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The increasing focus on smart agriculture in the last decade can be attributed to var-
ious factors, including the adverse effects of climate change, frequent extreme weather
events, increasing population, the necessity for food security, and the scarcity of natural
resources. The government of Morocco adopts preventative measures to combat plant
illnesses, specifically focusing on tomatoes. Tomatoes are widely acknowledged as one of
the most important vegetable crops, but they are highly vulnerable to several diseases
that significantly decrease their productivity. Deep learning algorithms are increasingly
being used to identify tomato leaf diseases. In this study, we thoroughly examine different
deep learning methodologies, with a specific emphasis on Convolutional Neural Network
(CNN) models. Our study aims at identifying the optimal approach for detecting diseases
that impact tomato leaves by combining two publicly accessible datasets, PlantDoc and
PlantVillage. We focused on finding a strategy that is effective and efficient in accurately
identifying these diseases. This study investigates the feasibility of employing state-of-the-
art deep learning methods that are based on YOLO models. We have chosen five models,
specifically YOLOv5, YOLOX, YOLOv7, YOLOv8, and YOLO-NAS, which belong to the
category of “One-stage detectors.” These models are widely recognized for their rapid in-
ference speed and outstanding accuracy. According to the experimental results, YOLOv5
has the highest level of accuracy, reaching a mean average precision (mAP) of 93.1% after
adjusting the hyperparameters. The final model is developed as a smartphone application
to improve user-friendliness.
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1. Introduction

The agriculture sector faces a substantial challenge in satisfying the growing worldwide demand for
food. Plant diseases are a major concern that greatly affects the quality and quantity of plant produc-
tion. While traditional diagnostic approaches for these infections are effective, they may experience
delays and require expert assistance, hence increasing the risk of crop loss. At the moment, the majority
of Moroccan farmers rely on manual inspection techniques to identify tomato leaf diseases, which leads
to considerable time consumption and a high probability of errors. Indeed, at nowadays, there are two
main approaches used for disease diagnosis: expert assessments and pathogen analysis. Expert assess-
ments are conducted by plant protection specialists who utilize their significant field and investigative
knowledge to examine plant lesions. This strategy relies primarily on the proficiency of the profession-
als and may be affected by subjective variability and limited accuracy [1]. Pathogen analysis involves
the cultivation of pathogens and their observation using a microscope. While this technique provides
a high level of accuracy in diagnosing, it requires a significant amount of time and entails intricate
procedures that are not practicable for on-site detection [2]. Lately, the progress in machine vision and
artificial intelligence has greatly accelerated the incorporation of intelligent engineering across multiple
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sectors. This improvement has notably enhanced machine vision applications in industries such as
agriculture and manufacturing within complex environments [3,4]. Addressing the challenges of plant
disease detection, techniques that utilize visible light and near-infrared spectroscopic digital imaging
have gained traction. These methods, leveraging near-infrared spectroscopic and hyperspectral imag-
ing, offer continuous spectral data and insights into the spatial patterns of plant diseases, making them
increasingly favored by researchers [5, 6]. However, the devices needed to capture spectral images are
often costly and cumbersome, limiting their widespread adoption. In contrast, acquiring visible light
images is simpler and can be accomplished with common electronic devices like digital cameras and
smartphones, simplifying the research into visible light image recognition [7].

Recent advancements have also seen visible light image recognition being effectively applied to
plant disease detection, facilitated by the need for real-time monitoring and data sharing on crop
growth [8–11]. This application typically involves several stages: image segmentation, extraction of
disease characteristics from the images, and subsequent classification of the diseases. It is crucial to
employ cutting-edge technology like Artificial Intelligence (AI) and Computer Vision (CV) to improve
the plant disease identification process. Deep learning has the potential to expedite disease diagnosis
and intervention by enabling faster and more efficient processes. High-quality agricultural production
relies heavily on precision agriculture. The progress in machine learning and deep neural networks has
significantly improved the precision of item identification and recognition systems.

