the transfer of 

information between cortical areas of the brain via 

feedforward and feedback pathways. 

Computer vision systems are widely used in vari-

ous areas of everyday life. They provide visual per-

ception and modeling with the help of computing tools. 

These systems use single, stereo, or multiple camera 

setups to perform visual tasks [6]. Stereo vision systems 

using dual or multi-camera configurations allow 

complex computer vision operations to be performed. 

Vision systems serve as vital imaging tools used in a 

wide range of applications, including portable autono-

mous robotics, 3D measurement, object tracking, the 

entertainment industry, augmented reality, and object 

recognition [7]. These systems, dual in nature and 

dependent on multiple visions, play a key role in 

enhancing spatial perception and facilitating a variety of 

visual tasks in different sectors. 

II. LITERATURE REVIEW AND PROBLEM 

STATEMENT 

Python stands out as a programming language that 

embodies simplicity and power, making it a favorite 

choice among developers. Its intuitive nature allows 

users to focus on solving problems rather than struggling 

with complex syntax and structure. The official 

introduction to Python emphasizes its simplicity and 

efficiency, describing it as a powerful programming 

language with high-level data structures and a simple 

approach to object-oriented programming. The elegance 

of Python lies in its minimalist design, reminiscent of the 

English language with strict rules. This pseudocode-like 

quality simplifies problem-solving by emphasizing 

functionality over complexity. Its user-friendly syntax 

makes it extremely accessible even for beginners. In 

addition, Python’s status as free and open-source 

software (FLOSS) emphasizes its collaborative nature, 

fostering a community focused on continuous impro-

vement. With Python, developers are free from worrying 

about low-level details like memory management owing 

to its open-source framework. Python’s versatility 

extends to many platforms, including GNU/Linux, 

Windows, macOS, and others, making it a ubiquitous 

tool for software development. Its adaptability even 

covers gaming platforms such as PlayStation and mobile 

devices such as iPhone, iPad, and Android, further 

cementing its status as a universal and widely accessible 

programming language [8]. 

A program written in a compiled language such as 

C or C++ goes through a process where it is translated 

from source code into binary code (0s and 1s) that a 

computer can understand, using a compiler along with 

various flags and parameters. Subsequently, the linker / 

loader software moves the program from the hard disk 

into memory and begins its execution after startup. In 

contrast, Python does not require binary compilation. 

Instead, you can directly execute the program from its 

source code. Internally, Python translates source code 

into an intermediate form known as bytecodes, which is 

then converted to the computer’s native language before 

execution. This simplified process removes the worry of 

compiling your application and managing library 

dependencies, increasing Object-oriented programming, 

on the other hand, revolves around objects that 

encapsulate both data and functionality. Despite its 

simplicity, Python provides a robust framework for 

object-oriented programming, offering a powerful yet 

simple approach compared to larger languages such as 

C++ or Java. 

If there is an important piece of code that needs to 

be executed quickly, or if you want to keep certain 

algorithms proprietary, you can develop that particular 

part of your program in C or C++ and easily integrate it 

into your Python code base. Python's appeal lies in its 

exciting combination of performance and functionality, 

which makes the process of writing Python programs 

both enjoyable and easy. The benefits of 3D vision-

based technology extend to numerous fields, including 

3D shape measurement, visual inspection, medical 

imaging, robot control, and more. It serves as a core 

component of industrial camera calibration to obtain 

internal and external parameters for further measurement 

or detection tasks. The accuracy of these measurements 

depends on the accuracy of the camera calibration, 

especially in precision industrial applications. Common 

camera calibration methods such as direct linear 

transform (DLT), Tsai's method, and Zhang’s planar 

calibration method are used to effectively reconstruct 

local or full 3D profile information. Although DLT crea-

tes a basic camera perspective model using 3D points in 

space, it often does not account for lens distortion. Tsai’s 

method, on the other hand, involves radial alignment 

constraints to calculate external camera parameters, 

followed by nonlinear optimization to account for radial 

distortions. The Zhang method, known for its flexibility, 

imposes minimal constraints on the spatial position of 

the calibration object and is favored for its adaptability 

and efficiency in camera calibration tasks [9]. 

