
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 2, 2024

ENCRYPTING THE FILE SYSTEM ON A SINGLE-BOARD
COMPUTERS PLATFORM AND USING LINUX UNIFIED

KEY SETUP WITH PHYSICAL ACCESS KEYS
Bohdan Onishchenko1, Roman Banakh1, Abdallah A. Z. A. Ibrahim2

1Lviv Polytechnic National University, 12, Bandera Str, Lviv, 79013, Ukraine,
2Suez Canal University, El Sheikh Zayed, El Salam District, Ismailia 8366004, Egypt.
Authors’ e-mails: bohdan.onishchenko.kb.2021@lpnu.ua, roman.i.banakh@lpnu.ua,

abdallah.ibrahim@uni.lu
https://doi.org/10.23939/acps2024.02.

Submitted on 15.10.2024

© Onishchenko B., Banakh R., Ibrahim A. A. Z. A., 2024

Abstract: The object of the research is the security of the
file system of a single-board platform. As part of the
research reported in this paper, a method has been
proposed to protect the file system using encryption.
Implementing a Linux Unified Key Setup paired with a
password or Universal Serial Bus key has been
demonstrated. The advantages of Linux Unified Key Setup
for this task and the possibilities for system configuration
and encryption method depending on the use case and
hardware configuration has been outlined. As a result, the
administrator of a single-board computer can store and
work with sensitive information in a more secure
environment. This will allow the user to be sure that their
private information will not be accessible in case of theft or
attempted hacking of the device.

Index Terms: Encryption, Algorithms, Access control
Authentication, IOT, Data protection, Passwords,
Cybersecurity

I. INTRODUCTION
Single board computers do not encrypt the file

system by default, but this allows a cybercriminal to read
or adjust the logic in their favor in case of access.
Among the proposed solutions, there are external
encrypted USB (Universal Serial Bus) drives or SSDs
(Solid-State Drive) that support hardware-based encryp-
tion, but apart from the price issue, the user cannot use
these devices as a place to store system data, nor can
they edit the logic of these devices. To solve the
problem, we chose LUKS (Linux Unified Key Setup)
[1—2] as one of the most popular solutions for Linux
systems and is extremely flexible, in addition, LUKS
supports a large number of encryption algorithms. Which
will allow the administrator to choose the algorithm that
will satisfy the conditions in which the device is planned
to be used and rely on critical factors for the system –
encryption/decryption speed, encryption reliability.
LUSK uses modern key derivation functions such as
Argon2 [3] and PBKDF2 (Password-Based Key Deriva-
tion Function) [4], which allow you to store user
passwords reliably, and under such conditions that a con-

ditional criminal will not be able to pick up the
password, for a satisfactory period of time – when the
information has value. Coupled with reliable encryption
algorithms – AES (Advanced Encryption Standard) in
XTS (XEX Tweakable Block Cipher with Ciphertext
Stealing), CBC (Cipher Block Chaining) [5] mode,
TwoFish, Serpent. Users can also create their own USB
keys and use them to distribute access. So, this article
demonstrates the possibility of integrating LUKS and
Single board computers, describes the algorithms that the
user can use to configure encryption and all the impor-
tant points and problems that can arise when working
with an encrypted crypto container. This method can be
used as a complete solution, as well as a basis for more
complex scenarios.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

Article [6] describes the mechanism of LUKS for
IoT systems, which allowed us to understand the
principles of encryption at a lower level since the
memory mechanism on most IoT systems differs from
that of a desktop computer. Still, this article does not
disclose the mechanism of implementation and integra-
tion of LUKS into the system. Articles [7—8] describe
the mechanisms of the Argon2 and PBKDF2 hashing
functions, which allowed us to compare them with each
other, understand the mechanism of these functions, and
choose a configuration that is more suitable for the end
user and more appropriate for the proposed scenario.
Articles [9] describe the AES encryption algorithm in
various modes; this information allowed us to un-
derstand better the AES encryption algorithm and the
advantages and disadvantages of various AES encryption
configurations. In the article [10], the authors describe
the bypassing of hashing, which became the basis for
studying hash functions and their analysis for
cryptographic strength. It also helped analyze brute force
attacks on hash functions used in LUKS.