Convolutional neural networks (CNN) have been extensively used in the field of plant disease
diagnosis in image processing. These models have demonstrated remarkable precision. Fujita et al. did
a study where they proposed a classifier for diagnosing cucumber diseases using Convolutional Neural
Networks (CNN) [12]. The classifier had an accuracy rating of 82.3%. Brahimi et al. [13] proposed
the utilization of a CNN model as a machine-learning approach to categorize tomato illnesses. Their
model achieved an impressive accuracy rate of 99.18%. Rangarajan et al. [14] utilized the AlexNet and
VGG16 models to classify six different diseases and a healthy category of tomatoes. Their classification
accuracies were 97.49% and 97.23%, respectively, utilizing a dataset consisting of 13 262 photos. Qimei
Wang et al. [15] devised methods utilizing deep CNN and object identification models to quickly and
accurately identify eleven distinct tomato illnesses. According to the experiment’s results, ResNet-101
exhibits the highest detection rate, but it necessitates the lengthiest training and detection durations.
MobileNet has the shortest detection time, although it exhibits worse accuracy in comparison to
ResNet-101. In their study, Khalid et al. (2023) utilized a deep convolutional neural network (CNN) to
accurately identify illnesses in money plant leaves in real time. They employed their trained YOLOv5
model to detect locations on both public and private datasets, reaching a 93% accuracy on a test set.

The objective of this work is to create and implement a deep learning system that utilizes images of
both healthy and diseased plants to autonomously detect and classify several types of diseases affecting
tomato leaves. The aim of this study is to compare the five most recent and advanced versions of the
You Only Look Once models (YOLO): YOLOv5, YOLOX, YOLOv7, YOLOv8, and YOLO-NAS. The
models are trained using a combined dataset derived from two publicly available picture datasets,
namely PlantDoc and PlantVillage. The completed model will possess the capability to predict the
condition of the leaf in real time and provide a prompt and reliable tool for disease prevention, even
for individuals without expertise in the field.

This paper will detail the technique utilized to design our desired system, followed by a presentation
of the outcomes and a discussion of their significance.

2. Methodology and results

2.1. Model description

There exist multiple object detection Deep Learning models that differ in their hardware prerequisites,
speed, accuracy and capacity to handle various classes. Specifically, we were searching for object de-
tection strategies that utilize convolutional neural network detection models in our particular scenario.
These algorithms can be classified into two main categories: the first one uses a two-phase approach
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for object detection (such as R-CNN, Fast R-CNN, and Faster R-CNN), whereas the other category
employs a single-stage method (such as SSD and YOLO). In this study, we have opted to utilize the
single step model, more especially the YOLO family. This model leverages the complete set of image
attributes to generate predictions for every bounding box. In addition, it simultaneously predicts the
bounding boxes for every class present in an image. This suggests that the network employs global
approach, considering the whole image and all its constituent elements. The YOLO design enables
seamless training and immediate execution, achieving a consistently high level of accuracy. We primar-
ily focused our work on the latest versions of YOLO Models, considering their numerous variations.
Therefore, we performed a comparison examination of five models: Yolov5, YOLOX, Yolov7, YOLOv8,
and YOLO-NAS. A succinct overview of the several models is presented.

