
COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING
Vol. 14, No. 1, 2024

LAUNCHING MVPS FOR IT STARTUPS: PYTHON/DJANGO/
POSTGRESQL IN LOCATION-TRACKING APPLICATIONS

Volodymyr Franiv, Sviatoslav Zastavskyi, Oleh Kushnir
Department of Optoelectronics and Information Technologies, Ivan Franko National University, Lviv, Ukraine

volodymyr.franiv@lnu.edu.ua, sviatoslav.zastavskyi@lnu.edu.ua, oleh.kushnir@lnu.edu.ua
https://doi.org/

Abstract: In this study, we develop and evaluate
performance of a location-tracking application built using a
Python/Django/PostgreSQL stack. Through rigorous
experimentation and its analysis, we scrutinize the efficiency
of WebSocket connections in facilitating real-time commun-
ication and data retrieval. By comparing our findings with the
previous research results available on an ASP.NET stack, we
contribute to understanding of the technologies for stack
selection and the strategies used for optimization of the
location-tracking applications. Our results offer valuable
guidance for the developers striving to create robust and
scalable solutions in this burgeoning domain.

Key words: software development, location tracking,
Python, Django, PostgreSQL, ASP.NET, WebSocket,
HTTP.

1. Introduction
In today’s fast-paced digital landscape, a demand for

robust and efficient location-tracking applications
(LTAs) continues to soar across diverse fields, e.g.
logistics, agriculture and security. These applications
play a pivotal role in optimizing processes, enhance
security measures and enable informed decision-making
by providing real-time insights into the movement of
objects [2–5]. With the proliferation of startups in
different technology sectors, selecting the right technol-
ogy stack for developing such applications becomes
crucial for ensuring their scalability, flexibility and cost-
effectiveness, especially in the context of recent trends
of making so-called Minimum Viable Products [5–7].

Since the majority of IT startups begin with a
minimum viable product, the key problem is a choice of
a proper technological stack for implementing the LTA.
It is well known that the problem of operation speed is
not viable at the stage of minimum viable products and,
as a matter of fact, the actual operation speed would be
given by the basic settings of a technological stack
chosen by a developer. As a result, we will concentrate
on possible alternatives of the technological stacks
known from the literature and analyze their viability.

The objective of this study is a performance analysis
of the LTA developed using the Python language and the
Django framework, with PostgreSQL serving as a
database solution. We utilize an Apache JMeter as a

performance-testing tool to evaluate the efficiency of
this technology stack for the MVP development. Our
investigation also aims to provide valuable insights for
the IT startups seeking optimal solutions for the LTAs,
particularly in comparison to ASP.NET stack elaborated
earlier [1]. The LTAs must efficiently receive, store and
retrieve the location coordinates from the multiple
objects in real time. Therefore, a choice of the
technology stack influences significantly the deve-
lopment process, scalability and the overall performance
of the LTAs. By using WebSocket connections in this
study, we aim to highlight a key distinction of our
application from the ASP.NET stack which utilizes HTTP
connections [8–12].

Through rigorous performance testing and analysis,
we provide a comprehensive insight into suitability of
the Python/Django/PostgreSQL stack for LTA
development in the context of MVPs. By comparing this
stack with the known ASP.NET stack, we identify the
strengths and limitations of each approach, thereby
enabling startups to make informed decisions regarding
the choice of technologies for the MVP development.
Finally, by conducting this comparative analysis, we
contribute to the body of knowledge related to
technology-stack selection and facilitate informed
decision-making in the development of LTA solutions.

2. The problem under consideration
The LTA technologies have evolved rapidly in recent

years, driven by advances in GPS, IoT and wireless
communication technologies. Studies such as those by F.
Ahmed et al. [2] have highlighted the importance of seamless
asset location and tracking technologies across various
domains. These technologies enable real-time monitoring of
assets, vehicles and personnel, thereby facilitating efficient
object location, route optimization, and risk mitigation.

The choice of database-management system impacts
notably the performance and scalability of the LTAs.
Relational databases such as MySQL, PostgreSQL and
MSSQL have traditionally been popular choices for storing
the structured data due to their robustness and support for
ACID properties [8–11]. However, non-relational databases
such as MongoDB and Redis have gained much prominence
for their flexibility, scalability and ability to handle large

Volodymyr Franiv, Sviatoslav Zastavskyi, Oleh Kushnir 2

volumes of the unstructured data [9–11].
Performance testing plays a crucial role in assessing the

efficiency and the scalability of the LTAs. Means such as
Apache JMeter have become standard tools for conducting
performance testing. They enable developers to simulate
various usage scenarios and measure key metrics such as
throughput, response times, and resource utilization [7]. The
studies by S. Matam and J. Jain [8] have demonstrated the
efficiency of Apache JMeter in both evaluating web-
application performance and identifying performance
bottlenecks.