Encrypting the File System on a Single-Board Computers Platform and Using Linux Unified Key Setup… 129

III. SCOPE OF WORK AND OBJECTIVES
Even though a lot of research has already been

done, the problem remains in demonstrating the
possibility of integrating encryption for single-board
computers, respectively, if there is a need to ensure the
protection of information on a single-board computer by
encrypting the file system and the lack of a scientific and
technical solution, the problem arises in the study of
encryption tools, taking into account the features of the
single-board computer platform, the reliability of
modern encryption algorithms, taking into account the
loss of memory speed and configuration.

IV. SINGLE-BOARD COMPUTERS AND LINUX
ENCRYPTION SPECIFIED

Modern Linux distributions offer a wide range of
encryption tools, which are convenient and valuable, but we
need to choose the one that will meet certain conditions.
Therefore, tools such as GPG (GNU Privacy Guard), Age,
and OpenSSL (Secure Sockets Layer) are unsuitable in our
scenario because they aim to encrypt individual files or
directories, not the entire file system. So, users have a
choice between VeraCrypt and LUKS [9].

A. LINUX UNIFIED KEY SETUP
Among others, the most popular solution is LUKS

(cryptsetup), and its advantages include: standardized
and widely supported; command-line based; high perfor-
mance for full-disk encryption.

Minimal overhead due to being part of the Linux
kernel Device-mappers crypt (dm-crypt) is a Linux
subsystem for transparent data encryption at the block
device level. It is a part of the Linux kernel and is used
to encrypt disks or partitions, providing data protection
in the event of physical loss or theft of the media.

These advantages are the reasons for choosing
LUKS over other encryption tools.

B. COMPARISON OF LUKS1 AND LUKS2
To better understand which configuration the user

must choose, let us compare LUSK1 and LUKS2 and the
possible dependencies on the algorithm, length of the
key, etc. The data for the table was taken from the LUKS
specification. The comparison of LUKS1 and LUKS2
features presented in the Table 1. LUKS2 is a more
advanced version with more features for system
integration and key management. The general trend is to
use LUKS1 on legacy devices and LUKS2 in all other
cases (Table 2). Each encryption algorithm supported by
LUKS2 has its limitations and is being used depending
on the users’ systems and hardware configurations
(Table 3). The security of cryptographic algorithms is
usually assessed by the number of operations required to
find a key by brute force and resistance to specific types
of attacks, such as linear cryptanalysis, differential
cryptanalysis, side-channel attacks, and other methods.

Table 1

Comparative table of LUKS1 and LUKS2 features
Feature LUKS1 LUKS2

Metadata format Limited Flexible and
redundant

Key slots 8 8 with better
flexibility

Integrity
protection Not applicable dm-integrity

KDF Algorithm PBKDF2 PBKDF2 and
Argon2

Snapshot support Limited Yes

Device size Small to medium
sized

Scalable and
larger sized

Backward
compatibility Not applicable With LUKS1

Table 2

Comparative table of LUKS1 and LUKS2 algorithms
Algorithm LUKS1 LUKS2

KDF Limited Flexible and
redundant

Encryption
modes 8 8 with better

flexibility
Authenticated
encryption Not applicable dm-integrity

Integrity
protection PBKDF2 PBKDF2 and

Argon2

Table 3

Comparative table of LUKS2 encryption algorithms
Algorit

hm Type Key
Size

Block
Size Strength

AES
Symmetr
ic block
cypher

128,
192,
256
bits

128
bits

High (Widely
considered
secure with
256-bit key)

Serpent
Symmetr
ic block
cypher

128,
192,
256
bits

128
bits

High (Strong
alternative to
AES)

Twofis
h

Symmetr
ic block
cypher

128,
192,
256
bits

128
bits

High
(Considered
slower than
AES)

PBKD
F 2

Key
Derivatio
n

Varia
bles
Iterati
ons

-

Medium to
High
(Customizable
iterations)

Argon2
id

Key
Derivatio
n

Varia
bles
Iterati
ons

-
High (Memory-
hard, resistant to
GPU attacks)

The length of the key and the number of encryption

rounds are also considered, which determine the
complexity of the algorithm's cracking [10]. No known
practical attacks on AES can significantly reduce the
attack complexity below 2128 operations for AES-128
or 2256 for AES-256. Linear and differential cryptana-

Bohdan Onishchenko, Roman Banakh, and Abdallah A. Z. A. Ibrahim 130

lysis have shown limited success against simplified
versions of the algorithm but not against the complete
AES scheme.