YOLOv5: Launched in 2020, shortly following the release of YOLOv4, YOLOv5 was developed
by Glen Jocher, Ultralytics’ CEO. It integrates multiple improvements from YOLOv4, yet it is built
using PyTorch instead of Darknet. The YOLOv5 model incorporates the AutoAnchor algorithm, as
mentioned in the comprehensive study by Terven et al. (2023) [16]. This pre-training tool analyzes and
adjusts anchor boxes that are not suitable for the dataset and training parameters, such as the image
dimensions. The starting parameters for a Genetic Evolution (GE) algorithm are derived by employing
a k-means model on the labels of the dataset. The GE technique progressively improves the anchors
during 1000 generations, utilizing the CIoU loss and Best Possible Recall as the fitness function. The
overview of YOLOv5 architecture is illustrated in Figure 1. The backbone is comprised of a modified
CSPDarknet53 architecture, which starts with a Stem. The Stem is a convolutional layer with a large
window size and stride, specifically designed to reduce memory use and computational costs. After-
wards, the backbone includes convolutional layers that extract important information from the input
image. The SPPF layer, in conjunction with the subsequent convolution layers, manages the features
at various scales, while the upsample layers improve the resolution of the feature maps. YOLOv5 deliv-
ers exceptional accuracy by utilizing a simplified architecture and an extensive augmentation pipeline
that incorporates advanced techniques like Mosaic, cutmix, and several others. The product offers a
range of models, starting from small and efficient nano versions to more powerful X variants. These
models cover a wide spectrum of tradeoffs between throughput and accuracy. YOLOv5 has been widely
popular for real-time applications due to its exceptional performance, user-friendly Keras-style APIs,
and regular upgrades provided by its active open source community and developers.

Fig. 1. YOLOv5 Architecture [17]. The structure is comprised of three components:
(1) Backbone, (2) Neck, and (3) Head.
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YOLOX: created by Megvii Technology and documented in ArXiv in July 2021 [18], has intro-
duced substantial modifications to the YOLOv3 model, resulting in cutting-edge outcomes. The five
significant modifications encompass an anchor-free framework that streamlines the process of training
and decoding, reverting back to a technique employed prior to YOLOv2. The modification resulted in a
0.9-point rise in the Average Precision (AP). The model implemented a strategy of incorporating several
positive examples to address the imbalances resulting from the absence of reference points, resulting
in a significant improvement of 2.1 points in average precision (AP). The third modification involved
the separation of classification and localization tasks, resulting in a decoupled head. This alteration
led to an improvement of 1.1 points in average precision (AP) and accelerated the convergence of the
model. In addition, YOLOX resolved uncertainties in assigning ground truth labels by implementing
a simplified form of Optimal Transport (OT) known as simOTA, resulting in a 2.3 point increase in
average precision (AP). Ultimately, the model employed MixUP and Mosaic augmentations, resulting
in a 2.4-point increase in AP and rendering ImageNet pretraining unnecessary. The outcome was an
ideal equilibrium between inference speed and precision, achieving 50.1% average precision (AP) at
68.9% frames per second (FPS) on the Tesla V100 [19].

Fig. 2. YOLOX Architecture [19].

YOLOv7: is a model created by the creators of YOLOv4 and YOLOR. It was released in ArXiv
in July 2022 [20]. YOLOv7 incorporates many architectural modifications and a set of bag-of-freebies
techniques that improve accuracy without compromising inference speed. The model included an
Extended Efficient Layer Aggregation Network (E-ELAN) which facilitated efficient learning and con-
vergence in models with an unlimited number of stacked computing units. In addition, it proposed a
new approach to scaling models for concatenation-based models that uniformly scales both the width
and depth of the blocks, while maintaining the model’s desired structure.

YOLOv7’s bag-of-freebies incorporated a technique called planned re-parameterized convolution
(RepConvN). This technique was inspired by re-parameterized convolutions, but it did not contain the
identity connection found in ResNet or the concatenation seen in DenseNet, as these connections can
disturb the residual and dense blocks, respectively. Additionally, it implemented a method of assigning
rough labels to the auxiliary head and detailed labels to the lead head, which enhanced the efficiency
of training. At the inference step, batch normalization was incorporated into the bias and weight of the
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convolutional layer. Additional enhancements encompassed the utilization of tacit knowledge derived
from YOLOR and the implementation of an exponential moving average as the ultimate inference
model.

YOLOv7 surpassed all existing object detectors in terms of both speed and accuracy, achieving a
range of 5 FPS to 160 FPS at the time. It was trained exclusively on the MS COCO dataset without
utilizing pre-trained backbones.

