
Ukrainian Journal of Information Technology, 2024, vol. 6, No. 274

http://science.lpnu.ua/uk/ujit

https://doi.org/10.23939/ujit2024.02.074

Article received 15.10.2024 .

I. Y. Kazymyra Article accepted 19.11.2024 .

iryna.y.kazymyra@lpnu.ua UD" 004.93

V."Y."Chornenkyi,"I."Y."Kazymyra"

Lviv Polytechnic National University, Lviv, Ukraine

ML MODELS AND OPTIMIZATION STRATEGIES FOR ENHANCING
THE PERFORMANCE OF CLASSIFICATION ON MOBILE DEVICES

The paper highlights the increasing importance of machine learning (ML) in mobile applications, with mobile devices

becoming ubiquitous due to their accessibility and functionality. Various ML models, including Convolutional Neural

Networks (CNNs) and Vision Transformers (ViTs), are explored for their applications in real-time classification on mobile

devices. The paper identifies key challenges in deploying these models, such as limited computational resources, battery

consumption, and the need for real-time performance.

Central to the research is the comparison of MobileNetV2, a lightweight CNN designed for mobile applications, and

Vision Transformers (ViTs), which have shown success in image recognition tasks. MobileNetV2, with its depthwise sep-

arable convolutions and residual connections, is optimized for resource efficiency, while ViTs apply self-attention mecha-

nisms to achieve competitive performance in image classification. The study evaluates the performance of both models be-

fore and after applying optimization techniques like quantization and graph optimization.

It was discovered that quantization is one of the most effective optimization strategies for mobile environments, reduc-

ing model size by up to 74 % and improving inference speed by 44 % in ViTs. Additionally, graph optimization tech-

niques, such as operator fusion, pruning, and node reordering, are examined for their role in reducing computational com-

plexity and improving performance on resource-constrained devices.

Experimental results on different datasets, including MNIST and the ASL Alphabet dataset, demonstrate the signifi-

cant performance improvements achieved through optimization. The study shows that post-training quantization and graph

optimization can reduce model size, inference time, and CPU usage, making ML models more suitable for mobile applica-

tions. The experiments were conducted on a Xiaomi Redmi Note 8 Pro device, showcasing the practical benefits of these

optimizations in real-world mobile deployments.

The research concludes that optimization techniques like quantization and graph optimization are essential for deploy-

ing ML models on mobile devices, where resource constraints and real-time performance are critical. It also provides val-

uable insights into how ML architectures can be optimized for mobile environments, contributing to the advancement of

efficient AI-driven mobile applications.

Keywords: deep learning, convolutional neural networks, vision transformers, mobile applications.

Introduction / !EGHJ
Mobile devices, encompassing smartphones and tablets,

have become ubiquitous in modern life. According to the

International Telecommunication Union (ITU), there were

over 5.3 billion unique mobile phone users globally by the

end of 2022, reflecting an unprecedented level of connec-

tivity and engagement with mobile technology [1]. The

widespread adoption of mobile devices is driven by their af-

fordability, accessibility, and the extensive range of func-

tionalities they offer. Mobile devices are now integral to

everyday activities, from communication and entertainment

to productivity and health management [2].

Machine learning (ML) has increasingly been integrated

into mobile applications, enabling sophisticated features

and services directly on users’ devices. The proliferation of

on-device ML is largely attributed to advancements in mo-

bile hardware and software frameworks designed to support

such technologies. For instance, Google’s TensorFlow Lite

and Apple’s Core ML provide specialized tools for deploy-

ing ML models efficiently on mobile platforms.

The application of ML on mobile devices ranges from

real–time image and speech recognition to predictive text

input and personalized recommendations. Research indi-

cates that on-device ML can significantly enhance user ex-

perience by providing faster responses and preserving pri-

vacy through local data processing [3]. As of 2023, an in-

creasing number of mobile applications are leveraging ML

for functionalities like augmented reality (AR), health mon-

itoring, and autonomous navigation [4].

This paper explores the influence of machine learning

model characteristics – specifically Convolutional Neural

Networks (CNNs) and Vision Transformers (ViTs) – on per-

formance in mobile environments. It also examines the im-

pact of optimization techniques, such as quantization, on

these models. By understanding these factors, we aim to pro-

vide insights into how different ML architectures and optimi-

zations can be effectively utilized for mobile applications.

