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Abstract: Permanet magnet DC motors ( PM DCM) 

have an advantage over electromagnetically excited 
commutator motors due to their better energy 
performance. The application of analytical methods to 
study PM DCM requires significant simplifications, and 
the use of field methods is quite labour-intensive. In our 
opinion, the use of electric and magnetic circuit methods 
makes it possible to achieve the accuracy of calculating 
the PM DCM that is sufficient for engineering needs. 
The purpose of the article is to develop a mathematical 
model of transient processes in PM DCM based on the 
use of the theory of electric and magnetic circuits. The 
article proposes an equivalent scheme for the magnetic 
circuit of PM DCM and a system of equations describing 
it. There are given equations for transient processes in 
PM DCM and an algorithm for their solution, which 
involves the integration of the solution of the system of 
equations of the magnetic state at each step. The 
proposed mathematical model of transient processes in 
PM DCM can be used to analyze these processes, as well 
as in design. 

Key words: direct current motor, permanent-magnet 
excitation, an equivelent scheme of the magnetic circuit, 
equation of the magnetic state, transient processes. 

1. Introduction 
PM DCM have an advantage over 

electromagnetically excited commutator motors due to 
the absence of losses in the excitation winding, which 
leads to increased efficiency and better use of active 
materials. The use of permanent-magnet excitation 
makes it possible to simplify the design and reduce the 
cost of manufacturing DC micromotors. PM DCM are 
widely used in the automotive industry, toys, electrical 
household appliances, portable power tools, etc. 

The fundamental work [1] considers the use of 
permanent magnets in electric machines, including PM 
DCM. The ratios for calculating the overall dimensions 
of a disk-type magnetoelectric DC motor are given in 
[2]. For a built-in DC torque motor with permanent-
magnet excitation, methods of increasing the maximum 
torque are proposed in [3]. Methods for reducing the 
impact of the armature reaction at the initial moment of 

starting the PM DCM of the automobile starter using the 
finite element method are considered in [4]. The 
influence of the angle of brush displacement from the 
neutral on the characteristics of the PM DCM using the 
finite element method is studied in [5]. 

Analytical research methods [2, 3] that require 
adopting assumptions for simplification, are the least 
accurate, but allow obtaining formulas suitable for 
engineering design. The use of field methods [1, 4, 5] 
makes it possible to achieve the highest accuracy, but it 
is quite labour-intensive. In our opinion, accuracy 
sufficient for engineering practice can be achieved using 
methods of electric and magnetic circuits. Such an 
approach is proposed in [6] to study the magnetic state of 
a shaded-pole induction motor using a branched 
equivalent scheme of the magnetic circuit. The general 
approach to the analysis of the PM DCM based on the 
equivalent scheme of the magnetic circuit is presented 
in [7], and the branched equivalent scheme is detailed 
in [8]. [9] presents an experimental verification of the 
adequacy of the calculation of the PM DCM magnetic 
circuit. 

2. Equivalent scheme of a magnetic circuit and 
equation of magnetic state 

For the design of the PM DCM with a radially 
magnetized permanent magnet in the form of a 
parallelepiped, [9] provides an equivalent scheme of a 
magnetic circuit with concentrated parameters (Fig.1). In 
this scheme, the sections of the air gap correspond to 
permanent magnetic resistances, and ferromagnetic 
sections correspond to nonlinear magnetic resistances, 
represented by the dependence of the magnetizing force 
on the magnetic flux F [Ф]. 

The active zone of the armature under the magnet 
within the pole division is divided by radial planes into 
m sections; for the scheme shown in Fig. 1, m = 5. 

The system of nonlinear equations of the magnetic 
state, composed by the method of contour fluxes, 
corresponds to the equivelent scheme of the magnetic 
circuit of the PM DCM. In this system, the primary 
unknowns are the contour magnetic fluxes, and the 
secondary ones are the magnetic fluxes in the branches 
of the circuit. 
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If, for nonlinear magnetic resistances, the ratio 
between contour fluxes and fluxes in branches is taken 
into account, then the system of equations of the 
magnetic state will have the form (1). This system 
contains (m-1) equations of armature, two equations of 
the stator circuits, and one equation containing the 
elements of the stator and armature, i.e. a total of (m+2) 
equations. 
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When solving the system of equations of the 
magnetic state, it is necessary to know the ratio between 
the fluxes in the branches and the contour fluxes. 

