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Abstract: Permanet magnet DC motors ( PM DCM)
have an advantage over electromagnetically excited
commutator motors due to their better energy
performance. The application of analytical methods to
study PM DCM requires significant simplifications, and
the use of field methods is quite labour-intensive. In our
opinion, the use of electric and magnetic circuit methods
makes it possible to achieve the accuracy of calculating
the PM DCM that is sufficient for engineering needs.
The purpose of the article is to develop a mathematical
model of transient processes in PM DCM based on the
use of the theory of electric and magnetic circuits. The
article proposes an equivalent scheme for the magnetic
circuit of PM DCM and a system of equations describing
it. There are given equations for transient processes in
PM DCM and an algorithm for their solution, which
involves the integration of the solution of the system of
equations of the magnetic state at each step. The
proposed mathematical model of transient processes in
PM DCM can be used to analyze these processes, as well
as in design.
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1. Introduction

PM DCM have an advantage over electromag-
netically excited commutator motors due to the absence
of losses in the excitation winding, which leads to
increased efficiency and better use of active materials.
The use of permanent-magnet excitation makes it
possible to simplify the design and reduce the cost of
manufacturing DC micromotors. PM DCM are widely
used in the automotive industry, toys, electrical
household appliances, portable power tools, etc.

The fundamental work [1] considers the use of
permanent magnets in electric machines, including PM
DCM. The ratios for calculating the overall dimensions
of a disk-type magnetoelectric DC motor are given in
[2]. For a built-in DC torque motor with permanent-
magnet excitation, methods of increasing the maximum
torque are proposed in [3]. Methods for reducing the
impact of the armature reaction at the initial moment of

starting the PM DCM of the automobile starter using the
finite element method are considered in [4]. The
influence of the angle of brush displacement from the
neutral on the characteristics of the PM DCM using the
finite element method is studied in [5].

Analytical research methods [2, 3] that require
adopting assumptions for simplification, are the least
accurate, but allow obtaining formulas suitable for
engineering design. The use of field methods [1, 4, 5]
makes it possible to achieve the highest accuracy, but it is
quite labour-intensive. In our opinion, accuracy sufficient
for engineering practice can be achieved using methods of
electric and magnetic circuits. Such an approach is
proposed in [6] to study the magnetic state of a shaded-pole
induction motor using a branched equivalent scheme of the
magnetic circuit. The general approach to the analysis of the
PM DCM based on the equivalent scheme of the magnetic
circuit is presented in[7], and the branched equivalent
scheme is detailed in[8]. [9] presents an experimental
verification of the adequacy of the calculation of the PM
DCM magnetic circuit.

2. Equivalent scheme of a magnetic circuit and
equation of magnetic state

For the design of the PM DCM with a radially
magnetized permanent magnet in the form of a
parallelepiped, [9] provides an equivalent scheme of a
magnetic circuit with concentrated parameters (Fig. 1).
In this scheme, the sections of the air gap correspond to
permanent magnetic resistances, and ferromagnetic
sections correspond to nonlinear magnetic resistances,
represented by the dependence of the magnetizing force
on the magnetic flux F [@].

The active zone of the armature under the magnet
within the pole division is divided by radial planes into
m sections; for the scheme shown in Fig. 1, m = 5.

The system of nonlinear equations of the magnetic
state, composed by the method of contour fluxes,
corresponds to the equivelent scheme of the magnetic
circuit of the PM DCM. In this system, the primary
unknowns are the contour magnetic fluxes, and the
secondary ones are the magnetic fluxes in the branches
of the circuit.
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If, for nonlinear magnetic resistances, the ratio
between contour fluxes and fluxes in branches is taken
into account, then the system of equations of the
magnetic state will have the form (1). This system
contains (m-1) equations of armature, two equations of
the stator circuits, and one equation containing the
elements of the stator and armature, i.e. a total of (m+2)
equations.
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When solving the system of equations of the
magnetic state, it is necessary to know the ratio between
the fluxes in the branches and the contour fluxes.

Let's create column vectors of contour fluxes in the
form of

r
(Dcr:(cb O FP (Dcr(m_l)) — a column vector of

crl

rotor’s contour fluxes;
]

D = Dy, Do, Pos3 ), — @ column vector of stator’s

contour fluxes;
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— a column vector of contour fluxes, or primary
unknowns of size (m + 2).