The IT startups face unique challenges when selecting
the technology stacks for developing their LTAs. M. Akkaya
[3] emphasizes the importance of startup valuation and the
role of technology choices in driving business growth and
success. The studies by M. Smorgun [7] have highlighted the
benefits of using the frameworks like ASP.NET and the tools
like Apache JMeter in accelerating application development
and ensuring its scalability and reliability.

Earlier, K. Fraczek and M. Plechawska-Wojcik [15]
have compared the relational and non-relational databases for
web applications. In the studies, the performance, scalability
and ease-of-development of different database solutions have
been compared. However, there is a strong need for further
and deeper comparisons of the technology stacks across
different programming languages and frameworks, in
particular in the context of the LTAs.

The LTAs often rely on the network protocols to
communicate between client and server components.
Traditionally, HTTP (Hypertext Transfer Protocol) has been
the standard for communication over the web. HTTP is a
request–response protocol where the client sends a request to
the server and the server responds with the requested data.
This protocol is widely used for transmitting data between
web servers and web browsers and is well suited for the
scenarios where data is exchanged intermittently or in
discrete transactions [15–19].

However, with the growing demand for real-time and
interactive applications, WebSocket technology has gained a
great interest. WebSocket is a communication protocol that
provides full-duplex communication channels over a single,
long-term connection between a client and a server. Unlike
HTTP, which follows a request–response pattern, WebSocket
provides bidirectional communication and allows both the
client and the server to initiate data exchange at any time [15–
21].

WebSocket offers several advantages over the traditional
HTTP connections, especially in the scenarios where real-
time data updates are critical, such as LTAs. By establishing
a persistent connection between the client and the server,
WebSocket reduces latency and overhead associated with
establishing multiple HTTP connections for each interaction.
This persistent connection also enables efficient data

streaming, making WebSocket ideal for applications that
require continuous data updates, such as live location
tracking [3]. In contrast, although the HTTP connections are
suitable for transmitting discrete data requests and responses,
they may incur additional overhead and latency, especially in
the scenarios where frequent data updates are required. As
such, the choice between the HTTP and WebSocket
connections depends on specific requirements for the
applications, including such factors as latency sensitivity, data
volume, and the need for bidirectional communication [4].

In the context of LTAs, the choice between HTTP and
WebSocket connections can significantly impact their
performance, scalability and user experience. Therefore,
understanding the differences and implications of these
communication protocols is essential for developers when
designing and implementing LTA solutions.

By integrating the studies on the network protocols and
the communication technologies, we aim to provide a
comprehensive understanding of the technological consider-
ations involved in developing the LTAs. In particular, we will
perform a comparative analysis of the Python/Django/
PostgreSQL stack with the ASP.NET stack studied
previously. This should enable the developers to make
informed decisions about the technology selection and the
implementation strategies.

3. Experimental results and their analysis
When developing a robust and efficient LTA solution

leveraging the Python/Django/ PostgreSQL stack, our team
has attempted seamlessly handling the WebSocket
connections and efficiently storing the location coordinates in
real time. Being inspired by the previous study utilizing the
ASP.NET framework [1], we have sought to explore the
capabilities of this alternative technology stack in meeting the
demanding requirements of the LTAs.

The LTA developed using the Python/Django frame-
work has been meticulously designed to meet the diverse
needs of tracking various objects. Using Django’s model-
view-template architecture, we have designed a robust
backend capable of easily handling the WebSocket
connections. Our application integrates seamlessly the Web-
Socket communication, allowing new location coordinates to
be continuously added as they have been received. This
approach ensures accurate tracking of each object’s
movement, similar to the ASP.NET-based technology.

The core functionality of our application is the efficient
handling of WebSocket connections for the real-time
communication between the client and the server. These
connections facilitate bidirectional communication and
enable the server to send updates to the client in real time
with no overhead of multiple HTTP requests. Using rich
WebSocket handling capabilities of Django Channels, the
application processes these connections swiftly and ensures

Launching Mvps for it Startups: Python/Django/Postgresql in Location-Tracking Applications 3

real-time monitoring of object location and seamless access
to the record of earlier data.

Our decision to build the LTA on the Python/Django
framework was stipulated by several factors that are
somewhat similar to those considered by the authors [1]
when selecting the ASP.NET framework. The simplicity and
readability of Python, as well as the features built in Django
for rapid development and scalability made our solution an
ideal choice for the startups seeking a cost-effective and
scalable technology stack. Additionally, the open-source
nature of Python and Django facilitates active community
support, thus ensuring continuous improvements and updates.