$% &(*+-%./ 01 *&3 4*67 9&:4/*.; =>;*737@4/, 2024, =. 6, A 2 (10) 75

The object of research – the overall performance cha-

racteristics of machine learning models on mobile devices.

The subject of research – the impact of model architec-

ture, optimization techniques, and resource constraints on

real-time applications performance, the specific application

of Vision Transformers (ViT) and MobileNetV2 for hand

gesture recognition, examining how these models work be-

fore and after optimization techniques like quantization and

graph optimization.

The purpose of the research – is to investigate and com-

pare the efficiency of applying Vision Transformers (ViT)

and MobileNetV2 architectures, before and after optimiza-

tion, in real-time recognition tasks, specifically focusing on

their inference speed, memory usage, and accuracy on mo-

bile devices.

To achieve this purpose, the following main research

objectives are identified:

 analyze current approaches to gesture recogni-

tion using Vision Transformers (ViT) and Mo-

bileNetV2;
 evaluate the accuracy, loss, and model size for

both ViT and MobileNetV2 architectures before

and after quantization and graph optimization;
 investigate the performance of each model archi-

tecture on datasets, such as MNIST for ViT and

ASL Alphabet for MobileNetV2, with a focus on

mobile deployment;
 examine the impact of quantization and graph

optimization on the models' inference time,

memory usage, and CPU consumption, as well as

their real-time performance on mobile devices.

Analysis of recent research and publications. Models

and architectures. Transformers, originally designed for

natural language processing (NLP) tasks, have revolutio-

nnized the field of machine learning. Their ability to model

long-range dependencies using self-attention mechanisms

has made them the backbone of many state-of-the-art NLP

models. Recently, transformers have been adapted for com-

puter vision tasks, leading to the development of Vision

Transformers (ViTs) [5]. ViTs treat images as sequences of

patches, akin to word tokens in text, and apply self-atten-

tion to capture global image features.

Vision Transformers (ViTs) have demonstrated signifi-

cant advancements in image recognition tasks. The Vision

Transformer achieves convolutional neural network (CNN)-

level accuracy when trained with large-scale datasets such as

JFT-300M [6]. By treating images as sequences of patches

and utilizing self-attention [5] to model extensive interactions

among image tokens, ViTs offer advantages such as global

processing capabilities and excellent scalability with increa-

sing dataset sizes. However, when it comes to lightweight

and mobile networks, models like MobileNets [7], [8] and

EfficientNets [9] continue to outperform ViTs. For example,

under a parameter budget of 6 million, DeiT [10] is 3 % less

accurate than MobileNetV3 [8] on the ImageNet classifica-

tion task and consumes six times more FLOPs.

Lightweight CNNs have been instrumental in enabling

numerous mobile vision tasks. Compared to CNNs, ViTs

are generally more complex, with larger parameter counts

(e.g., ViT-B/16 vs. MobileNetV3: 86 vs. 7.5 million pa-

rameters) [11]. ViTs also require significant data augmenta-

tion and regularization to prevent overfitting [10], and they

need high-cost decoders for downstream tasks involving

dense predictions. For instance, a ViT-based segmentation

network [12] learns around 345 million parameters and

achieves performance comparable to the CNN-based Deep-

Labv3 network [13], which only has 59 million parameters.

The increased parameter count in ViT-based models is

mainly due to the absence of image-specific inductive bia-

ses in CNNs.

Hybrid models that combine convolutions and trans-

formers are gaining attention to address these challenges.

Several designs have emerged to integrate the strengths of

both architectures, such as ViT-C [11], CvT [14], BoTNet

[15], and ConViT [16]. These models can achieve competi-

tive performance but generally carry a heavier computa-

tional load than efficient CNNs like EfficientNet [9]. They

are often outperformed by lightweight CNNs, such as Mo-

bileNetV2, when scaled down. These models also remain

resource-intensive and sensitive to data augmentation.

