
 ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 9, No. 2, 2024

CLASSIFYING SERIALIZATION FORMATS FOR INTER-SERVICE
COMMUNICATION IN DISTRIBUTED SYSTEMS

Eduard Maltsev1, Oleksandr Muliarevych1, Asmad Razzaque2

1Lviv Polytechnic National University, 12, Bandera Str., Lviv, 79013, Ukraine,
2Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Roma, Italy.

Authors’ e-mails: eduard.y.maltsev@lpnu.ua, oleksandr.v.muliarevych@lpnu.ua,
asmadbin.razzaque@uniroma1.it

https://doi.org/10.23939/acps2024.02.

Submitted on 01.10.2024

© Maltsev E., Muliarevych O., Razzaque A., 2024

Abstract: This study focuses on classifying serialization
formats used in inter-service communication (ISC) within
distributed systems and exploring their historical
development. We have examined key features of human-
readable formats such as XML, JSON, and YAML, binary
formats like Protocol Buffers and Apache Avro, and
columnar formats such as Apache Parquet and ORC,
among others. Our results have indicated a significant shift
toward binary formats optimized for speed and
compactness in recent years. The industry demand score
for Apache Avro and Google Protocol Buffers has been
shown to be much higher than for Thrift. JSON remains on
top, showing the best score for general technology adoption
and industry demand score; Zero-copy formats like Can’n
proto and Flatbuffers show lower industry demand scores
in comparison to AVRO and Protocol Buffers but are
useful in specific scenarios.1

Index Terms: Big Data applications, Data commu-
nication, Distributed processing, Encoding, Information
exchange, Protocols, Software Architecture.

I. INTRODUCTION
The ever-growing complexity of software systems

has necessitated a paradigm shift towards microservices
architectures. These architectures decompose
functionalities into independent, loosely coupled services
that communicate to achieve a unified goal. Inter-service
communication (ISC) acts as the lifeblood of distributed
systems. However, the efficiency of this exchange
directly impacts the overall performance, scalability, and
resource utilization of the entire system. One critical
element influencing ISC efficiency is the choice of
serialization format. Serialization refers to the process of
transforming data structures into a transmittable format,
allowing data to traverse network boundaries. The
receiving service then deserializes the data back into its
original form. Compact serialization formats minimize
the size of the transmitted data, leading to reduced
bandwidth usage and improved network performance.

1This article uses the materials and results obtained by the
authors during the research work "Intelligent design methods and tools
for the modular autonomous cyber-physical systems," state registration
number 0124U002340 dated 09.03.2024, which is carried out at the
Department of Electronic Computing Machines of the Institute of
Computer Technologies, Automation and Metrology of Lviv
Polytechnic National University in 2024-2028.

The proliferation of microservices architecture,
cloud-native applications, and service-oriented
paradigms has fueled an increasing need for robust and
efficient inter-service communication [1]. As services
interact and exchange data, the choice of serialization
format becomes a critical factor influencing overall
system performance, interoperability, and security [2].
Serialization formats dictate how in-memory data
structures are transformed into a transmittable format,
enabling seamless communication across diverse
platforms and technologies. This process is essential for
modern distributed systems, impacting various aspects
from data persistence to efficient communication in
resource-constrained environments [3,7]. This paper
presents a comprehensive classification of serialization
formats commonly employed for inter-service
communication. We analyze these formats through a
multi-faceted lens, considering various dimensions
crucial for effective data exchange in distributed
environments [4]. We investigate how different formats
encode information, distinguishing between text-based
approaches like JSON and XML and binary formats such
as Protocol Buffers and Apache Avro [4,8]. This analysis
highlights the impact of encoding choices on message
size, readability, and processing overhead, echoing
concerns raised in previous work on serialization
efficiency [5]. We also delve into the performance
implications of each format, evaluating factors such as
encoding/decoding speed, message size, CPU utilization,
and memory footprint [7], helping identify formats best
suited for high-performance scenarios with stringent
latency requirements.