Fig. 3. YOLOv7 Structure.

YOLOv8: Ultralytics, the corporation responsible for the development of YOLOv5, released
YOLOv8 in January 2023 [21]. The YOLOv8 model provides five distinct versions with varied scales:
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. YOLOv8 has the ability to carry out a
range of vision tasks such as object identification, segmentation, pose estimation, tracking, and classifi-
cation. The YOLOv8 architecture is based on the same foundation as YOLOv5, but it includes changes
to the CSPLayer, which is now called the C2f module. This module, comprising of two convolutions,
combines high-level characteristics with contextual information to improve the accuracy of detection.
The YOLOv8 model employs an anchor-free design, where a separate head is used to independently
perform tasks related to objectness, classification, and regression. This strategy enables the division
of tasks among different branches and improves the overall precision of the model. The output layer
of YOLOv8 employs the sigmoid function as the activation function to calculate the objectness score.
This value denotes the likelihood of an object’s existence within the bounding box. The Softmax
function is used to represent the probabilities of the items belonging to each potential class.

Fig. 4. YOLOv8 Architecture.
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YOLO-NAS: Introduced by Deci in May 2023 [22], represents a groundbreaking advancement in
neural architecture search (NAS) applied to object detection. Specifically tailored for real-time ap-
plications on edge devices, YOLO-NAS excels in detecting small objects and enhancing localization
accuracy, crucial for dynamic environments. This model leverages innovative quantization-aware mod-
ules, QSP and QCI, which permit 8-bit quantization while minimizing accuracy loss, a notable feature
in post-training optimization. AutoNAC, Deci’s proprietary NAS technology, drives the automatic
design of the model architecture, ensuring an optimal balance between latency and accuracy through
a hybrid quantization approach. Furthermore, YOLO-NAS utilizes a robust pre-training regimen that
includes automatically labeled data and self-distillation with large datasets, enhancing its performance.
The architecture supports multiple configurations “small (S), medium (M), and large (L)” tailored to
various operational needs and performance goals, as showcased in its diverse model options YOLO-
NASS, YOLO-NASM, and YOLO-NASL. Available for research through its open-source framework,
YOLO-NAS is not only a technical achievement but also a versatile tool adaptable to diverse data and
environmental conditions, thereby setting a new standard in NAS for object detection.

Fig. 5. YOLO-NAS Architecture [16].

2.2. Datasets

Deep learning training processes heavily depend on the availability of large datasets. In the context of
our current project, there is a specific need for an extensive array of images depicting both healthy and
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diseased tomato leaves to efficiently train our object detection models. Considering the labor-intensive
nature of collecting such photos in natural settings, we have opted to incorporate images from two
widely recognized public databases, PlantVillage and PlantDoc.

PlantVillage features an extensive collection of 54 305 images representing individual leaves from
14 different crop species, organized into 38 distinct classes labeled as either species-disease or species-
healthy. Each leaf was carefully removed from the plant and placed against a controlled backdrop of
gray or black, then photographed outdoors using a high-quality digital camera. However, the images in
the PlantVillage database lack pre-existing labels, necessitating a manual annotation process to render
them usable for object detection purposes. This crucial step involves detailed labeling of each image
to ensure accurate identification and categorization for training the models.

Similarly, the PlantDoc dataset serves as a vital resource for plant disease detection, containing
2 598 images that cover 13 different plant species and 17 disease classes. These images were meticulously
curated from various online sources and required approximately 300 hours of human labor to annotate
thoroughly. This dataset not only enriches the diversity of our training data but also enhances the
robustness of our object detection models by providing a wide range of disease manifestations across
multiple species.

Fig. 6. Plant disease and healthy image examples
from PlantVillage and Plandoc.

Fig. 7. Image dataset repartition by class.