Optimization techniques. Significant work has been done

to improve the efficiency of transformers. Most approaches

focus on reducing the number of tokens in the transformer

block using various methods, including down-sampling [17]

and pyramidal structures [18]. The proposed separable self-

attention module is a drop-in replacement for multi-head at-

tention (MHA) and can be easily integrated into any trans-

former-based model to improve efficiency further.

ViT and its variants have produced state-of-the-art re-

sults in image processing domains and have been the foun-

dation for many pre-trained models, such as DINO [19] and

MOCOv3 [20]. However, much research has focused on

performance improvement, with relatively little attention to

efficiency [10], [21]. Since multi-head self-attention (MSA)

has quadratic complexity with respect to input length, trans-

former models like ViT can be computationally intensive.

Consequently, classical transformers are not widely used in

mobile and other low-resource environments.

Recently, a lightweight and general-purpose vision

transformer called MobileViT has been introduced [22].

MobileViT addresses the limitations of traditional trans-

formers by combining input-adaptive weighting and global

processing with spatial inductive biases learned by CNN-

based networks. MobileViT integrates inverted residual

blocks from MobileNetV2 with the ViT encoder block, en-

coding both local and global information with fewer pa-

rameters. Despite these improvements, MobileViT remains

slower than lightweight CNNs [7] in terms of both infer-

ence and training time due to the lack of dedicated device-

level operations support for MSA layers. The entire

block can be expressed by formula (1):

 , (1)

where: Mv2stride = {112} represents the MobileNetV2 block

for different stride values; PConv refers to the pointwise

convolution, which applies a 1x1 convolution to the input

to adjust the depth of the feature maps; DConv stride denotes

the depthwise convolution, which applies a spatial convolu-

tion over each input channel separately.

Besides architecture optimizations, additional steps like

quantization and graph optimization techniques can be ap-

plied to achieve further improvements. Quantization can be

Ukrainian Journal of Information Technology, 2024, vol. 6, No. 276

applied both during model creation and post-training to get

more improvements based on the expected data set. Post-

training quantization includes general techniques to reduce

CPU and hardware accelerator latency, processing, power,

and model size with little degradation in model accuracy.

These techniques can be performed on an already-trained

float TensorFlow model and applied during TensorFlow

Lite conversion.

There are a lot of different post-training quantization

techniques which can include dynamic range quantization,

full integer quantization, and float16 quantization. Based on

recent studies [23], integer quantization is the most aggres-

sive and gives the most results in a smaller model and in-

creased inferencing speed, which is valuable for low-power

devices such as microcontrollers, edge, and mobile devices.

Important performance metrics for mobile and edge de-

vices:

1. Limited Computational Resources – mobile devices

are constrained by significantly lower computational

power than desktop or server environments. Ad-

vanced gesture recognition algorithms, particularly

those employing deep learning models such as con-

volutional neural networks (CNNs), recurrent neural

networks (RNNs), and Vision Transformers (ViTs),

demand substantial computational resources. Opti-

mizing these complex models to run efficiently on

resource-limited devices remains a formidable chal-

lenge.

2. Battery Consumption – the high computational load

associated with gesture recognition algorithms can

lead to increased power consumption, thereby quick-

ly depleting the battery life of mobile devices. En-

suring the energy-efficient operation of recognition

systems is critical to maintaining user satisfaction

and device usability.

3. Real-Time Performance – gesture recognition sys-

tems must provide responses in real-time to ensure a

seamless user experience. Achieving low-latency

performance is challenging due to the computational

demands of the algorithms and potential delays in-

troduced by network dependencies, particularly in

scenarios where computations are offloaded to cloud

services.

CNN architecture. For experiment purposes, we have

used models with 2 different architectures and 3 datasets.

For the CNN architecture representative, MobileNet2 was

used. MobileNetV2 is a lightweight deep learning model

developed by Google, specifically designed for mobile and

edge devices. It employs depthwise separable convolutions,

which break down standard convolution operations into

simpler components, significantly reducing the number of

parameters and computational complexity. The architecture

features linear bottlenecks, where the last layer of each

block is a linear layer instead of a non-linear activation

function, enhancing information preservation and gradient

flow during training. Additionally, MobileNetV2 incorpo-

rates residual connections to facilitate the learning of identi-

ty mappings, helping to mitigate the vanishing gradient

problem and improve feature extraction [7].