II. LITERATURE REVIEW AND PROBLEM
STATEMENT

The literature on serialization formats reveals a rich
array of approaches to inter-service communication,
each with distinct trade-offs. Source [1] reviews
common data serialization methods and challenges in
achieving interoperability. Research [2] suggests that
Protocol Buffers and XDR are the most efficient binary
serialization formats for IoT devices. Study [3] presents

Eduard Maltsev, Oleksandr Muliarevych, Asmad Razzaque 176

PSON as a new serialization format for IoT sensor
networks that simplify serialization/deserialization and
minimizes message size. In our paper [4] we explored
that alternative formats like binary Avro and Messa-
gePack can reduce data size by over 30% compared to
JSON for efficient inter-service communication in
distributed systems. Research [5] evaluates serialization
protocols to replace Java Object Serialization for
efficient inter-service communication in the dCache
distributed storage system. Study [6] compares perfor-
mance characteristics of REST, gRPC, and Thrift
communication protocols for microservice applications,
finding that Thrift and gRPC are faster than REST.
Source [7] suggests that binary data serialization appro-
aches like Protocol Buffers and Apache Avro are more
efficient than text-based formats like JSON/GeoJSON
for storing and sharing geospatial data. Source [8]
proposes a novel technique for compressing XML
documents to improve communication efficiency in web-
based systems. Study [9] evaluates different inter-service
communication mechanisms for microservice
architecture, finding that gRPC performs better than
HTTP and WebSocket in terms of response time and
throughput. Analysis [10] compares serialization formats
like FlatBuffers and Protocol Buffers for deep neural
networks, finding FlatBuffers provides better
performance in model loading time and memory usage.
Existing literature needs a comprehensive classification
and overview that addresses the performance needs of
modern real-time systems, big data processing, and
scalability requirements. Our study bridges this gap by
offering an updated classification of serialization
formats, including columnar and binary types, with a
focus on performance metrics and industry trends.

III. SCOPE OF WORK AND OBJECTIVES
The scope of this study is to classify serialization

formats used in inter-service communication, including
human-readable formats (XML, JSON) and binary
formats (Protocol Buffers, Avro), among others. We also
aim to highlight the key features and historical
development of these formats.

IV. METHODOLOGY
We collected the number of Google search results

by issuing the queries specified in Table 1. The template
variables X1, X2, and X3 represent different spelling
variations of the target serialization format name. For
example (“Google Protocol Buffers" OR "Protocol
Buffers” OR “protobuf”). To assess industry demand, we
performed a similar search but included specific popular
job posting websites. We collected the number of results
from each job posting website and then calculated the
total for each serialization format. Job posting websites
used in this study are: indeed.com, linkedin.com/jobs.
The adoption and industry demand scores A are
calculated based on the corresponding number of Google
results as , where G is the number of Google
results.

Table 1

Queries to get adoption and demand results
General
adoption

("serialization format" OR
"serialization formats") AND ("X1" OR
"X2" OR "X3")

Industry
Demand

("serialization format" OR
"serialization formats")AND
site:jobwebsite.com/jobs AND
developer AND software AND ("X1"
OR "X2" OR "X3")

V. CURRENT TRENDS IN SERIALIZATION
TECHNOLOGY ADOPTION

Let us explore the results in Fig. 1 and Table 2. We
can clearly see several patterns, as follows: XML and
JSON have the highest number of Google search results
and the highest popularity scores. XML leads with
211,000 results, followed by JSON with 70,200 results.
(2) YAML ranks third with 22,800 results. It is probably
due to the fact that YAML is appreciated for its human-
readable format and is often used in configuration files.
Its popularity is bolstered by its usage in modern
development tools and platforms like Docker Compose
and Kubernetes. (3) Apache Avro, Google Protocol
Buffers, MessagePack, and Apache Thrift have moderate
adoption scores ranging from 4.19 to 4.32. These
formats are optimized for performance and efficient
serialization, making them suitable for high-performance
inter-service communication. The lower search volumes
compared to XML and JSON may be due to their
specialized use cases and steeper learning curves. (4)
Formats like CBOR, BSON, Smile, FlatBuffers, and
Cap'n Proto have lower popularity scores, ranging from
3.58 to 4.01. These formats serve specific needs, such as
compact binary representation (CBOR), efficient storage
of JSON-like documents (BSON), or zero-copy
deserialization (FlatBuffers, Cap'n Proto). Their adoption
is more niche, often within specific communities or
projects that require their unique features.