AES is the default cipher in LUKS2, providing
strong encryption with high performance, especially in
Xor–encrypt–xor-based tweaked-codebook mode with
ciphertext stealing (XTS) mode. Serpent and Twofish are
alternative block ciphers in LUKS2, often chosen for
different security or performance characteristics. The
password-based key derivation function (PBKDF2) is
the default essential derivation function in LUKS2,
though Argon2id is considered a more secure and
modern alternative. Secure Hash Algorithms (SHA),
SHA-256, and SHA-512 are standard hash functions
used for hashing and key derivation, with HMAC-
SHA256 ensuring data integrity. To compare the
performance of different algorithms and lengths of the
key, we used the artificial option cryptsetup benchmark.
The benchmark data was performed on Raspberry Pi 5
[11] 8 GiB RAM and 4 Class 8 Gib SD-Card (Fig. 1-4).

Fig. 1. Encryption and decryption speed using 128 bits

key and CBC mode

Fig. 2. Encryption and decryption speed using 256 bits

key and CBC mode

This difference in read/write speeds between XTS
mode and CBC mode is explained by the fact that XTS
is mainly designed for disk encryption. At the same time,
CBC is traditionally used for communication encryption
and encryption of specific files.

Each mode has its own advantages, but XTS is
more suitable for encrypting data, especially those stored
in fixed-size sectors, as it is done on SD cards and SSDs.
CBC uses chain encryption (each subsequent block of
information depends on the previous one); that is, if
there is a vulnerability to one of the blocks, it will affect

the operation of other blocks. CBC mode is
recommended for use with additional security methods
(e.g., message authentication).

1) Fig. 3. Encryption and decryption speed using

256 bits key and XTS mode

Fig. 4. Encryption and decryption speed using

512 bits key and XTS mode

After comparing, we conclude that performance
depends on the algorithm, not the length of the key.
Comparing CBC and XTS, we conclude that CBC loses
in terms of encryption speed. Therefore, if the user is
interested in the speed of encryption/decryption, then it
is necessary to choose the AES algorithm. It is important
to note that this benchmark was made on a single-board
computer, Raspberry Pi 5, so the user should conduct
benchmarks for their platform on their own, as the
resistances may differ from the hardware.

C. SINGLE-BOARD COMPUTERS
ENCRYPTION

Single-board computers are a popular IoT platform
used for education, business solutions, and personal use.
However, they still need ready-made solutions for
encrypting the file system, which is critical if the user
wants to store sensitive information with a certain level
of confidentiality.

In this case, a conditional attacker can remove the
SD card from the device and read all the data, so this
research aims to fix this problem.

Full disk encryption is relatively easy to perform
with modern Linux distributions. Single-board compu-
ters are an exception because the boot partition does not
include most of the needed programs and kernel
modules. Also, single-board computers do not have a

Encrypting the File System on a Single-Board Computers Platform and Using Linux Unified Key Setup… 131

LiveCD, so it is impossible to encrypt the file system
first and then install it.

V. SCENARIO OF THE PROBLEM SOLVING
Let us consider the following approach to solve the

problem. Firstly, create an encrypted container in the file
system to store sensitive information. Then, configure the
system to automatically decrypt and mount the container
if the user is legitimate. Finally, create a USB key that
grants access to the encrypted container without requiring
a password. In this case, a legitimate user who knows the
password and/or has a USB key has the following options
for working with the encrypted container, the system will
wait for a USB key for 1 minute and 30 seconds. If the
key is not found, the user will be promoted to enter a
password. After the user has finished working with the
encrypted container, in the case of a USB key, they simply
remove it, and the container is encrypted and hidden in the
disk hierarchy. If the user uses a password, he will need to
either shutdown/reboot or use the command line to close
the container.