To check the efficiency of LTA, we used the powerful
capabilities of Apache JMeter, which is similar to the
methodology employed in the study [7]. Apache JMeter
plays a pivotal role in generating a wide array of WebSocket
messages to evaluate the performance of the application
under varying loads. In our experiments, we utilized Apache
JMeter not only to generate different WebSocket messages
but also to measure the throughput. The latter represents the
number of successfully processed requests per second (RPS)
for the two types of requests, retrieving the current location of
an object (Fig. 1) and retrieving the track of an object (Fig. 2).

Fig. 1. Dependence of throughput as measured for getting current
location of an object on the number of points stored in a database.

Our experimental approach aims at assessing the
application’s bandwidth under gradual data loading, which is
similar to the methodology employed in the study [1]. We
increase systematically the amount of data in our database
while using the WebSocket messages, thus mimicking real-
world usage patterns. A deliberate omission of special indices
in the database allows us to gauge the raw performance of
our LTA in managing the tracking-data efficiently.

To provide reliable and valid findings, all the
experiments were conducted under controlled conditions with
standardized hardware and software configurations. This
approach minimizes potential variations and confounding
factors and enables a robust basis for qualitative analysis of
the LTA performance in response to increasing data loads.
All the tests were performed on a local machine with 8 GB of
RAM, an Intel Core i5 processor, and Ubuntu Linux 18.01
(PostgreSQL 16.2, Python 3.10.12, and Django 5.0).

The WebSocket messages simulate a real-time commun-
ication between the client and the server and enable the
application to receive and process the requests efficiently.
The capabilities of Apache JMeter allow us to simulate
various usage scenarios and measure the LTA performance
metrics, including the throughput.

In case of a ‘get a current object location’ request, we
measure the LTA ability to retrieve promptly the latest
location of a object in real time (see Fig. 1). This metrics
deals with the LTA responsiveness and efficiency in handling
the requests associated with immediate location updates.

In case of a ‘get an object track’ request, we evaluate the
LTA performance in fetching the complete track of an object,
including records of its past locations (Fig. 2). This metrics
gauges the LTA ability to efficiently process and retrieve
large datasets, thus enabling users to access a complete
object-movement dataset.

Fig. 2. Dependence of throughput as measured for getting an object

track on the number of points stored in a database.

By measuring the throughputs for both types of requests,
one can assess the overall performance and scalability of the
LTA under varying levels of concurrent users and object-
tracking activities. These metrics also enable one to identify
potential bottlenecks and optimize the LTA performance.

Following from our observations, we conclude that the
throughput plots derived for the Python/Django application
based on the WebSocket connections are similar to those
obtained earlier for the ASP.NET-based application [1]. In
both cases, the experimental curves can be reasonably fitted
by a power-law function, which indicates a consistent pattern
of the performance scaling with increasing data load.

Our analysis indicates also that, in general, the tracking
application based on ASP.NET with the HTTP connections
outperforms the Python/Django LTA. In other words,
although the Python/Django application utilizes the Web-
Socket connections, it demonstrates a slightly inferior
performance if compared to its ASP.NET-based counterpart.

Our findings suggest that the connection type (either
HTTP or WebSocket) might not impact significantly the
overall performance of the LTA in case of low load and small
amount of data stored in the database. Note in this respect
that although the WebSocket connections are often associated

Volodymyr Franiv, Sviatoslav Zastavskyi, Oleh Kushnir 4

with lower latency and overhead, when compared to the
traditional HTTP connections, the performance difference
between these two types of connections is not substantial in
our experiments.

These observations highlight a complex interplay of
different factors in determining the overall performance of
the LTAs, including the programming languages, the
frameworks, the database systems, and the connection types.
Further analysis and experimentation would be necessary to
understand better the underlying factors driving these
performance differences and optimize the LTA accordingly.

Summing up, the LTA developed using the Python/
Django/PostgreSQL stack demonstrates performance com-
parable to its ASP.NET counterpart. It offers efficient
handling of WebSocket connections, real-time tracking
capabilities and seamless access to the entire dataset.f

4. Conclusions

Our comparative analysis of the LTAs developed
using the Python/Django/PostgreSQL stack and the
earlier ASP.NET stack [1] sheds light on the dynamics
of stack-technology selection and its impact on overall
LTA performance. Through rigorous experimentation
and analysis, a number of important conclusions have
been drawn.