Fig. 1. General adoption score based on search engine

data—the closer to the outer circle, the better

Classifying Serialization Formats for Inter-Service Communication in Distributed Systems 177

Table 2

Technology adoption and industry demand score

Format Google
Results

Technology
adoption

Industry
Demand

XML 211000 5.32 2.35
Json 70200 4.84 2.74

YAML 22800 4.35 1.28
Apache Avro 21200 4.32 2.51

Google Protocol
Buffers 18400 4.26 2.36

MessagePack 17100 4.23 0.30
Apache Thrift 15600 4.19 0.60

CBOR 10300 4.01 <0.1
BSON 9410 3.97 0.30
Smile 7830 3.89 0.30

FlatBuffers 5980 3.77 0.48
Cap`n Proto 3770 3.57 0.3
Amazon Ion 1060 3.02 <0.1
FlexBuffers 733 2.86 <0.1

JSON BinPack 222 2.34 <0.1

VI. INDUSTRY DEMAND
Analyzing the industry demand scores for various

serialization formats provides insight into current market
preferences and trends. As it is shown in Table 2. and
Fig. 2, JSON tops the list with the highest industry
demand score of 2.74, highlighting its dominance and
widespread adoption in web development, APIs, and
data interchange. Its simplicity and compatibility with
JavaScript make it a go-to choice for many developers.

Fig. 2. Industry demand score based on search engine data—
the closer to the outer circle, the better

Apache Avro follows closely with a score of 2.51,

indicating significant industry interest, particularly in big
data applications and frameworks like Apache Hadoop.
Its compact binary format and schema evolution support
make it attractive for data serialization in distributed
systems.

Google Protocol Buffers and XML have industry
demand scores of 2.36 and 2.35, respectively. Protocol
Buffers are valued for their efficiency and performance

in network communications and data storage, especially
in systems where bandwidth and speed are critical.
XML, despite being older and more verbose, maintains a
strong presence due to its extensive use in enterprise
systems and legacy applications.

YAML has a moderate industry demand score of
1.28, reflecting its niche usage in configuration files and
scenarios where human readability is prioritized. Its
whitespace sensitivity and complexity in parsing
compared to JSON may limit its broader adoption.

Serialization formats like Apache Thrift (0.60),
FlatBuffers (0.48), MessagePack, BSON, Smile, and
Cap'n Proto (each around 0.30) show lower industry
demand.

CBOR, Amazon Ion, FlexBuffers, and JSON
BinPack, indicate minimal to no current demand in the
industry. This could be due to their recent introduction,
limited marketing, or specialized functionality that hasn't
yet resonated with a broader audience.

VII. HISTORICAL DEVELOPMENT OF
SERIALIZATION FORMATS

Serialization formats have evolved to support
efficient inter-service communication. In the 1950s,
Lisp's S-expressions enabled hierarchical data. CSV
appeared in the 1970s for simple data exchange but
lacked complex data support. The 1980s introduced
ASN.1 and encoding rules like BER, standardizing data
for telecom and security protocols like SSL/TLS. Sun
Microsystems’ XDR enabled cross-architecture serializa-
tion for RPC systems. The 1990s saw language-specific
formats (e.g., Python's Pickle, Java's Serializable) but
limited interoperability. XML, despite its verbosity,
structured SOAP web services. JSON rose in the 2000s
for web apps and REST APIs, while YAML supported
configuration files. Binary formats like Protocol Buffers,
Apache Thrift, and Apache Avro enabled efficient cross-
language data interchange for high-performance
services. MessagePack offered binary efficiency with
JSON simplicity. In the 2010s, Apache Parquet and ORC
optimized big data, while Apache Arrow improved data
processing interoperability. Cap'n Proto and FlatBuffers
minimize serialization overhead for real-time
communication. Other formats like CBOR and Amazon
Ion extended JSON's flexibility with compact encoding
and richer data types.