VI. ABOUT USB KEY AND PASSWORD LENGHT
LUKS uses a key file as an additional method of

user authentication. The key file can be any file, but
there are better practices than this one. It is preferable to
generate a personal file with random content, that cannot
be easily generated. For this purpose, user can use a file
with the extension .key or. lek in LUKS and fill them
with random binary information. The user can apply any
convenient tool to generate random binary information,
preferably one that uses entropy to generate a random
sequence. The most popular solutions are OpenSSL or
the Linux module /dev/urandom. The latter uses the
entropy of device to generate random data such as –
mouse movements, keystroke timings, interval between
interrupts from the hardware, timings of input and output
operations, other random events at the kernel level.

A. PASSWORD LENGTH
The LUKS documentation specified that the

password limit is found to be a 64-character. However,
in practice, it works differently omitting the dependence
between the limitations of the counter algorithm. If the
user tries to enter a value of more than 64 characters,
they will succeed, and it will work correctly. Regardless
of the password length, it is evident that LUKS works
only with a hash. Hash functions in LUKS are
implemented through PBKDF2 or Argon2. Therefore,
the user can use a password of any length, in any case,
PBKDF2 or Argon2 will convert the encryption key to a
hash in LUKS, the standard hash length is usually 256
bits (32 bytes).

VII. PROBABILITTY OF BRUTE FORCE
From a theoretical point of view [12], let us

calculate the possibility of brute-forcing passwords of
different lengths using (1):

/T N S= . (1)
For example, let us take a password of 8, 12, and

64 characters and use (1) to calculate the time it will take
to achieve the goal. Firstly, let us calculate the password
for an 8-character length which can be created from a
combination of 62 different symbols. N=6212,
T=628/10⋅105∼6.92 years. Now, let us do the same using
the length of 12 characters. N=6212,T=6212/10⋅105∼102
years, and the same using the length of 64 characters.
N=6264, T=6264/10⋅105∼5.16⋅10118 years. For a more
accurate comparison, let us compare the maximum time
on two configurations – g5.4xlarge instance (1 GPU,
24GiB GPU memory, 16 vCPUs, 64 GiB memory) [13]
and RTX6000 x4 for different hashing algorithms:
MD5(Message-Digest), SHA1, SHA2-224, SHA3-224.
This comparison is necessary to show the direct
dependence of the password length on the time it takes to
brute-force it, as well as the dependence of the brute-
force attack on the computer's power. Therefore, the
following conditions were chosen for comparison: a
password of 8 characters, a password of 9 characters to
show how even one character affects the statistics, and a
password of 12 characters, the recommended length.

To understand the criticality of this issue, let us
demonstrate the increase in time using passwords of 8
and 9 characters in percentage increase. Also, about the
password format itself, it is essential, in addition to
general recommendations on the type, not to use a one-
syllable word or things that can be associated with the
user and build a special brute-force dictionary based on
these associations. The user password should contain
uppercase and lowercase letters, numbers, and special
characters. In our case, in the following sequence, a
password was generated that contains 3 uppercase
letters, 3 lowercase letters, and 2 special characters for a
password of 8 characters (Fig 5).

Fig. 5. Brute-force time for 8 password length g5.4xlarge and

RTX6000 GPU x4 comparison

For a 9 characters password – 3 uppercase letters, 3
lowercase letters and 3 special characters (Fig 6).

For a 12-character password – 3 uppercase letters,
4 lowercase letters, 4 special characters and 1 number
(Fig 7).

It is essential to understand that an attacker may
have a much more powerful cluster than the user can
expect. The process of guessing will be much faster, so if
possible, users should use passwords that are as complex

Bohdan Onishchenko, Roman Banakh, and Abdallah A. Z. A. Ibrahim 132

as possible. Although LUKS does not have a mechanism
for timeout between password attempts (which would
make it harder to crack a password), PBKDF2 spends
more time on computation with each iteration, so in
some cases, this mechanism makes brute-force attacks
more difficult. By changing the number of iterations for
PBKDF2 in the LUKS settings, the user can find the
optimal values for the system and the delay between
password requirements.