The image in Figure 6 depicts
some plant disease and healthy exam-
ples obtained from two datasets.

In our research, we successfully
collected high-quality photos of two
different disease categories, specifi-
cally Tomato Late Blight and Tomato
Septoria leaf spot. In addition, we ob-
tained a distinct set of photos illus-
trating healthy tomato leaves. This
decision was made since we need to
annotate three thousand PlantVil-
lage photos. The object detection
database will consist of a total of
3325 images, including 3000 images
obtained from PlantVillage and 325
images extracted from PlantDoc Fig-
ure 7.

The combined count of images
for training, testing, and validation
is shown in Table 1. Each image
may have numerous bounding boxes,
which correspond to different health
conditions of the leaves. In total,
there are 4025 bounding boxes, which
serve as annotations. The ultimate
dataset was partitioned into three
subsets: the training set (70%), the
validation set (20%), and the testing

set (10%).

Table 1. Image counts for training, validation, and testing.

Training Sample Validation Sample Testing Sample Total Sample

2327 665 333 3325
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2.3. Methods

The proposed models were evaluated by the use of methodologies and a comparison of the results. Fig-
ure 8 illustrates a comprehensive procedure for identifying and classifying plant illnesses. Furthermore,
once the picture dataset containing three classes (Tomato Septoria leaf spot, Tomato leaf late blight,
and Healthy Tomato leaf) was collected from both PlantDoc and PlantVillage, the images obtained
from the PlantVillage dataset were annotated using the Roboflow annotation web platform. The an-
notation procedure entails defining bounding boxes around the areas of the leaves that exhibit signs
of unhealthiness. It is possible for a single image to have multiple bounding boxes, depending on the
extent of the leaves’ health status.

Fig. 8. Tomato leaf disease detection process.

The ultimate dataset was combined and subsequently split into three portions, with 70% allocated
for training, 20% for validation, and 10% for testing. Afterwards, the five deep-learning (DL) models
were trained on the Google Colab platform using an NVIDIA Tesla P100 GPU with 16 GB of memory.
The training process involved either starting from the initial state or using a specific learning approach.
The resulting training plots were obtained to assess the importance of the model. The next phase
involved classifying the pictures using performance matrices, while the last step involved locating the
images using visualization methods. The procedure of identifying unhealthy plant leaf sections involved
several steps, as shown in Figure 8.

2.4. Training process

Each of the five models being evaluated in this study consists of many sizes. The lowest model has
a minimal parameter number resulting in lower accuracy but faster performance. As the size of the
model increases, the number of parameters also increases, resulting in improved accuracy. However,
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this also leads to longer inference times. Using YOLOv5 as an illustration, there exist five distinct
model sizes: YOLOv5n (the smallest), YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x (the largest).
The Figure 9 illustrates the size, accuracy, and inference speed of each model.

Fig. 9. Different YOLOv5 models sizes,

In our research, we have selected the YOLOv5s model and similar variants from other model ar-
chitectures due to their ability to perform rapid inference while maintaining a high level of accuracy.
This choice aligns with our objective to develop a model capable of delivering real-time results on
devices with constrained computational resources, such as smartphones, IoT devices, and Raspberry
Pi systems. The decision to use these specific models is underscored by their efficiency in processing
and speed, which are critical for applications requiring immediate feedback in resource-limited set-
tings. The accompanying Table 2 details the weight sizes for each model and outlines the parameters
employed during the training phase, providing a clear framework for understanding the configuration
and optimization strategies that were implemented to achieve effective performance under the specified
hardware limitations.

Table 2. Models training parameters.

Model Image Size Epochs Batch size Params (M)
YOLOv5s 416 100 16 7.2
YOLOXs 416 1000 16 9.0

YOLOv7 tiny 416 100 16 6.2
YOLOv8s 416 200 16 11.2

YOLO-NAS S 416 200 16 19.0

3. Results and discussions

3.1. Obtained results

After training several models using our finalized dataset, we have documented the results in Table 3.
Among the models evaluated, the YOLOv5 stands out with its exceptional performance, achieving

Table 3. Outcomes from training the three models.