ViT architecture. For the ViT architecture, a default

structure was used. The core of the architecture consists of

multiple transformer encoder layers, each featuring a self-

attention mechanism that allows the model to assess the im-

portance of different patches relative to one another. Follo-

wing the self-attention layer, the output is processed through

a feed-forward neural network, with normalization and resid-

ual connections enhancing training stability and performance.

A special classification token is included in the sequence of

patch embeddings, aggregating information for the final clas-

sification task. The output corresponding to this classification

token is then passed through a linear layer to produce class

probabilities. Overall, ViT represents a significant shift from

traditional convolutional neural networks (CNNs) by treating

images as sequences of patches, leveraging self-attention

mechanisms to achieve competitive performance across vari-

ous image classification benchmarks while offering a flexible

and scalable architecture [5].

Post–Training Quantization Scheme.Models were also

passed through post-training optimizations. Full integer

quantization is an optimization strategy that converts 32-bit

floating-point numbers (such as weights and activation out-

puts) to the nearest 8-bit fixed-point numbers using the fol-

lowing formula (2).

real value = (int8 value + zero point) m scale, (2)

where: real value is the original floating-point value that the

integer value represents after quantization; int8 value is the

quantized 8-bit integer value; zero value defines shift for the

range of the quantized values to ensure that 0 in floating-

point maps correctly to an integer value; scale is a scaling

factor that maps the integer value back to its original floa-

ting-point value.

After applying the full integer quantization formula, the

model undergoes optimizations that improve its efficiency

while preserving as much accuracy as possible. During full

integer quantization, the original 32-bit floating-point

weights and activation outputs are approximated by 8-bit

integer values. This conversion reduces memory usage and

computational demands, enabling faster inference and lo-

wer power consumption, particularly on devices with lim-

ited hardware resources like mobile phones or edge devices.

The zero point ensures that the floating-point value of 0 is

accurately represented within the integer range, which can

include both positive and negative numbers depending on

the model. This is critical for maintaining numerical stabi-

lity and accuracy after quantization. The zero point allows

the integer values to shift in such a way that floating-point

operations like multiplication and addition still produce

meaningful results when mapped back to their floating-

point equivalents. After converting the floating-point values

to integers, matrix multiplications are performed in the in-

teger domain, which is much more efficient on certain

hardware platforms. Once these operations are completed,

the scale factor is used to revert the results back to their ap-

proximate floating-point equivalents for subsequent layers

or final outputs.

Graph Optimization in Deep Learning. Graph optimi-

zation in deep learning refers to a suite of techniques used

to improve the computational efficiency and performance

of a model by restructuring and optimizing the computa-

tional graph. A computational graph is a directed acyclic

graph (DAG) where nodes represent operations (e. g., ma-

trix multiplications, convolutions) and edges represent the

flow of data (tensors) between these operations. Each edge

carries the result of one operation to be used as input for the

$% &(*+-%./ 01 *&3 4*67 9&:4/*.; =>;*737@4/, 2024, =. 6, A 2 (10) 77

next. Optimizing this graph is crucial for reducing the com-

putational complexity, memory usage, and execution time,

which becomes especially important when deploying deep

learning models on resource-constrained devices like mo-

bile phones, embedded systems, or other edge devices.

At its core, graph optimization seeks to minimize the

number of operations, eliminate redundancies, and maximize

the parallelism of computations, all while maintaining the ac-

curacy and performance of the model. Consider a deep learn-

ing model as a sequence of mathematical operations, where

each operation depends on the results of previous ones.

Graph optimization identifies opportunities to fuse, prune, or

reorder these operations, thereby improving efficiency.

For example, the time complexity of a model is often de-

termined by the number of operations in its computational

graph, denoted by ()T n , where n represents the size of the in-

put or number of layers. Reducing the number of redundant

nodes (pruning) or combining operations (fusion) can decrease

()T n , improving the overall execution time. These optimiza-

tions directly affect the model’s inference time, making it more

suitable for real-time applications on mobile devices.