OpenCV (Open-Source Computer Vision Library) 

is a freely available open-source software library 

designed for computer vision and machine learning 

tasks. It was started with the goal of creating a unified 

platform for computer vision applications and 

accelerating the integration of machine perception into 

commercial products. With the Apache 2 license, 

OpenCV offers companies a straightforward way to use 

and modify their code base. With over 2,500 optimized 

algorithms, the library contains a wide range of both 

traditional and state-of-the-art computer vision and 
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machine learning algorithms. These algorithms enable 

users to perform a variety of tasks such as face detection 

and recognition, object identification, human action 

classification in video, camera motion tracking, object 

motion tracking, 3D object modeling, 3D point cloud 

creation based on a stereo camera, and combining 

images for panoramic scenes, searching for image simi-

larities from databases, eliminating red-eye when 

shooting with flash, tracking eye movements, scene 

recognition, and setting markers to influence the algo-

rithm’s behavior. With a thriving user community of 

over 47,000 and estimated over 18 million downloads 

[10], OpenCV has become a cornerstone tool used by 

companies, research institutions, and government agen-

cies around the world. Most computer vision programs 

involve image input and output. Interactive applications 

may require a camera as an input source and a display 

window as a destination. Image files, video files, and 

raw byte data can serve as input and output sources, 

enabling a wide variety of application scenarios, 

including network transmission or procedural graphics 

generation.  

The last and crucial step in application develop-

ment is testing. It enables us to detect and fix common 

bugs early in the development process. Typically, testers 

perform this type of work. Testers are those who oversee 

application testing. They should simulate all possible 

user workflow scenarios. It allows you to go through all 

the functions that the application offers, testing them all. 

There are two main types of testing: manual and 

automated. However, the disadvantage is that the 

development of automated tests usually requires a 

significant investment of development time and 

resources. On the other hand, manual testing involves 

testers running the tests. Although manual testing takes 

more time, it is highly regarded for its flexibility, 

reliability, and security. It is widely used throughout the 

development process, allowing developers to imme-

diately test newly implemented features. Performance 

testing of the developed program requires special tools. 

One such tool is Desktop Studio Profiler, which 

facilitates the monitoring of CPU resource usage, RAM 

consumption, network activity, and its impact on battery 

life [11]. The main characteristic of such NN model for 

target recognition is the amount of memory, which 

should be from up to 20 GB of total memory allocation. 

III. SCOPE OF WORK AND PROBLEM 

STATEMENT 

In the context of target recognition systems, there is 

a critical need to thoroughly analyze the performance of 

different types of neural network (NN) models. The 

main topic of this research is to conduct an in-depth 

study of the effectiveness and efficiency of different 

mesh network architectures for target recognition tasks. 

This requires a systematic evaluation of the performance 

characteristics of NN models, including factors such as 

accuracy, resource utilization, and computational effici-

ency.  

The problem under consideration is the selection and 

optimization of NN models to achieve superior 

performance in target recognition applications. Given the 

variety of mesh network architectures available, a comp-

lete understanding of their comparative performance in 

real-world scenarios is lacking. Therefore, the main goal 

of this study is to address this gap by conducting a detai-

led analysis of mesh network models, focusing on their 

performance and suitability for target recognition tasks.  

The main challenges include optimizing resource 

allocation, such as memory usage, and CPU load, to 

ensure efficient performance of NN models in target 

recognition systems. In addition, benchmarks should be 

established to evaluate performance, considering factors 

such as detection accuracy, processing speed, and 

scalability in different environments. By systematically 

evaluating and comparing the performance of different 

NM models, this study aims to provide valuable 

information that will inform decision-making processes 

in the selection and deployment of NM-based target 

recognition systems. The goal is to identify the most 

effective and efficient NN model for target recognition, 

which will contribute to the advancement of surveil-

lance, security, and related fields. 

The purpose of this work is to systematically 

evaluate and compare the effectiveness and efficiency of 

various neural network (NN) models in the domain of 

target recognition. The aim is to identify the most 

resource efficient and effective NN model for target 

recognition tasks. This research endeavors to provide 

valuable insights into the performance characteristics of 

different NN architectures, such as yolov8n, yolov8s, 

and yolov8m, with a focus on their ability to recognize 

targets accurately and efficiently in diverse environ-

ments. Through meticulous analysis and experimen-

tation, the objective is to inform decision-making 

processes regarding the selection and deployment of NN 

models in real-world target recognition applications, 

ultimately contributing to the advancement of sur-

veillance and security systems. 

A critical consideration for the system entails 

program optimization, particularly due to the intensive 

computations and video stream rendering involved RAM 

usage, memory allocation and CPU load often pose 

challenges in such scenarios. Typically, the standard NN 

model for target recognition allocates memory up to 

20 GB. Additionally, swift calculation times are 

essential, with the detection of moving objects typically 

accomplished within 0.1ms. 