VIII. TEXTUAL FORMATS
Textual row-based formats organize data as

sequences of records, where each record consists of
fields that contain the values for a single entity. These
formats are human-readable, which makes them easy to
debug, inspect, and share across platforms. The most
commonly used textual row-based formats in inter-
service communication include:

JSON (JavaScript Object Notation): A lightweight,
text-based format that organizes data as key-value pairs.
It is widely used for RESTful APIs and is natively
supported by many web technologies.

Eduard Maltsev, Oleksandr Muliarevych, Asmad Razzaque 178

XML (eXtensible Markup Language): A more
verbose format with a hierarchical structure, often used
in SOAP-based web services. XML is highly flexible
and supports schema validation.

The result of the serialization of the reference data
structure using JSON format is presented in Fig. 3.

Fig. 3. Result of serialization using JSON data format,

size is 34 bytes in total

A. MESSAGE SIZE AND VERBOSITY
Textual formats like JSON and XML are verbose,

often resulting in large message sizes due to the use of
human-readable text. Key names are included in every
record, adding redundant data to each transmitted
message.

For example, a JSON message with multiple
records will repeat the field names (e.g., "price": 100,
"price": 120) for each record. Larger message sizes
require more bandwidth for transmission, increasing the
time taken to send and receive messages. For example, a
JSON-based API sending user profiles with fields such
as name, age, and address must transmit these field
names in every record, increasing the payload size.

This can be a significant issue in high-frequency
communication between microservices, where bandwidth
consumption directly contributes to network latency.

B. PARSING AND SERIALIZATION OVERHEAD
Textual formats must be serialized and deserialized

as strings, which is computationally expensive compared
to binary formats. JSON and XML parsing libraries
convert strings into objects or data structures in memory,
a process that is non-trivial for large payloads or high-
frequency requests.
The process of converting JSON or XML into in-
memory data structures (and vice versa) consumes CPU
cycles, which increases latency.

One of the main advantages of textual formats is that
they are human-readable, making debugging and
monitoring easier. However, this readability comes at the
cost of increased message size and serialization complexity.

While human-readable formats are beneficial for
debugging, they introduce performance bottlenecks in
latency-sensitive applications. In scenarios like telemetry
data exchange in IoT systems, where devices
communicate frequently, the added overhead of textual
formats can lead to unacceptable delays.

C. PERFORMANCE OPTIMIZATION STRATEGIES
To mitigate the intrinsic issues related to verbosity

and computation costs of textual formats like JSON and

XML, several performance optimization strategies can
be implemented. These not only aim to reduce latency
but also help in managing bandwidth and computational
overhead more effectively.

Data compression is a crucial technique to reduce
message size. Compression algorithms like GZIP or
Brotli can be applied to JSON and XML messages
before transmission, significantly cutting down the data
volume.

IX. BINARY FORMATS
Binary serialization involves converting complex

data structures into a compact binary format that can be
easily transmitted over a network and reconstructed later.

This contrasts with text-based formats like JSON or
XML, which, while human-readable, are bulkier and
require more processing time for parsing and
serialization. Binary formats eliminate unnecessary
characters such as whitespace and tags, resulting in
smaller message sizes.

In Fig. 4 (AVRO) we can clearly see the huge
differences in the resulting serialized representation of
the same messages when compared with Fig. 3. (JSON),
11 vs 34 bytes while serializing the same data structure.

Serialized Form - AVRO (11 bytes)
Byte # 1 2 3 4 5 6 7 8 9 10 11
Hex 0E 43 41 54 20 44 31 31 90 B0 0A
Dec 14 67 65 84 32 68 49 49 144 176 10

Fig. 4. Result of serialization using AVRO data format,

size is 11 bytes in total

This reduction in data size directly impacts network
transmission times, as smaller payloads take less time to
send and receive, thereby reducing latency.