Model Total Loss mAP 0.5
YOLOv5s 0.02 92.7 %
YOLOX-s 0.59 89.3 %

YOLOv7 Tiny 0.042 87.6 %
YOLOv8s 1.45 92.2 %

YOLO-NAS S 1.37 88.8 %

a mean Average Precision (mAP0.5) score of 92.7%.
It is closely followed by the YOLOv8s, which scored
92.2%, and the YOLOX-s, which registered a score
of 89.3%. On the other hand, the YOLO-NAS-S
and YOLOv7-Tiny models show the least effective
performance, with a score of 88.8% and 87.6% re-
spectively. This array of results highlights the vary-
ing capabilities of each model, reflecting how each

handles the complexities of the task within the parameters set by our dataset. The scoring indicates
that while all models are competent, some are more suited to achieving higher accuracy in our specific
application, particularly in scenarios demanding real-time processing on limited-resource devices.

We have chosen the YOLOv5 model for the hyperparameter tuning phase, with the goal of iden-
tifying the most effective settings to enhance the model’s accuracy and refine its performance. The

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1198–1210 (2024)



Advanced YOLO models for real-time detection of tomato leaf diseases 1207

YOLOv5 model utilizes a method known as “Hyperparameter evolution,” which involves using a Ge-
netic Algorithm (GA) to fine-tune the hyperparameters. This optimization process aims to improve
training results by systematically adjusting hyperparameters to maximize the model’s effectiveness.

In particular, YOLOv5 focuses on optimizing a fitness value calculated from the Intersection over
Union (IoU) between the predicted bounding boxes and the actual ground truth, as well as from the
mean average precision metric. This mean average precision is calculated by averaging the precision
across all classes.

However, conducting hyperparameter evolution is both resource-intensive and time-consuming. In
our project, the evolution process began with the weights obtained at the 30th epoch. After adjusting
the hyperparameters, we observed an increase in the mAP0.5 scores from previous benchmarks, improv-
ing by 0.4% to reach 93.1%. Additionally, the mAP0.5:0.95 score increased by 3.6% to 81.55%. These
enhancements underscore the value of thorough hyperparameter optimization in achieving superior
model performance.

After finalizing the model weights, we decided to deploy our model within an Android application
designed to detect various tomato diseases in the field. Consequently, it is essential to convert the
trained model from its original PyTorch format, indicated by the file extension .pt, to the Tensorflow
Lite format, marked by the extension .tflite. This conversion is crucial as the Tensorflow Lite format is
optimized for mobile devices, making it suitable for real-time applications on smartphones. The con-
verted file will then be integrated into the Android application, allowing it to be installed and utilized
effectively on mobile devices. This step ensures that the powerful capabilities of our deep learning
model are accessible in a portable format, facilitating immediate and practical use in agricultural
settings.

3.2. Model deployment

We deployed our application on a Samsung Note 10 Plus smartphone, which is equipped with a
Qualcomm Snapdragon 855 processor (running at 2840 MHz) and a Qualcomm Adreno 640 GPU card

Fig. 10. Tomato Septoria spot disease inference
on smartphone (GPU and CPU).

with a frequency of 672 MHz. The
performance of the application can be
seen in the screenshots displayed in Fig-
ure 10, taken directly from the smart-
phone. These images illustrate the ap-
plication’s high accuracy and confidence
in determining whether a tomato plant is
diseased, specifying the type of disease, or
confirming the plant’s health.