Let's create column vectors of fluxes in branches and
give the matrices that make it possible to go from

contour fluxes to fluxes in branches
1

D;=(D;y, Psp-.., Py )i @ column vector of

fluxes in air gap sections;
1 1

@, = c,D,, @)
-1 0 0 0 100
1 -1 0 0 00O

where ¢, =0 1 -1 0 0 O O- the matrix
0 0 0 O0O00O
0 0 0 1 100

of connections with a size of m”~ (m+2);
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vector of fluxes in the sections of the rotor yoke, which
contains m elements;
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We will present the column vector of fluxes in
branches as
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I I I I I
D,=(0;, @, D,,, D, D, ),

ar?
Let us write the relationship between the fluxes in
the branches and the contour vector equation

®,= D]

Let us create column vectors of the differences
between the magnetizing forces of the armature sections
and the magnetizing forces of the magnet with a size

(m+2) elements
uua

AT, =
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Let us write the magnetizing force of the i-th

armature branch of with coordinate #i in the form [10]

-F..F, ).

T Tamax (2 ni /T);
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T = (N7 4p)x(i, 12,), (32.0)
where #i is the angle between the i-th branch of the
armature and the pole axis; t is the pole division; i,
represents the motor armature current; N is the total
number of conductors of the armature winding; 2a stands
for the number of parallel branches; p is the number of
pairs of poles.
Let us transform (3 a, b) into the form

N11
[ Ian KTIanl’

2p2art @

where k, = ﬁil — constant coefficient for this PM
2p2art
DCM.

In the (M — 1) equations of the armature circuits and
in the equation with the elements of the stator and
armature circuits, there are differences in the
magnetizing forces of the armature branches, which will
be presented in the form

AT =T, - T(|+1) K, (Tli_n(m)) (%)

Let us create a column vector of armature’s branch

coordinates

I

1= (n,M,,%4,1,,0,0),

Then the column vector of the differences in the
magnetizing forces of the armature sections will be
written in the form

uua

T\ = ktiactﬁ
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1 -1 0 0 0 00O
0 1 -1 0 0 O00O
0 0 OO 0 00O
where ¢, =0 0 0 1 -1 O O is a square
-1 0 0 0 -100
0 60 0 0 0 00O
0 0 0 0 0 00O

matrix of size (Mm+2).

Therefore, the nonlinear system of equations of the
magnetic circuit of the PM DCM, written according to
Kirchhoff's laws, in vector form will have the form

[ R [ | [ I
fed,, @, 4+ AT, +F,=0, ©,=f[D,].(6a,b)

Let us apply Newton's iterative method to solve this

system. By substituting the linear vector equation (6b)
]
into (6a), secondary unknowns @, can be excluded, but

then we will obtain a cumbersome and inconvenient
system to solve.

We will use the algorithm given in [11] to solve
system (6a,b). The linear vector equation generated by
system (6a, b) of nonlinear vector equations at the j-th
iteration will have the form

Al XA&)@ - _ﬁgi-l) ’ ©)

where A(ll)y) is the correction of the root at the j-th
iteration;
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of the unknowns CIID1 and (IID2
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is the value of the derivatives calculated for the (j-1)-th
approximation of the vectors (D and CD

1
To obtain the (j—1)-th approximation of the root @, ,
we use the formula

I

U = b+ AdD). ©
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3. Equations of transient processes and algorithm
for their solution

To calculate the transient processes in PM DCM, it
is necessary to integrate numerically the system of
differential equations containing the equation of voltage
balance and the equation of armature motion. We will
use the explicit method of numerical integration, which
involves solving the system of equations of the magnetic
state (5 a, b) at each step of integration, i.e. finding the
fluxes in the branches of the equivalent scheme. Based
on these data, we determine the working magnetic flux
of the air gap, the electromotive force of the armature
winding, the electromagnetic moment and the
differential inductance of the armature winding - the
quantities that are included in the equations of the
voltage and moment balance.

Let us write the voltage equation of the PM DCM in
the form

d¥v

dt
where W, is the total flux coupling of the armature
winding; ra is the total resistance of the armature circuit;
€a is the electromotive force of the armature winding; ua
is the applied voltage.
The electromotive force of the armature winding is
determined by the well-known formula [10]

a+ia ra+ea_ua=0' (10)

e, =C, rord;, (11)

where o is the angular frequency of rotation of the
armature; @5 is the total flux in the air gap;

cw= (PN)/(2na) is the coefficient constant for a

given PM DCM.
The flux @; is equal to the sum of the fluxes of
individual sections of the air gap

T m m
@, =1;)B,d, = ;aB, An, = &d;,  (12)
0 i=1 i=1

where | is the active length of the armature steel; B, is
the magnetic induction of the area of the air gap with the
coordinate #; Ani is an arc that corresponds to the i-th
section of the air gap.