Mathematically, we can represent the impact of graph

optimization techniques on performance by formula (3):

() () ()optimizedT n T n M na b= × + × , (3)

where: ()T n – is the original time complexity of the model;

()M n – is the memory complexity; a and b are the con-

stants representing the optimization factors for computation

and memory, respectively.

Through graph optimization, the constants ~/alpha~ and

�/beta� are reduced, leading to improved performance in

both time and memory usage.

Techniques for Graph Optimization. One of the most

impactful techniques for graph optimization is operator fu-

sion. Operator fusion involves the combination of sequen-

tial operations into a single, more efficient one, reducing

the overhead associated with memory accesses and impro-

ving the throughput of computation. Consider a scenario

where a convolutional layer is followed by batch normali-

zation and an activation function. Instead of executing these

three operations in separate steps, operator fusion merges

them into a single computational kernel. This not only re-

duces the number of memory accesses but also makes better

use of hardware resources by executing the operations in

parallel.

The benefits of operator fusion can be expressed as a

reduction in latency (4):

sequential

fused

L
L

k
= , (4)

where: sequentialL – is the latency of executing operations se-

quentially; k – represents the number of operations fused

into a single kernel.

By reducing k , the total execution time decreases,

which is particularly important for mobile devices where

low latency is crucial.

Another key technique is graph pruning, which involves

removing redundant or less significant nodes and edges

from the computational graph. This method simplifies the

model and reduces the number of computations required for

inference. Pruning can be performed in multiple ways: by

removing individual weights, entire neurons, or even whole

layers, depending on their contribution to the model’s per-

formance. For instance, if certain weights contribute mini-

mally to the final output, they can be set to zero without

significantly impacting model accuracy. This leads to a

sparse representation of the model, which is more efficient

in terms of both computation and memory usage.

The impact of pruning on the size of the model can be

described by the following formula (5):

pruned original i
i

S S W= -å , (5)

where: originalS is the size of the original model; iW are the

pruned weights.

This equation highlights the reduction in model size af-

ter pruning, which translates into faster inference times and

lower memory consumption, both critical for mobile appli-

cations.

Finally, node reordering plays a pivotal role in optimizing

the execution order of operations within the computational

graph. By reordering operations, we aim to minimize data de-

pendencies and maximize parallelism, ensuring that independ-

ent computations are performed simultaneously. This optimi-

zation allows the hardware (whether it be a CPU, GPU, or neu-

ral processing unit) to process data more efficiently, reducing

execution stalls and improving cache utilization.

The benefit of node reordering can be modelled as an in-

crease in parallelism cap with the following relationship (6):

original

reordered

P
P

d
= , (6)

where: reorderedP represents the new level of parallelism af-

ter node reordering; originalP refers to the initial level of para-

llelism before node reordering; d is the degree of data de-

pendency between operations.

By reducing d we increase the potential for parallel

execution, thus improving the overall efficiency of the

model.

Research results and their discussion /
'KMHNOGPGR STENVSXKYO GP [^ T`aTbTcKYYZ

For our practical implementation, we focused on opti-

mizing a Vision Transformer (ViT) model using the

MNIST dataset. The MNIST dataset is a widely used

benchmark in the machine-learning community and con-

sists of grayscale images of handwritten digits (0–9). Each

image is 28m28 pixels in size, represented by grayscale va-

lues ranging from 0 to 255. The training set contains

60 000 images, while the test set includes 10,000 images.

Given the relatively simple structure of the MNIST dataset,

it provides a good foundation for testing and optimizing our

model for tasks such as digit recognition.

We trained the initial ViT model on the MNIST dataset,

which contained 870 937 parameters, and we monitored its

performance (Fig. 1) regarding training and validation ac-

curacy and loss. The model converged quickly, achieving

near-perfect accuracy on both the training and validation

sets, with losses dropping significantly in the early epochs.

This indicated that the model was highly effective at lear-

ning the representations of handwritten digits.

Ukrainian Journal of Information Technology, 2024, vol. 6, No. 278

Fig. 1. Training and validation loss (left) and accuracy (right) over 25 epochs for the ViT model on the MNIST dataset / -.<-: $0A 7<+

5<97<55D -< $"."90.3: (609%.)7) 0 -%75%+-0 ($.<9%.)7) $.%-D4%2 25 "$%' A6D 2%A"60 ViT 5< 5<;%.0 A<5:' MNIST

Model Conversion to TensorFlow Lite (TFLite).