Fig. 6. Brute-force time for 9 password length

on g5.4xlarge and RTX6000 GPU x4 comparison

Fig. 7. Brute-force time for 12 password

length on g5.4xlarge

Using passwords may not be convenient regarding
transmission, storage, etc. Therefore, we recommend
using two-factor authentication. The most common
method is to use a password (the “knowledge” factor)
paired with a critical file (the “possession” factor). This
is another possible configuration option for LUKS, in
which, even if the password is compromised, a
cybercriminal cannot decrypt the content without a USB
key with a key file. In addition to the standard LUKS
tools, you can use additional modules, for example, for a
Time-based one-time password (TOTP). This imple-
mentation is difficult but possible and will significantly
increase security.

VIII. SYSTEM AND CRYPTSETUP
CONFIGUTARION

After encryption and key file creation, you must
focus on system configuration and cryptsetup. The main
system file we will have to work with is /etc/fstab, which
describes the configuration of disks and the rules that
apply to them.

Example of a rule in fstab should be next:

UUID=xxxx-xxxx-xxxx /mnt/data ext4
defaults,noatime 0 2

The main points to be considered are the <options>
<dump> <pass> items. Let us say about dump right
away - this is the configuration of the file system
backup, at the moment <dump> is not relevant, so its
value is 0. <pass> allows 3 values — 0, 1, 2. <pass>
defines the check of the file system where: 0 — do not
check, 1 — check in the first phase (usually used for the
root partition), 2 — check in another phase. But the main
thing is <options> and its value. The value - defaults,
although rw (read-write) and ro (read-only) parameters
are also available for the user to use the container
without restrictions.

In addition, it is necessary to select additional
systemd parameters: x-systemd.automount — automatic
file system mounting at the first access to it; x-
systemd.nofail — allows the system to continue booting
even if the file system cannot be mounted. Also, user
needs to make changes to /etc/cryptsetup. Example of a
rule in crypttab:

dm_crypt-0 UUID=xxxxxxxx-xxxx-xxxx-xxxx-
xxxxxxxxxxxx none luks

Also, user can add additional scripts in
/etc/crypttab. These can be both self-written solutions
and ready-made solutions of the /lib/cryptsetup/
scripts/passdev.

IX. DISCUSSION
We explored the topic of file system encryption for

single board computers and demonstrated the possibility
of solving the problem of easy access to the file system
of single board computers. The demonstrated method
used a utility for full encryption – LUKS, so the choice
of this software was justified. We have analyzed the
capabilities and available hashing functions of passwords
and encryption algorithms and identified the advantages
of a solution using the AES encryption algorithm. We
also proposed a scenario using a USB key, which was a
more convenient way to access an encrypted container
and had its advantages over a password.

The problems of passwords and brute force attacks
were outlined, which would allow the user to understand
the need to follow the recommendations for their use and
generation. Based on the research process, it should be
emphasized that the result of encryption and the
operation of individual system modules depended not
only on the user configuration of the system, but also on
the compiled system kernel and/or the limitations of the
hardware on which encryption was performed.

The proposed option for solving the problem
satisfied the modern conditions of information protection
on single board computers, but the user must remember
the development of technologies and Moore's law, that
is, the passwords and encryption methods used at the
moment may not be relevant after some time, because

Encrypting the File System on a Single-Board Computers Platform and Using Linux Unified Key Setup… 133

every year, the power of computer technology grows,
and if at the moment the time to sort a 12-character pas-
sword in compliance with the general recommendations
on the sequence of characters is counted as tens of years,
then after some time, it will take several minutes to
select such a password.

X. CONCLUSION
The prototype of file system encryption on single

board computers that meet modern security conditions
using LUKS, with advantages presented among
competitors. The validity of passwords against brute-
force attacks was tested, allowing the user to understand
the password requirements more accurately. The
system's flexibility for creating and using a USB key was
demonstrated in different scenarios. The paper also
describes the corner cases encountered while reviewing
the proposed solution. The result is a methodology that
allows you to create and work with a crypto container to
protect sensitive information.