Let us present the total flux coupling of the armature
winding as the sum of the flux coupling caused by the
field in the air gap Wa and the flux coupling of the
scattering fields Was

\Pa = Ta& +lPac ! (13)

L,=x

where a

Y,o= Liola s I Las is  the
leakage inductance of the armature winding, Aas is the
specific leakage inductance of the armature winding,

which is determined according to known formulas [10].

ac "a’

Differentiating (13) with respect to time t, we obtain

d\Pa - d\Paﬁ + Lag % (14)
dt dt dt

Let us transform equation (14) into the form

d¥, _ T, di, | di,

- ad ’
d‘(:’t ‘"I?j' ! di ! di 19
| | |
a-L. . -2+ L —2=(L.+L.)=—,
dt a - dt it (L * L) dt

Taking (15) into account, let us transform equation
(10) into a form convenient for numerical integration
di 1

—az—)(ua—ia r-e,).

16
dt (La + Lo (16)

Let us write the flux coupling of the armature
winding, due to the working flux, in the form

N
Y, =—0;.

% 17)

Taking into account (2), we obtain

m r I
D; =ad;; = Cy XDy =Cy (C5 XCDl) ) (18)
i=1

where ¢y = (1, 1,...1) is a row vector consisting of m
single elements.
From (17) and (18) we write

d, 6
di 5

¥y, N e

Lo i —zcwg 5

(19)

Therefore, to determine the differential inductance
Las at each step of integration, it is necessary to find the

1
derivative d®, /di. Differentiating system (6 a, b) with
respect to the current i, gives

L D ;
dfgq)}‘,q)zﬂxdq)l_'_dfgq)},(bzﬂ do,

+
do, di, do, di, (209)
r
+K, Xc ‘n= 0
do, do, do
2 y-—F2x—L =0, (20b)
di, do, di,
After transformation (20 a,b) we obtain
1
AR = e, (1)
i

a

where A is the value of the Jacobi matrix according to (8).
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Let us solve (21) with respect to the derivative Let us determine the electromagnetic moment of the
1 . .
dd r motor due to the fluxes in the areas of the air gap
%=(A'1)><(— KTXCT><1‘|). (22)
di,
Substituting (22) into (19), we obtain D, ™ .
:3'( ) ( ) r Mem: 2p7a0 Bnléladnz
= e 1 - U 0
Las ZaC‘i’éCB (A )X( KtXCtXn)g - (23) o _ D, . 1 , (25)
Let us present the equation of moments of PM DCM in =2p7§1 B, Is i,An; = ZpT la a D
the form -
do _
o M, - Mg, (24) Taking into account (18), we obtain

where Men is the electromagnetic moment of the motor; Mg r
is the resistance moment of the mechanism on the shaft; J is M. = Zp& i, Cy (05 x(I)l) _ (26)
the moment of inertia of the armature.

Fig. 1. An equivalent scheme of the PM DCM magnetic circuit.
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4, Conclusions

The complete system of equations of transient pro-
cesses of the PM DCM consists of the system of equations
of the magnetic state and equations of balance of voltages
and moments. The system of equations of the magnetic
state corresponding to the equivalent scheme and the algo-
rithm for its solution are presented. The mathematical
model of the PM DCM is based on a branched equivalent
scheme of the magnetic circuit. The equations of balance of
voltages and moments of the PM DCM are presented. The
algorithm for finding the required quantities (magnetic flux
of the air gap, electromotive force of the armature winding,
electromagnetic moment and differential inductance of the
armature winding) at each step of integration is given based
on the results of the previous solution of the system of
equations of the magnetic state. The proposed mathematical
model of transient processes of the PM DCM can be used to
analyze these processes, as well as in design.

References

[1] J. F. Gieras, Permanent magnet motor technology.
Design and applications, CRC Press Taylor and
Francis Group. London, New York, 2010.
https://www.researchgate.net/file.PostFileLoader.ht
ml?id=5916ac245b49523d143b0c12&assetKey=A
S%3A493445925924865%401494658084441

[2] P. N. Belyi, “Equations for designing embedded
magnetoelectric disc motors”, Techniczna elektro-
dynamika, no. 6, pp. 53-56, 2005 (Russian).