Once the ViT model was trained, we converted it into Ten-

sorFlow Lite (TFLite) format. This conversion is essential

for deploying deep learning models on mobile and embed-

ded devices, where computational resources are often li-

mited. Testing the TFLite model on a real device allowed

us to evaluate its performance in terms of inference speed,

memory consumption, and CPU utilization.

While the model performed well in its initial form, it

was still relatively large in size (3.5 MB) and could benefit

from further optimization to improve its deployment feasi-

bility on mobile devices.

Quantization for Model Size Reduction and Speed Op-

timization. To enhance the efficiency of the ViT model, we

applied quantization. Quantization reduces the precision of

the model’s weights from 32-bit floating-point values to 8-

bit integers, resulting in a significantly smaller model size

and faster inference times. After quantization, the model

size dropped from 3.5 MB to just 899 KB, making it much

more suitable for mobile devices with limited storage.

Although quantization often results in a slight increase

in loss, the impact on accuracy was minimal.

The quantized ViT model retained near-perfect accuracy

(Fig. 2), with only a small increase in loss (from 3.93

e-08 to 2.49 e-06), which is negligible given the substantial

gains in efficiency (Fig. 3). Moreover, the inference time

improved dramatically. The inference time decreased from

16 milliseconds in the original model to 10 milliseconds in

the quantized version for the 95th percentile, showcasing

the benefits of quantization for speed improvements.

Graph Optimization for Further Efficiency. In our

model, we employed a combination of these advanced

graph optimization techniques to enhance the model’s

performance, particularly for deployment on mobile de-

vices. To maximize the benefits of these optimizations,

we used TensorFlow Lite’s operator fusion, graph prun-

ing, and node reordering alongside mixed-precision

quantization based on the nuclear norm of the attention

maps and output features.

Fig. 2. Accuracy comparison between the original and quantized ViT models /

Z%.095D55D -%75%+-0 9:'0A5%J -< 39<5-:8%9<5%J 2%A"6"> ViT

$% &(*+-%./ 01 *&3 4*67 9&:4/*.; =>;*737@4/, 2024, =. 6, A 2 (10) 79

Fig. 3. Loss comparison between the original and quantized ViT models /

Z%.095D55D 9-.<- 20E $%7<-3%9%@ -< 39<5-:8%9<5%@ 2%A"6D2: ViT

Among the optimization techniques, we found operator

fusion to be particularly effective in reducing the latency of

our model. By fusing operations such as convolution, batch

normalization, and activation into a single kernel, we were

able to significantly lower the number of memory accesses

and improve throughput. This led to an impressive reduc-

tion in both execution time and memory footprint, making

the model more suitable for mobile deployment.

These optimizations should provide significant ad-

vantages for mobile use by reducing model size, speeding

up inference, lowering power consumption, and improving

hardware utilization, all while maintaining acceptable accu-

racy levels.

For comparison and variability, we also tested the Mo-

bileNetV2 architecture using the ASL Alphabet dataset

(Fig. 4). This dataset comprises 87 000 images, each of size

200m200 pixels, and includes 29 classes representing dif-

ferent hand gestures in the American Sign Language alpha-

bet. Testing MobileNetV2 alongside our optimized, quan-

tized ViT model allowed us to evaluate how these two dif-

ferent architectures performed on the gesture recognition

task. By comparing their performance in terms of accuracy,

inference speed, and resource usage, we gained valuable in-

sights into the strengths and weaknesses of each architec-

ture, providing a comprehensive understanding of how well

these models adapt to real-world tasks on mobile devices.