The result of the research work is to find the best 

solution NN model that meets all the requirements above 

and returns the best result of target recognition. 

IV. ALGORITHM FOR CONVERTING VIDEO 

BASED ON NN MODEL THREAD  

INTO CV OBJECT 

The main goal and guiding principle of the 

development of this software system was the use of 

modern technologies that are popular today for such 
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implementations. Python was chosen as the program-

ming language for the development of the entire system, 

and PyCharm IDE serves as the development environ-

ment.  

After carefully studying the advantages and 

disadvantages of different technologies, it was decided to 

adopt the following technology stack for implementing 

neural network (NN) models: Python, OpenCV, YOLO, 

and PyCharm.  

This algorithm describes the steps to convert a 

neural network model stream-based video into OpenCV 

objects for target recognition. It involves continuously 

processing frames from an input video stream, using an 

NN model for target recognition, and converting the 

results into CV objects for visualization and analysis (see 

Fig. 1).  

 

 

Fig. 1. Video thread converting scheme 

Finally, an integral aspect of program development 

is testing. It is noteworthy that the testing phase is of 

primary importance in the development process, allo-

wing the identification and correction of common errors 

during the development stage. Performance testing is 

used to ensure optimal functionality and performance. 

V. CREATION CUSTOM DATASET BASED ON 

REAL PHOTOS AND IMPORT IT TO THE NN 

MODEL TRAINING 

Creating a custom dataset based on real photos and 

importing it into a neural network (NN) model training 

process is a crucial step in analyzing the performance of 

several types of NN models for target recognition.  

Start by collecting a diverse set of real-world 

photos that match target recognition tasks. Ensure that 

the images cover a wide range of scenarios and 

conditions that the NN model is expected to encounter in 

real-world applications. Use the annotation tools to mark 

objects or targets of interest in each image.  

Assign appropriate labels or classes to annotated 

objects to facilitate supervised learning during training. 

Resize all images to a standardized size of 640x640 

pixels to ensure uniformity and compatibility with the 

NN model architecture. 

Additionally, perform image pre-processing as 

needed, such as normalization or augmentation, to 

improve model reliability and generalization capabilities. 

Divide the annotated images into training, validation, 

and testing sets. Dedicate a sizable portion of the training 

dataset to ensure sufficient access to a variety of 

examples. The validation set is used to tune the 

hyperparameters and estimate the model, while the test 

set evaluates the final performance of the model on 

unseen data.  

Organize annotated images and corresponding 

labels in a structured format compatible with popular 

deep learning frameworks such as TensorFlow or 

PyTorch. This usually involves creating separate 

directories for the training, validation, and test sets, with 

each directory containing subdirectories for different 

classes or labels. Implement data loaders or generators to 

efficiently load image and label packets during the 

training process. Ensure that the data loading pipeline is 

optimized for performance to prevent bottlenecks during 

model training. Train the NN model with a custom 

dataset created from real photos. Use state-of-the-art 

architectures such as YOLO (You Look Only Once) for 

efficient and accurate target recognition (see Fig. 2). 

  

 

Fig. 2. Visualization of YOLOv8S model movement target 

recognition status detection 

Fine-tune model parameters and architecture based 

on performance metrics obtained during training. 

Evaluate the performance of the trained model on 

validation and test sets to evaluate its accuracy, 

precision, recall, and other relevant metrics. Repeat the 

training process as it is needed to improve the model’s 

performance and generalization capabilities. 

The metrics based on different yolov8 models for 

target recognition are presented in Fig. 3. 
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VI. FINE-TUNING THE YOLOV8 NN MODEL 

BASED ON METRICS FOR BEST PERFORMANCE 

RESULTS OF TARGET RECOGNITION 

Start by selecting appropriate performance metrics 

to evaluate the performance of the YOLOv8 model for 

target recognition. Common measures include precision, 

accuracy, recall, F1 score, and mean average precision 

(mAP).  

These metrics provide insight into the model’s 

ability to accurately detect and classify targets in a 

variety of environments. Train the baseline YOLOv8 

model using a standardized dataset and default hyper-

parameters. This serves as an initial benchmark for 

evaluating model performance before fine-tuning.  

 

 

Fig. 3. NN models YOLOv8 metrics 

Evaluate the performance of the base model using 

selected metrics. Identify areas for improvement and 

specific target recognition scenarios where the model 

may fall short. Fine-tune the hyperparameters of the 

YOLOv8 model to optimize its performance for target 

recognition.  