First, our study highlights the critical role of stack
technology in determining the scalability, efficiency and
responsiveness of the LTAs. Although both the
Python/Django/PostgreSQL and ASP.NET stacks offer
robust frameworks and database solutions, subtle
differences in their performance can still be observed.

Second, our experiments reveal that the choice
between HTTP and WebSocket protocols, however
significant, could not always yield substantial
performance disparities, in particular under low-load and
small-dataset conditions. Despite the WebSocket’s
advantages in reducing latency and overhead, the
performance differences between the two protocols
observed in our experiments are negligible.

Our findings highlight the importance of a holistic
approach to performance optimization that takes into
account multiple factors such as programming
languages, frameworks, database systems and
connection types. The interaction of these ingredients
influences the overall performance and scalability of the
LTAs.

Our study provides a valuable insight into the choice
of stack technology for LTAs and, moreover, it also
emphasizes a clear need for further experimentation in
the field. Future research should explore such extra
factors affecting the LTA performance as optimization
techniques, network configurations and hardware
resources.

As a result, our comparative analysis contributes to
the knowledge referred to the choice of stack technology
when developing LTA solutions. By providing valuable
empirical evidence, our study should help developers in
making informed decisions and optimizing the
performance of their LTAs in any real-world scenarios.

References

[1] V. Franiv, S. Vasyluk, O. Biletskyi, and I. Franiv,
“An Investigation into the Efficiency of Specific
Databases for Tracking Purposes in Scope of IT
Startup,” in Proc. IEEE 13th Intl. Conf. on
Electronics and Inf. Technol. (ELIT), pp. 186-190,
Lviv, Ukraine 2023. doi:
10.1109/ELIT61488.2023.10310719

[2] F.Ahmed, M. Phillips, S. Phillips, and K.-Y. Kim,
“Comparative Study of Seamless Asset Location
and Tracking Technologies,” Procedia
Manufacturing, vol. 51, pp. 1138–1145, 2020.
DOI: 10.1016/j.promfg.2020.10.160

[3] M. Akkaya, Startup Valuation, IGI Global, pp. 137–
156, 2019.

[4] A.Mathur and H. Agarwal, “Study of Challenges Faced
by Startup Industries,” A referred & peer-reviewed
quarterly research journal, vol. 48, pp 58–67, 2023.

[5] D. Esposito, “Building Web Solutions with ASP.NET
and ADO.NET,” Redmond: Microsoft Press, 2002.

[6] K. Padaliya, “C# Programming with .Net Framework,”
2019.

[7] W.S. Vincent, Django for APIs: Build web APIs
with Python and Djang. New York, USA:
WelcomeToCode, 2020.

[8] S. Matam and J. Jain, Pro Apache JMeter: web applic-
ation performance testing, Apress, USA, 2017.

[9] C. H. Lee and Y. L. Zheng, “SQL-to-NoSQL
Schema Denormalization and Migration: A Study on
Content Management Systems,” in Proc. IEEE Intl.
Conf. on Systems, Man, and Cybernetics (SMC), pp.
2022–2026, 2015. DOI:10.1109/SMC.2015.353

[10] M. Abu Kausar, M. Nasar, and A. Soosaimanickam, “A
Study of Performance and Comparison of NoSQL Data-
bases: MongoDB, Cassandra, and Redis Using YCSB,”
Indian J. Sci. Technol., vol. 15, pp. 1532–1540, 2022.
DOI: 10.17485/IJST/v15i31.1352

[11] J. R. Lourenco, B. Cabral, P. Carreiro, M. Vieira,
and J. Bernardino, “Choosing the right NoSQL
database for the job: a quality attribute evaluation,”
J. Big Data, vol. 2, pp. 1–26, 2015. DOI:
10.1186/s40537-015-0025-0

[12] L. Vokorokos, M. Uchnar, and L. Lescisin,
“Performance optimization of applications based on
non-relational databases,” in Proc. Conf. on
Emerging eLearning Technol. and Appl. (ICETA),

Launching Mvps for it Startups: Python/Django/Postgresql in Location-Tracking Applications 5

pp. 371–376, 2016. DOI:
10.1109/ICETA.2016.7802079

[13] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D.
Gosain, “A survey and comparison of relational and
non-relational database,” Intl. J. Engin. Res. &
Technol., vol. 1, pp. 104–118, 2012.

[14] J. Han, E. Haihong, G. Le, and J. Du, “Survey on
NoSQL database,” in Proc. 6th Intl. Conf. on Pervasive
Comput. and Appl. (ICPCA), pp. 363–366, 2011.

[15] K. Fraczek and M. Plechawska-Wojcik,
“Comparative analysis of relational and non-
relational databases in the context of performance in
web applications,” in Proc. Conf.: Beyond
Databases, Architectures and Structures, pp. 205–
213, 2017.