A significant performance insight
gained from this deployment is the com-
parison of inference speeds between the
GPU and CPU on the device. The GPU
demonstrates a markedly faster inference
speed, averaging about 70 milliseconds,
compared to the CPU’s 350 milliseconds.
This results in GPU processing being ap-
proximately seven times quicker than its
CPU counterpart. Such a disparity un-
derscores the efficiency and suitability of
using GPU acceleration for real-time ap-
plications like ours, where speed is critical
for performance.
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4. Conclusions

The primary goal of this study was to develop a highly effective and precise method for the early de-
tection of tomato diseases using cutting-edge deep-learning techniques. We utilized images of tomato
leaves from two databases, PlantDoc and PlantVillage, merging them to create a diverse and com-
prehensive dataset for training our object detection models. We conducted a detailed comparative
analysis using five versions of the YOLO (You Only Look Once) object detection framework: YOLOv5,
YOLOX, YOLOv7, YOLOv8, and YOLO-NAS, with YOLOv5 demonstrating the highest accuracy at
92.7%. Despite this achievement, we pursued further improvements in our model’s performance. We
implemented hyperparameter evolution techniques to optimize the model’s settings, which significantly
improved the accuracy to 93.1%. Our study highlights the effectiveness of the YOLO model variants in
accurately detecting tomato diseases from leaf images and demonstrates the impact of hyperparameter
optimization in refining model performance. Furthermore, to increase the usability and reach of our
solution, we developed a mobile application, enhancing the practical application of our research. This
integration into a mobile platform allows for real-time, on-site disease diagnosis, making our system
a valuable tool in the field of agricultural technology. Ultimately, our work improves tomato crop
management by enabling early disease detection, which can help maximize yields and reduce losses
due to disease.
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[9] Almadhor A., Rauf H. T., Lali M. I. U., Damaševičius R., Alouffi B., Alharbi A. AI-Driven Framework for
Recognition of Guava Plant Diseases through Machine Learning from DSLR Camera Sensor Based High
Resolution Imagery. Sensors. 21 (11), 3830 (2021).

[10] Bellout A., Dliou A., Latif R., Saddik A. Deep Learning technique for predicting tomato leaf disease. 2023
IEEE International Conference on Advances in Data-Driven Analytics and Intelligent Systems (ADACIS).
1–6 (2023).

[11] Zarboubi M., Chabaa S., Dliou A. Advancing Precision Agriculture with Deep Learning and IoT Integration
for Effective Tomato Pest Management. 2023 IEEE International Conference on Advances in Data-Driven
Analytics And Intelligent Systems (ADACIS). 1–6 (2023).

[12] Fujita E., Kawasaki Y., Uga H., Kagiwada S., Iyatomi H. Basic Investigation on a Robust and Practical
Plant Diagnostic System. 2016 15th IEEE International Conference on Machine Learning and Applications
(ICMLA). 989–992 (2016).

[13] Brahimi M., Boukhalfa K., Moussaoui A. Deep Learning for Tomato Diseases: Classification and Symptoms
Visualization. Applied Artificial Intelligence. 31 (4), 299–315 (2017).

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1198–1210 (2024)



Advanced YOLO models for real-time detection of tomato leaf diseases 1209

[14] Rangarajan A. K., Purushothaman R., Ramesh A. Tomato crop disease classification using pre-trained
deep learning algorithm. Procedia Computer Science. 133, 1040–1047 (2018).

[15] Wang Q., Qi F., Sun M., Qu J., Xue J. Identification of Tomato Disease Types and Detection of Infected
Areas Based on Deep Convolutional Neural Networks and Object Detection Techniques. Computational
Intelligence and Neuroscience. 2019, 9142753 (2019).

[16] Terven J., Cordova-Esparza D. A Comprehensive Review of YOLO: From YOLOv1 and Beyond. Preprint
ArXiv:2304.00501 (2023).

[17] Huang Y., Kruyer A., Syed S., Kayasandik C. B., Papadakis M., Labate D. Automated detection of GFAP-
labeled astrocytes in micrographs using YOLOv5. Scientific Reports. 12 (1), 22263 (2022).