This may include adjusting parameters such as 

learning rate, batch size, optimizer selection, binding 

block sizes, and expansion methods. Implement data 

augmentation strategies to improve the model’s ability to 

generalize unseen data and improve performance in a 

variety of target recognition scenarios.  

Common zoom methods include random cropping, 

rotation, scaling, and color variation. Use transfer 

learning techniques to initialize the YOLOv8 model with 

pre-trained weights from a larger dataset or related task. 

Fine-tune the model on the target recognition dataset to 

adapt its features to the specific characteristics of the 

target objects.  

Use cross-validation techniques to assess the 

robustness of the fine-tuned YOLOv8 model on different 

subsets of the dataset. This helps to ensure consistency 

and robustness of the model across different data 

distributions.  

Evaluate the performance of the tuned YOLOv8 

model using selected validation metrics and test datasets. 

Compare the results to the baseline model to quantify 

improvements in target recognition accuracy and other 

relevant metrics. Iterate through the fine-tuning process, 

adjusting hyperparameters, expansion strategies, and 

other factors based on observed performance. 

Continuously monitor the performance of the model and 

improve its configuration to achieve optimal results.  

Document the fine-tuning procedure, detailing 

chosen hyperparameters, expansion methods, and 

performance metrics. Prepare a detailed report with the 

conclusion and improvements achieved by fine-tuning 

the YOLOv8 model for target recognition. 

VII. ALGORITHM FOR TRAINING NN MODELS 

Compile and preprocess a diverse image dataset 

containing relevant target objects for a recognition task. 

Add bounding boxes to the dataset to specify the 

location and class labels of the target objects. Divide the 

dataset into training, validation, and testing sets for 

model evaluation. Select the prebuilt YOLOv8 (YOLO 

version 8) model as the base architecture.  

Include pre-trained weights in the model to benefit 

from learned features from a large dataset. Establish a 

fine-tuning approach to adapt the pre-trained YOLO 

model to the target recognition task. Determine if you 

need to immobilize certain layers or perform end-to-end 

training. Select the appropriate loss function configured 

for the target recognition task. Adjust the loss function to 

emphasize certain aspects of target recognition. View 

mini-packages of images and corresponding annotations 

from the training set.  

Do a forward pass: feed the image to the YOLO 

model and calculate the predicted bounding boxes and 

class probabilities. Calculate the loss between predicted 

and actual annotations. Perform a backward pass: 

Review the model weights using gradient descent 

optimization. Repeat the training process for several 

epochs. Refine hyperparameters such as learning rate, 

batch size, and optimizer parameters. Conduct an 

experiment to determine optimal hyperparameter 

configurations. Evaluate the trained YOLO model on the 

validation set. Evaluate performance measures such as 

accuracy, precision, recall, and mean average precision 

(mAP). Analyze performance in a variety of target 

recognition scenarios. Conduct a comprehensive 

performance analysis to compare the performance of 

different YOLO variants. Measure metrics like inference 

speed, memory usage, and accuracy. Use a learning 

algorithm based on the information obtained from the 

performance analysis (see Fig. 4). 
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In the first line, import the YOLO class from the 

Ultralytics library, which allows you to use the YOLO 

object for object detection tasks. Then initialize a new 

YOLO object called model using the specified 

“yolov8.yaml” configuration file. It loads the configu-

ration settings for the YOLOv8m model. The training 

process for the YOLO model uses the specified training 

data configuration file “config.yaml” and trains it for 

500 epochs. It updates the weights and parameters of the 

model based on the training data to improve its 

performance in object detection.  

 

 

Fig. 4. Using the YOLOv8 model with Python script 

VIII. NN MODEL TESTING 

For evaluating the current system, manual testing 

was chosen due to its flexibility and reliability, allowing 

for comprehensive bug identification and resolution. 

Performance testing utilized the Studio Profiled 

instrument integrated within the IDE, eliminating the 

need for external tools.  
To assess the application’s performance 

thoroughly, stress testing was conducted, aiming to 
gauge system stability under maximum load. This testing 
type involves executing operations that push application 
resource usage to its limit. 

During stress testing, resource-intensive operations 
included calculating the location of moving objects 
within the entire image and live frame conversion from 
the video stream. The maximum CPU load recorded was 
75 %, with RAM usage peaking at 20 GB (see Fig. 5). 
Additionally, the frame transformation rate reached up to 
0.0125 milliseconds per frame. The speed and efficiency 
of these models were almost identical, so the overall 
efficiency comes down to resource efficiency. 