[3] H. V. Lazariev, Y. V. Rybka, M. O Reutskyj,
A. A. Kriachok, and A. A. Shymanska, “Increase
of maximum torque of special DC electric motors
with permanent magnets”, Visnyk National Tech-
nical University “KhPI”, Elektrotekhnika i elektro-
mekhanika, vol. 16, no. 2, 2020 (Ukrainian).
http://vestnik2079-5459.khpi.edu.ua/article/
view/283760; doi:10.20998/2413-4295.2023.02.04

[4] N. P. Labbe, R. Andreux, J.-P. Yonnet, A. Vau-
quelin, and J.-P. Vilain, “Innovative permanent-
magnet starter motors for automotive micro-hybrid
applications”, Electrical Machines (ICEM) 2014
International Conference. pp. 2436-2441, 2014.
DOI: 10.1109/ICELMACH.2014.6960528

[5] Daichi Takura, Kan Akatsu “Variable charac-
teristics DC motor by changing brush lead angle to
expand the operating range”, Power Electronics
and ECCE Asia (ICPE-ECCE Asia) 2015, 9th
International Conference, pp. 695-700, 2015.
DOI: 10.1109/ICPE.2015.7167859

[6] V. S. Maliar, L. I. Hluchivskyi, A. V. Maliar,
D. P. Hreczyn, and I. R. Havdo, “The magnetic circuit
of a single-phase asynchronous engine with split

poles”, Energetika. Izvestija vysshych uczebnych za-
devanij and energeticzeskich obedynenij SNH. Minsk,
no. 3, p. 17-25, 2003 (Russian). https://doi.org/
10.21122/1029-7448-2003-0-3-17-25/

[71 V. S. Maliar and I. R. Havdo, “Mathematical
model of permanent magnets direct current motor”
Computational Problems of Electrical
Engineering, Lviv, no. 1, vol. 5, pp. 33-36, 2015.

[8] I. R. Havdo, "Mathematical model of magnetic
state of permanent magnet DC motor” Elektro-
enerhetyczni ta elektromechaniczni systemy, vol. 1,
no. 1. pp. 10-16, 2019 (Ukrainian).

https://science.lpnu.ua > maketno12019zdoil-10-16

[9] I. R. Havdo, “The magnetic field of a DC motor
with  excitation from permanent magnets”,
Elektroenerhetyczni ta elektromechaniczni systemy,
vol. 6, no. 1, pp. 31-37, 2023 (Ukrainian).

[10] M. A. Jatsun, Electric machines: Tutorial. — Lviv:
Vydavnytstvo Natsionalnoho universytetu "Lviv-
ska politechnika™, 2004 (Ukrainian).

[11] R. V. Filts and N. N. Liabuk, Mathematical mode-
ling of salient-pole synchronous machines, Lviv:
Svit, 1991 (Russian).

MATEMATHUYHA MOJIEJIb
HNEPEXIITHUX IMTPOLECIB JIBUT'YHA
MOCTIHHOI'O CTPYMY
31 3BYJI’DKEHHSM B1J] MNOCTIMHUX
MATHITIB

Bacune Masnsp, Irop I'aBnso

JIBUTYHH TOCTIHHOTO CTpyMy 3i 30y/DKEHHAM BiA IOC-
TittHux Marnitie (JIIC [IM) BHACTiIOK KpaliX eHEPreTHYHUX
MOKA3HHUKIB MAlOTh TIepeBary HajJ KOJEKTOPHUMH JABUTYHAMH 3
CJIEKTPOMATHITHIUM 30YIKCHHSAM. 3aCTOCYBaHHS UL JOCIIN-
xenHs JIIC ITIM asanmiTHYHUX MeTOIIB HOTpedye iCTOTHHX
CIIPOIIEHb, & BUKOPUCTAHHS IOJIBOBUX METOMIB € JOCTATHBO
TpynomicTkuM. Ha Ham morisa, 3acTocyBaHHS METO/IIB
€JIEKTPUIHUX Ta MarHITHUX KiNT J]a€ 3MOTY JOCSITTH JAOCTaTHBOL
U IH)KEHEepHHX NoTped TouHocTi pospaxyHky JIIC IIM.
Metoro craTTi € PO3pPOOJICHHS MAaTeMaTHYHOi MOJemi
nepexiguux mpoiecie JIIIC [IM Ha OCHOBI BHKOPHUCTAHHS
Teopil EJNeKTPHYHHX Ta MAarHITHHX Kil. B crarti 3ampo-
MMOHOBaHA 3aCTymHa cxeMa MarHiTHoro koma JII[IC TIM Tta
cucTeMa piBHsAHB, sKa il omucye. HaBeneHo piBHSHHS Iepe-
ximaux npouecis JI1C I[IM ta anroputm ix po3B’si3aHHA, SKUI
nependayae Ha KOXXHOMY KpOLi IHTErpyBaHHS pO3B’sI3aHHS
CHCTEMH DPIBHSHb MarHiTHOTO CTaHy. 3allpOIOHOBAaHAa MaTeMa-
THuHa Mognenb nepeximHux mnpouecie AIIC I[IM moxe Oyrtu
BUKOPHCTaHA JUIS aHali3y IHX MpOIEciB, a TaKOX MiJI dac

MPOEKTYBAHHS.
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