Furthermore, binary serialization formats often
come with schema definitions that both the sender and
receiver agree upon. Examples include Protocol Buffers
by Google, Apache Thrift, and Apache Avro.

These schemas define the structure and data types
expected, allowing for efficient serialization and
deserialization processes. Knowing the exact data types
in advance enables services to allocate appropriate
resources and parse incoming data quickly, minimizing
CPU overhead. This is especially important in high-
throughput systems where services handle a large
number of requests per second.

Another advantage is that binary formats can
represent primitive data types in their native binary form.
For instance, integers, floats, and booleans can be
serialized without converting them to text, as it would be
necessary in JSON or XML.

In addition, binary formats can efficiently handle
complex nested structures and repeated fields without
significant overhead.

In latency-sensitive applications such as real-time
analytics, financial trading platforms, and large-scale
web services, every millisecond counts, in such

Classifying Serialization Formats for Inter-Service Communication in Distributed Systems 179

architectures, where a single user request may involve
multiple inter-service communications, the cumulative
latency savings can be substantial.

X. ENVIRONMENT SPECIFIC FORMATS
Environment-specific serialization formats are

tailored to the features and idioms of a particular
programming environment. As it is shown in Fig. 5, we
separated these kinds of formats into a separate category.
They often provide seamless integration and can
leverage language-specific optimizations. Examples
include:

Java Serialization: Uses the Serializable interface to
convert Java objects into a byte stream.

Python Pickle: Serializes Python objects into a byte
stream, preserving Python-specific data types.

Environment-specific formats are particularly
useful in scenarios where components are developed and
deployed within a single programming environment,
leveraging environment-specific serialization allows for
deep integration and optimal performance.

XI. COLUMNAR FORMATS
The adoption of columnar formats for inter-service

communication is often driven by specific use cases
where read-heavy operations, analytical queries, or batch
processing dominate. Please take a look at the structure
difference between row-based and columnar formats in
Fig. 6. Traditionally, communication protocols between
services favor row-based formats due to their ease of use
and suitability for transactional operations.

However, as data volumes increase and the need for
efficient data access grows, columnar formats present an
attractive alternative, especially in scenarios.

Fig. 6. Columnar vs. row-based formats, columnar uses less

space, even visually.

XII. CLASSIFICATION
Fig. 5 offers a classification of data serialization

formats, divided into textual and binary categories, each
tailored for specific applications and data handling
requirements. Human-readable formats include XML,
JSON, and YAML, each serving distinct purposes like
web services, web applications, and configuration
settings, respectively. XML supports complex structures
and is extensively used, whereas JSON is preferred for
its simplicity and performance, particularly in web
contexts.

YAML excels in configurations due to its reada-
bility and natural representation of hierarchical data.

On the binary side, formats like Protocol Buffers,
Apache Avro, and Thrift are highlighted, known for their
efficiency in processing and bandwidth usage, making
them suitable for high-performance computing
environments. These binary formats offer advantages in
serialized data size and processing speed, making them
ideal for environments where performance is critical.
The diagram also mentions columnar formats such as
ORC, Apache Arrow, and Parquet, which show great
utility in both storage and rapid retrieval scenarios.

Fig. 5. A classification of serialization formats for inter-service communication

Eduard Maltsev, Oleksandr Muliarevych, Asmad Razzaque 180

XIII. CONCLUSION
This study systematically classified serialization

formats, offering a comprehensive understanding of their
application in inter-service communication within
distributed systems. Our analysis identified key
differences between human-readable formats, such as
XML, JSON, and YAML, and binary formats, like
Protocol Buffers, Apache Avro, and Thrift. While textual
formats provided ease of use and superior readability,
which facilitated debugging and integration, they
inherently suffered from increased data payload and
computational overhead during parsing, making them
less suited for high-performance or latency-sensitive
applications.