[18] Ge Z., Liu S., Wang F., Li Z., Sun J. YOLOX: Exceeding YOLO Series in 2021. Preprint ArXiv:2107.08430
(2021).

[19] Peng H., Tan X. Improved YOLOX’s Anchor-Free SAR Image Ship Target Detection. IEEE Access. 10,
7001–70015 (2022).

[20] Wang C. Y., Bochkovskiy A., Liao H. Y. M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art
for real-time object detectors. Preprint ArXiv:2207.02696 (2022).

[21] Jocher G., Chaurasia A., Qiu J. YOLO by Ultralytics. https://github.com/ultralytics/ultralytics
Version 8.0.0; AGPL-3.0 (January 2023).

[22] Research Team. YOLO-NAS by Deci Achieves State-of-the-Art Performance on Object Detection Using
Neural Architecture Search. 2023.
https://deci.ai/blog/yolo-nas-object-detection-foundation-model/ (accessed on 12 May 2023).

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1198–1210 (2024)



1210 Bellout A., Zarboubi M., Dliou A., Latif R., Saddik A.

Удосконаленi моделi YOLO для виявлення захворювань
листя томатiв у реальному часi

Беллаут А.1, Зарбубi М.2, Длiу А.1,3, Латiф Р.1, Саддiк А.1,3

1Лабораторiя системної iнженерiї та iнформацiйних технологiй LISTI,

Нацiональна школа прикладних наук, Унiверситет Iбн Зохр Агадiр, Марокко
2LISAD, Нацiональна школа прикладних наук, Унiверситет Iбн Зор, Агадiр, Марокко

3Факультет прикладних наук, Унiверситет Iбн Зохр, Айт Меллул, Марокко

Збiльшення уваги до розумного сiльського господарства за останнє десятилiття мож-
на пояснити рiзними факторами, включаючи несприятливi наслiдки змiни клiмату,
частi екстремальнi погоднi явища, збiльшення населення, необхiднiсть продовольчої
безпеки та дефiцит природних ресурсiв. Уряд Марокко приймає профiлактичнi захо-
ди для боротьби з хворобами рослин, особливо зосередившись на томатах. Помiдори
широко визнанi однiєю з найважливiших овочевих культур, але вони дуже вразливi
до ряду хвороб, якi значно знижують їх урожайнiсть. Алгоритми глибокого навчання
все частiше використовуються для виявлення хвороб листя томатiв. Це дослiдження
передбачає комплексне вивчення рiзних методологiй глибокого навчання з особливим
акцентом на моделях згорткової нейронної мережi (CNN). Мета нашого дослiджен-
ня полягала в тому, щоб визначити оптимальний пiдхiд для виявлення хвороб, якi
впливають на листя томатiв, шляхом поєднання двох загальнодоступних наборiв да-
них PlantDoc та PlantVillage. Наша увага була зосереджена на пошуку стратегiї, яка
була б ефективною та дiєвою для точного визначення цих захворювань. У цiй статтi
дослiджується доцiльнiсть використання найсучаснiших методiв глибокого навчання,
якi базуються на моделях YOLO. Обрано п’ять моделей, а саме: YOLOv5, YOLOX,
YOLOv7, YOLOv8 та YOLO-NAS, якi вiдносяться до категорiї “одноступеневi спо-
вiщувачi”. Цi моделi широко вiдомi своєю високою швидкiстю логiчного висновку
та винятковою точнiстю. Вiдповiдно до експериментальних результатiв, YOLOv5 має
найвищий рiвень точностi, досягаючи середньої точностi (mAP) 93.1% пiсля налашту-
вання гiперпараметрiв. Остаточна модель розроблена як додаток для смартфона, щоб
покращити зручнiсть використання.

Ключовi слова: точне землеробство; хвороба томатiв; глибоке навчання;

комп’ютерний зiр; виявлення об’єктiв; YOLO.

Mathematical Modeling and Computing, Vol. 11, No. 4, pp. 1198–1210 (2024)