CPU efficiency can be found by subtracting the 

percentage of CPU load from 100 %: 

 CPUiCi L - % 100 =E ,     (1)  

where LCPUi is CPU load of model i. By using CPU load 

percentages in Fig. 5: EC8n = 100–62 = 38 %, 

accordingly: EC8m = 100–67 = 33 %, in much the same 

way: EC8s = 100–76 = 24 %. 

Memory efficiency can be found in an equivalent 

way: 

MEMiMi L - % 100 =E ,     (2)  

where LMEMi is percentage of used memory of model i. 

So EM8n = 100–52 = 48 %, and EM8m = 100–58 = 42 %, 

finally: EM8s = 100–49 = 51 %. 

 

Fig. 5. NN models resource usage test in stress mode 

Comparative efficiency calculated similarly, by 

subtracting usage efficiency from one another: 

 jiij E - E =E ,        (3)  

where Ei is efficiency of model i and Ej is efficiency of 

model j. By using test data in Fig. 5: EC8nm = 38–

33 = 5 %, so yolo8n is 5 % more CPU efficient than 

yolo8m. In the same way EC8ns = 38–24 = 14 %, and 

EC8ms = 33–24 = 9 %. As for memory usage: EM8nm = EM8n 

– EM8m = 48–42 = 6 %, EM8ns = 48–51 =  

–3 %, and EM8ms = 42–51 = –9 %, so yolo8m is 9 % less 

memory efficient than yolo8s. Comparative efficiency is 

bidirectional, so yolo8s is also 9 % more memory 

efficient than yolo8m. This way, those values are all we 

need to compile a complete dataset. 

Comparative resource usage efficiency can be 

found by averaging CPU and memory efficiencies:  

2

E +E
 = E

MijCij

ij ,       (4)  

where ECij is comparative CPU efficiency of model i 

over model j and EMij is comparative memory efficiency 

of model i over model j. With that 

E8nm = (5+6)/2 = 5.5 %, E8ns = (14+3)/2 = 5.5 %, 

E8ms = (9+–9)/2 = 0 %, so yolo8m and yolo8s have same 

overall effectiveness, while yolo8n is 5.5 % more overall 

effective than the other two.  

IX. CONCLUSION 

As a result of this work, these efforts culminated in 

a comprehensive analysis of various neural network 

(NN) models for target recognition. In particular, 

yolov8n, yolov8s, and yolov8m were thoroughly tested 

to determine their performance in this area.  

The speed and efficiency of these models were 

almost identical, so the overall efficiency comes down to 

resource efficiency. Yolov8n overall was 5.5 % more 

resource-effective than other options. It also has 5 % 

better CPU efficiency over yolov8m EC8nm = 5 %, and 

14 % over yolov8s, EC8ns = 14 %. Yolov8m uses way too 

much memory for the minor improvement in CPU 

efficiency: EC8mn = –5 %, EC8ms = 9 %, EM8mn = –6 %, 

EM8ms = –9 %, and has the same overall efficiency as 

yolo8s. While yolo8s is the most memory-efficient 

option, that loses in CPU efficiency EM8sm = 9 %, 

EM8sn = 3 %, EC8sm = –9 %, EC8sn = –14 %. 

Among these models, yolov8s proved to be the 

optimal choice for this research, primarily due to its 

memory-efficient nature. Because the tests were done on 

a general-purpose CPU, the difference in CPU usage was 

greater than it would be on a specialized CPU with better 
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multithreading. Conversely, an upgrade in memory type 

would not impact the total memory consumption. Hence, 

YOLOv8 was deemed the optimal choice, over yolo8n 

that had 5.5 % better overall efficiency. In parallel with 

the development of motion detection and environmental 

tracking systems, the use of advanced technologies 

ensured relevance and ease of maintenance for future 

iterations. Adopting a cross-platform approach and using 

Python frameworks contributed to flawless integration 

and user interaction. The integration of OpenCV services 

has extended the functionality, enabling real-time 

authorization and monitoring. 

A key aspect of the system’s design was its 

adaptability, allowing users to customize their moni-

toring and tracking configurations. This flexibility 

emphasizes the system’s usefulness and user-oriented 

approach. In addition, strict optimization measures have 

been implemented to eliminate resource constraints, 

particularly in terms of RAM usage when rendering the 

video stream.  

The current NN models meet the requirements for 

standard target recognition models. In general, all yolov8 

models meet the basic requirements based on memory 

usage but the most efficient for this task is the yolov8s 

type.  
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