Our findings indicated a significant industry
adoption and demand of binary formats, particularly in
domains requiring rapid and efficient data processing
capabilities, such as real-time systems and microservice
architectures.

The choice of serialization format should be
strategically aligned with system requirements,
balancing factors like performance, ease of integration,
and future scalability.

References

[1] Adibfar, A., Costin, A., (2021). Review of Data
Serialization Challenges and Validation Methods for
Improving Interoperability in Computing. In Civil
Engineering, 522–529. DOI: 10.1061/9780784483893.065.

[2] Friesel, D. and Spinczyk, O., (2021). Data Serialization
Formats for the Internet of Things. Electronic
Communications of the EASST, vol. 80.
DOI: 10.14279/TUJ.ECEASST.80.1134.1078.

[3] Luis, Á., Casares, P., Cuadrado-Gallego, J., Patricio, M.,
(2021). PSON: A Serialization Format for IoT Sensor
Networks. Sensors, vol. 21, no. 13, 4559.
DOI: 10.3390/s21134559.

[4] Maltsev, E., Muliarevych, O., (2024). Beyond JSON:
Evaluating Serialization Formats for Space-Efficient
Communication. Advances in Cyber-Physical Systems, vol.
9, no. 1, 9–15. DOI: 10.23939/acps2024.01.009.

[5] Morschel, L., (2020). dCache – Efficient Message Encoding
For Inter-Service Communication in dCache: Evaluation of
Existing Serialization Protocols as a Replacement for Java
Object Serialization. EPJ Web Conf., vol. 245, 05017.
DOI: 10.1051/epjconf/202024505017.

[6] Kumar, P., Agarwal, R., Shivaprasad, R., Sitaram, D.,
Kalambur, S., (2021). Performance Characterization of
Communication Protocols in Microservice Applications. In
2021 International Conference on Smart Applications,
Communications and Networking (SmartNets), Glasgow,1–
5. DOI: 10.1109/SmartNets50376.2021.9555425.

[7] Mooney, P., Minghini, M., (2022). GEOSPATIAL DATA
EXCHANGE USING BINARY DATA SERIALIZATION
APPROACHES. Int. Arch. Photogram. Remote Sens.
Spatial Inf. Sci., vol. XLVIII-4/W1-2022, 307–313.
DOI: 10.5194/isprs-archives-XLVIII-4-W1-2022-307-
2022.

[8] Tiwary, G., Stroulia, E., Srivastava, A., (2021).
Compression of XML and JSON API Responses. IEEE
Access, vol. 9, 57426–57439.
DOI: 10.1109/ACCESS.2021.3073041.

[9] Weerasinghe, S., Perera, I., (2022). Evaluating the Inter-
Service Communication on Microservice Architecture. In
2022 7th International Conference on Information
Technology Research (ICITR), 1–6.
DOI: 10.1109/ICITR57877.2022.9992918.

[10] Parashar, A., Anand, P., Abraham, A., (2020). Performance
Analysis and Optimization of Serialization Techniques for
Deep Neural Networks. In Computer Vision, Pattern
Recognition, Image Processing, and Graphics, 250–260.
DOI: 10.1007/978-981-15-8697-2_23.

Maltsev Eduard obtained his
Master’s in Computer Engineering,
specializing in Computer Systems
and Networks, from Lviv
Polytechnic National University in
2013. In 2021, he became a
Certified Cloud Architect and is
currently working towards a Ph.D.
in Computer Engineering.

Oleksandr Muliarevych is an
associate professor at the Computer
Engineering Department at Lviv
Polytechnic National University. He
earned his PhD degree in Computer
Systems and Components at Lviv
Polytechnic National University in
2016

Asmad Razzaque obtained his
master’s in electrical engineering
from the National University of
Science and Technology (NUST) in
2022. He is pursuing a Ph.D. in
Information and Communications
Technology (ICT) at University of
Rome Sapienza. He has published a
few papers and received a Best
Paper Award in an IEEE conference
for his contributions.