Let's create column vectors of contour fluxes in the 
form of 

( )( )cr cr1 cr2 cr m-1 *
Ф = Ф , Ф ,…, Ф
r

– a column vector of 

rotor’s contour fluxes; 

( )cs cs1 cs2 cs3 *Ф Ф , Ф , Ф  =
r

– a column vector of stator’s 

contour fluxes; 
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- a column vector of contour fluxes, or primary 
unknowns of size (m + 2). 
Let's create column vectors of fluxes in branches and 
give the matrices that make it possible to go from 
contour fluxes to fluxes in branches 
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contains m elements; 
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We will present the column vector of fluxes in 

branches as 
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Let us write the relationship between the fluxes in 
the branches and the contour vector equation 
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Let us create column vectors of the differences 
between the magnetizing forces of the armature sections 
and the magnetizing forces of the magnet with a size 
(m+2) elements 
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Let us write the magnetizing force of the i-th 
armature branch of with coordinate ηi in the form [10] 
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where ηi is the angle between the i-th branch of the 
armature and the pole axis; τ is the pole division; ia 
represents the motor armature current; N is the total 
number of conductors of the armature winding; 2a stands 
for the number of parallel branches; p is the number of 
pairs of poles. 

Let us transform (3 a, b) into the form 
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DCM. 
In the (m – 1) equations of the armature circuits and in 
the equation with the elements of the stator and armature 
circuits, there are differences in the magnetizing forces 
of the armature branches, which will be presented in the 
form 
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Let us create a column vector of armature’s branch 
coordinates 
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Then the column vector of the differences in the 
magnetizing forces of the armature sections will be 
written in the form 
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Therefore, the nonlinear system of equations of the 
magnetic circuit of the PM DCM, written according to 
Kirchhoff's laws, in vector form will have the form
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r r r r r r r
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Let us apply Newton's iterative method to solve this 
system. By substituting the linear vector equation (6b) 
into (6a), secondary unknowns 2Ф

r
can be excluded, but 

then we will obtain a cumbersome and inconvenient 
system to solve.  

We will use the algorithm given in [11] to solve 
system (6a,b). The linear vector equation generated by 
system (6 a, b) of nonlinear vector equations at the j-th 
iteration will have the form 
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3. Equations of transient processes and algorithm 
for their solution 

To calculate the transient processes in PM DCM, it 
is necessary to integrate numerically the system of 
differential equations containing the equation of voltage 
balance and the equation of armature motion. We will 
use the explicit method of numerical integration, which 
involves solving the system of equations of the magnetic 
state (5 a, b) at each step of integration, i.e. finding the 
fluxes in the branches of the equivalent scheme. Based 
on these data, we determine the working magnetic flux 
of the air gap, the electromotive force of the armature 
winding, the electromagnetic moment and the 
differential inductance of the armature winding – the 
quantities that are included in the equations of the 
voltage and moment balance. 

Let us write the voltage equation of the PM DCM in 
the form 

 a
a a a a

dΨ i  r e u 0
dt

+ + - = , (10) 

where Ψa is the total flux coupling of the armature 
winding; ra is the total resistance of the armature circuit; 
ea is the electromotive force of the armature winding; ua 
is the applied voltage. 

The electromotive force of the armature winding is 
determined by the well-known formula [10] 

 a м δe c ω Ф= ×× , (11) 
where ω is the angular frequency of rotation of the 
armature; Фδ is the total flux in the air gap; 

( ) ( )Mc = p N / 2 π a  is the coefficient constant for a 
given PM DCM. 

The flux Фδ is equal to the sum of the fluxes of 
individual sections of the air gap 
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where la is the active length of the armature steel; Bη is 
the magnetic induction of the area of the air gap with the 
coordinate η; Δηi is an arc that corresponds to the i-th 
section of the air gap. 