References

[1] LUKS On-Disk Format Specification. Available at:
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-
standard/on-disk-format.pdf (accessed on 14 October 2024).

[2] Linux Unified Key Setup (LUKS) Disk Encryption
Available at: https://wiki.archlinux.org/title/Dm-crypt/
Encrypting_an_entire_system (accessed on 14 October 2024).

[3] Optimized Implementation of Argon2 Utilizing the Graphics
Processing Unit. 10.48550/arXiv.1602.03097. Iuorio, Andrea

& Visconti, Andrea. (2019). Understanding Optimizations and
Measuring Performances of PBKDF2. 10.3390/app13169295

[4] Lee, Sung-Won & Sim, Kwee-Bo. (2021). Design and
Hardware Implementation of a Simplified DAG-Based
Blockchain and New AES-CBC Algorithm for IoT Security.
Electronics. 10. 1127. 10.3390/electronics10091127.

[5] Cano Quiveu, German & Ruiz-de-clavijo-Vazquez, Paulino &
Bellido, Manuel & Juan-Chico, Jorge & Viejo Cortes, Julian
& Guerrero, David & Ostúa, Enrique. (2021). Embedded
LUKS (E-LUKS): A Hardware Solution to IoT Security.
Electronics. 10. 3036. 10.3390/electronics10233036.

[6] Performance Analysis of Encryption Algorithms in Named
Pipe Communication for Linux Systems. 10.55549/epstem.
1518789

[7] Saleh, Shaimaa & Al-Awamry, Amr & Taha, Ahmed. (2024).
Tailoring AES for resource-constrained IoT devices.
Indonesian Journal of Electrical Engineering and Computer
Science. 36. 290. 10.11591/ijeecs.v36.i1.pp290-301.

[8] Parallel Implementations of ARX-Based Block Ciphers on
Graphic Processing Units. 10.3390/math8111894

[9] Banakh, Roman. (2018). AUTHENTICATION METHOD
WPA/WPA2 KEY PARAMETERS’ DEFINITION FOR
IEEE 802.11 BASED HONEYPOT. Radio Electronics,
Computer Science, Control. 110-118. 10.15588/1607-3274-
2018-1-13.

[10] Raspberry PI Official Site. Available at: https://www.
raspberrypi.com/ (accessed on 14 October 2024).

[11] Byun, Hyeonsu & Kim, Jueun & Jeong, Yunseok & Seok,
Byoungjin & Gong, Seonghyeon & Lee, Changhoon. (2024).
A Security Analysis of Cryptocurrency Wallets against
Password Brute-Force Attacks. Electronics. 13. 2433.
10.3390/electronics13132433.

[12] Proxy Nova - Password Brute Force Calculator. Available at:
https://www.proxynova.com/tools/brute-force-calculator/
(accessed on 14 October 2024).

Bohdan Onishchenko was
born in Chernihiv, Ukraine, in 2004,
is a current fourth-year student at
the Department of Information
Technology Security at Lviv Poly-
technic National University, antici-
pating to receive his bachelor's deg-
ree in 2024. His research and cour-
sework focus on exploring the
intersections of IoT and cloud infra-
structures, emphasizing how embed-
ded technologies can be fortified
against cybersecurity threats.

Roman Banakh, the author,
was born in Lviv, Ukraine, in 1992.
He received his Ph.D. in cyber-
security at Lviv Polytechnic Natio-
nal University in 2024. He has been
working in the cybersecurity scien-
tific field since 2012 and has
published more than 30 articles. His
research interests include cloud
computing, informational and
communication systems on high
load, security of IoT, and computer
system architecture.

Abdallah Ibrahim earned a
B.Sc. in Computer Engineering
from Suez Canal University in 2010,
followed by two M.Sc. degrees in
Computer Sciences—one in 2012
from Suez Canal University and
another in 2015 from the University
of Luxembourg. In 2019 he
completed a Smart ICT diploma in
collaboration with ILNAS, Dell
EMC, and the University of Luxem-
bourg. His research interests include
Cloud and Edge Computing, QoS,
Industry 4.0, smart mobility, optimi-
zation, and machine learning.

.