Fig. 4. MobileNetV2 training and validation accuracy (left) and loss (right) over 100 epochs on the ASL Alphabet dataset /

\%750+-? 5<97<55D -< $"."90.3: MobileNetV2 (609%.)7) 0 9-.<-: ($.<9%.)7) $.%-D4%2 100 "$%' 5< 5<;%.0 A<5:' ASL Alphabet

Table 1. Models and datasets used for experiments / R%A"60 -< 5<;%.: A<5:', 9:3%.:+-<50 A6D "3+$".:2"5-09

Model Architecture Dataset

MobileNetV2 CNN ImageNet

Quantized MobileNetV2 CNN ImageNet

MobileNetV2 CNN ASL Alphabet

MobTransformer ViT MNIST

Quantized MobTransformer ViT MNIST

Graph-optimized Quantized

MobTransformer
ViT MNIST

Ukrainian Journal of Information Technology, 2024, vol. 6, No. 280

Measuring models’ performance. To better understand

the influence of optimization techniques, experiments were

conducted with 6 different models (see Table 1).

Model size is one of the most critical characteristics of

ML models for mobile devices. Mobile devices typically

have limited computational resources compared to desktop

or server environments. Therefore, models must be light-

weight to ensure they can be deployed effectively without

consuming excessive memory or processing power. Smaller

models not only save memory but also reduce latency or in-

ference speed, which is crucial for real-time applications

such as image recognition or natural language processing.

The inference speed can be influenced by various factors,

including the model architecture, the optimization tech-

niques used (such as quantization and pruning), and the un-

derlying hardware capabilities.

To better understand which models suit our specific
needs, we evaluated several parameters important for the
usage of mobile phones: model physical size, random-
access memory (RAM) and central processing unit (CPU)
usage, and inference time.

All experiments were conducted on an Android device –
Xiaomi Redmi Note 8 Pro, which was equipped with a Me-
diatek MT6785 CPU (8 cores) and 6 GB of RAM. Metrics
measured with built in profilers in Android Studio integra-
ted development environment over 1200 iterations. The
models were integrated into the mobile app using Tensor-
Flow Lite without graphics processing unit usage. The re-
sults are presented in Table 2.

Table 2. Results of the experiments / M"8)6?-<-: "3+$".:2"5-09

Model Physical size RAM usage, Mb CPU usage, %
Inference time,

percentile/ms

Average model load

time, ms

MobileNet v2 + ImageNet 14 Mb 140–155 18–22

0.95 / 53

0.9 / 46

0.5 / 37

0.1 / 32

968

Quantized MobileNet v2 + ImageNet 3.6 Mb 140–155 18–20

0.95 / 65

0.9 / 58

0.5 / 48

0.1 / 47

950

MobileNet v2 + ASL Alphabet 3.3 Mb 120–135 12–16

0.95 / 50

0.9 / 46

0.5 / 36

0.1 / 33

947

ViT + MNIST 3.5 Mb 118–145 7–14

0.95 / 16

0.9 / 16

0.5 / 12

0.1 / 7

932

Quantized ViT + MNIST 899 Kb 109–140 7–13

0.95 / 10

0.9 / 10

0.5 / 5

0.1 / 3

906

Graph optimized, Quantized ViT +

MNIST
899 Kb 105–130 6–12

0.95 / 9

0.9 / 8

0.5 / 5

0.1 / 3

904

Discussion of research results. As a result of these op-

timizations, the model's inference speed improved signifi-

cantly across all tested confidence levels. The inference

time was reduced by approximately 44 % for the 95th per-

centile, from 16 ms in the regular ViT model to 9 ms in the

graph-optimized, quantized version, and 58 % for the 50th

percentile, respectively. This reduction in time was accom-

panied by a decrease in memory usage and CPU load, ma-

king the model far more efficient for deployment on mobile

devices. The optimized model demonstrated a lower RAM

footprint (from 145 MB to 130 MB maximum) and CPU

usage (dropping from 14 % to 12 % maximum), which

translates into reduced energy consumption – an essential

factor for battery-powered mobile devices. Less noticeable

improvements were observed in the MobileNetV2 model in

regards to inference time, still giving a noticeable reduction

in the model size.

For both models, post-training optimizations helped to

reduce the physical size by 74 %, which can positively in-

fluence the overall rate of app download [23], and slightly,

about 3 %, improve the initial model loading time during

application launch.
These improvements not only enable real-time per-

formance for lightweight applications such as gesture
recognition and image classification, but they also set the
stage for deploying larger, more complex deep learning
models on mobile platforms. The combination of quanti-
zation and graph optimization ensures that the model op-
erates within the strict resource constraints of mobile
hardware while maintaining high accuracy and respon-
siveness. These gains in efficiency will likely become
even more pronounced as we scale the model and da-
taset, making graph optimization a key factor in ensuring
practical and effective deep-learning solutions for mobile
and embedded environments.