Let us present the total flux coupling of the armature 
winding as the sum of the flux coupling caused by the 
field in the air gap Ψaδ and the flux coupling of the 
scattering fields Ψaσ 

 a aδ aσΨ = Ψ +Ψ , (13) 

where aσ aσ aΨ =L i ; aσ aσ aL =λ  l ; Laσ is the 
leakage inductance of the armature winding, λaσ is the 
specific leakage inductance of the armature winding, 
which is determined according to known formulas [10]. 

Differentiating (13) with respect to time t, we obtain 
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Let us transform equation (14) into the form 
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Taking (15) into account, let us transform equation 
(10) into a form convenient for numerical integration 
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Let us write the flux coupling of the armature 
winding, due to the working flux, in the form 
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Taking into account (2), we obtain 
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where cΨ = (1, 1,...1) is a row vector consisting of m 
single elements. 

From (17) and (18) we write 
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Therefore, to determine the differential inductance 
Laδ at each step of integration, it is necessary to find the 
derivative 1dФ / di

r
. Differentiating system (6 a, b) with 

respect to the current ia gives  
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After transformation (20 a,b) we obtain 
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where A is the value of the Jacobi matrix according to 
(8). 
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Let us solve (21) with respect to the derivative 
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Substituting (22) into (19), we obtain 
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Let us present the equation of moments of PM DCM in 
the form 

 em 0
dωJ M M
dt

= - , (24) 

where Mem is the electromagnetic moment of the motor; M0 
is the resistance moment of the mechanism on the shaft; J is 
the moment of inertia of the armature. 

Let us determine the electromagnetic moment of the 
motor due to the fluxes in the areas of the air gap 
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Taking into account (18), we obtain 
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Fig. 1. An equivalent scheme of the PM DCM magnetic circuit/ 
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4. Conclusions 

The complete system of equations of transient 
processes of the PM DCM consists of the system of 
equations of the magnetic state and equations of balance 
of voltages and moments. The system of equations of the 
magnetic state corresponding to the equivalent scheme 
and the algorithm for its solution are presented. The 
mathematical model of the PM DCM is based on a 
branched equivalent scheme of the magnetic circuit. The 
equations of balance of voltages and moments of the PM 
DCM are presented. The algorithm for finding the 
required quantities (magnetic flux of the air gap, 
electromotive force of the armature winding, 
electromagnetic moment and differential inductance of 
the armature winding) at each step of integration is given 
based on the results of the previous solution of the 
system of equations of the magnetic state. The proposed 
mathematical model of transient processes of the PM 
DCM can be used to analyze these processes, as well as 
in design. 
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МАТЕМАТИЧНА МОДЕЛЬ 
ПЕРЕХІДНИХ ПРОЦЕСІВ ДВИГУНА 

ПОСТІЙНОГО СТРУМУ ЗІ 
ЗБУДЖЕННЯМ ВІД ПОСТІЙНИХ 

МАГНІТІВ 
Василь Маляр, Ігор Гавдьо 

Двигуни постійного струму зі збудженням від 
постійних магнітів (ДПС ПМ) внаслідок кращих 
енергетичних показників мають перевагу над 
колекторними двигунами з електромагнітним збудженням. 
Застосування для дослідження ДПС ПМ аналітичних 
методів потребує прийняття суттєвих спрощень, а 
використання польових методів є достатньо трудомістким. 
На наш погляд, застосування методів електричних та 
магнітних кіл дає змогу досягти достатньої для інженерних 
потреб точності розрахунку ДПС ПМ. Метою статті є 
розробка математичної моделі перехідних процесів ДПС 
ПМ на базі використання теорії електричних та магнітних 
кіл. В статті запропонована заступна схема магнітного 
кола ДПС ПМ та система рівнянь, яка її описує. Наведені 
рівняння перехідних процесів ДПС ПМ та алгоритм їх 
розв’язання, який передбачає на кожному кроці 
інтегрування розв’язання системи рівнянь магнітного 
стану. Запропонована математична модель перехідних 
процесів ДПС ПМ може бути використана для аналізу цих 
процесів, а також під час проектування.. 
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