[16] S. Gupta and G. Narsimha, “Efficient Query
Analysis and Performance Evaluation of the Nosql
Data Store for Big Data,” in Proc. 1st Intl. Conf. on
Comput. Intelligence and Informatics. Springer
(Singapore), pp. 549–558, 2017.

[17] K.Chodorow and M. Dirolf, MongoDB: The
Definitive Guide, O’Reilly Media, 2010.

[18] D. Sullivan, NoSQL for Mere Mortals, Addison-
Wesley, 2015.

[19] E. Brewer, “CAP twelve years later: how the rules
have changed”, Computer, vol. 45, pp. 23–29, 2012.

[20] X. Li, Z. Ma, and H. Chen, “QODM: A query-
oriented data modeling approach for NoSQL
databases,” Advanced Research and Technology in
Industry Applications (WARTIA), pp. 338–345,
2014.

[21] Y. Li and S. Manoharan, “A performance
comparison of SQL and NoSQL databases,” in Proc.
IEEE Pacific Rim Conf. on Communications,
Computers and Signal Processing (PACRIM), pp.
15–19, 2013.

МІНІМАЛЬНО ЖИТТЄЗДАТНІ
ПРОДУКТИ ДЛЯ ІТ-СТАРТАПІВ:

ВИКОРИСТАННЯ PYTHON/DJANGO/
POSTGRESQL У ПРОГРАМНИХ
ДОДАТКАХ ВІДСТЕЖЕННЯ
МІСЦЕЗНАХОДЖЕННЯ

Володимир Франів, Святослав Заставський,
Олег Кушнір

Додатки для відстеження місцезнаходження (ДВМ)
відіграють важливу роль у таких ділянках як логістика,
сільське господарство та безпека, забезпечуючи реальні да-
ні про рух ресурсів та активів. Зі зростанням кількості старт-
апів у секторі технологій вибір відповідного технологіч-
ного стеку стає вирішальним для забезпечення масштабо-

ваності, гнучкості та вартості додатків, особливо в актуаль-
ному нині контексті «мінімально життєздатних продуктів».

У цьому дослідженні здійснено розробку та оцінено
продуктивність ДВМ, який використовує стек технологій
Python/Django/PostgreSQL. Проводячи ретельні експери-
менти та їхній аналіз, ми порівняли ефективність цього
технологічного стеку зі стеком ASP.NET, дослідженим у
попередніх працях. Наше дослідження спрямоване на
одержання інформації щодо вибору технологічних стеків і
стратегій оптимізації для програмних ДВМ.

У результаті вимірювань одержано інформацію
стосовно швидкодії ДВМ, які базуються на Python/Django/
PostgreSQL. Акцентуючи увагу на використанні Web-
Socket-з’єднань, ми висвітлили переваги та недоліки цього
підходу, порівняно з традиційними HTTP-з’єднаннями.
Дослідження включало тестування продуктивності ДВМ за
допомогою Apache JMeter для розуміння придатності стеку
технологій Python/Django/PostgreSQL для розробки ДВМ.

Загалом наше дослідження сприятиме розвитку галузі
вибору технологічних стеків для стартапів і допоможе в
прийнятті обґрунтованих рішень розробників ДВМ. Пред-
ставивши низку емпіричних результатів і їхнє узагаль-
нення, ми прагнули надати можливість розробникам при-
ймати обґрунтовані рішення та оптимізувати продуктив-
ність своїх ДВМ у реальних умовах.

Volodymyr Franiv. PhD, Associate
Professor at Optoelectronics and Inform-
ation Technologies Department, Faculty
of Electronics and Computer Science,
Ivan Franko National University of Lviv.
Research interests: Computer Science,
Artificial Intelligence. Senior Software
Engeneer with more than 10 years
experience in Software Development.

Sviatoslav Zastavskyi. Student at
Ivan Franko National University of Lviv.
Research interests: Computer Science.

Oleh Kushnir. Professor, Doctor of
Sciences, Head of Optoelectronics and
Information Technologies Department,
Faculty of Electronics and Computer
Science, Ivan Franko Nationanl
University of Lviv. Research interests:
Computational Linguistics, Natural
Language Processing, Complex Systems
and Networks, Information Retrieval.

Received: 02.04.2024, Accepted: 25.04.2024
ORCID ID: 0000-0001-9856-1962 (V. Franiv)

ORVO

ORCID ID: (S. Zastavskyi)
ORCID ID: 0000-0002-1545-7666 (O. Kushnir)
O. Kushnir)

	01_Franiv_Zastavskyi_cor_edit.pdf