The scientific novelty of the obtained research results is
the proposed approach to the use of machine learning mo-
dels together with optimization techniques that lead to im-
proved classification performance on mobile devices.

The practical significance of the research results – the

research demonstrates the effectiveness of the machine

 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2024, ;. 6, ? 2 (10) 81

learning model optimizations and their potential impact on

the development and deployment of applications in mobile

and embedded environments.

Conclusions / !#$&')*#

The research results indicate that quantization and graph

optimization can lead to significant reductions in model

size and inference time, making it more suitable for mobile

and embedded deployment. While there may be some trade-

offs in inference time for certain models, the overall effi-

ciency in terms of CPU usage and the drastic reduction in

physical size make optimized models a compelling choice

for mobile applications. The performance of the models al-

so highlights the importance of dataset selection, as it can

impact both accuracy and inference speed. Ultimately, the

choice between optimization techniques should consider the

specific application requirements, including the need for

speed, resource constraints, and the nature of the data being

processed.

Several experiments can be conducted to discover fur-

ther areas for improvement in machine learning models for

mobile deployment. These include comparing various quan-

tization techniques, exploring alternative lightweight archi-

tectures, and optimizing hyperparameters to assess their

impact on performance. Evaluating models on diverse da-

tasets and under real-world conditions can provide insights

into robustness and generalization.

References

1. ITU/UN tech agency (2024, May 19). Measuring Digital Devel-

opment – Facts and Figures 2023. International Telecommunica-

tion Union. https://www.itu.int/hub/publication/d–ind–ict_mdd–

2023–1/

2. Statista (2024, June 14). Topic: US smartphone market.

https://www.statista.com/topics/2711/us–smartphone–market/#

topicOverview

3. Brand, L. (2023). Towards improved user experience for artificial

intelligence systems. In Engineering Applications of Neural Net-

works (pp. 33–44). Cham. https://doi.org/10.1007/978–3–031–

34204–2_4

4. Li, Y., Dang, X., Tian, H., Sun, T., Wang, Z., Ma, L., Klein, J., &

Bissyande, T. F. (2022). AI-driven mobile apps: An explorative

study. ArXiv. https://doi.org/10.48550/arxiv.2212.01635

5. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is

all you need. ArXiv. https://doi.org/10.48550/arxiv.1706.03762

6. Sun, C., Shrivastava, A., Singh, S., & Gupta, A. K. (2017). Revis-

iting unreasonable effectiveness of data in deep learning era. In

2017 IEEE International Conference on Computer Vision (ICCV)

(pp. 843–852). https://doi.org/10.48550/arXiv.1707.02968

7. Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., &

Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear

bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (pp. 4510–4520). https://doi.org/

10.1109/CVPR.2018.00474

8. Howard, A. G., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,

Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V.,

& Adam, H. (2019). Searching for mobilenetv3. In 2019

IEEE/CVF International Conference on Computer Vision (ICCV)

(pp. 1314–1324). https://doi.org/10.1109/ICCV.2019.00140
9. Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model sca-

ling for convolutional neural networks. ArXiv. https://doi.org/

10.48550/arXiv.1905.11946

10. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., &

Jegou, H. (2021). Training data–efficient image transformers &

distillation through attention. In Proceedings of the 38th Interna-

tional Conference on Machine Learning, 10347–10357.

11. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollar, P., &

Girshick, R. (2021). Early convolutions help transformers see

better. ArXiv. https://doi.org/10.48550/arXiv.2106.14881

12. Ranftl, R., Bochkovskiy, A., & Koltun, V. (2021). Vision trans-

formers for dense prediction. In 2021 IEEE/CVF International

Conference on Computer Vision (ICCV) (pp. 12159–12168).

https://doi.org/10.1109/ICCV48922.2021.01196

13. Chen, L., Papandreou, G., Schroff, F., & Adam, H. (2017). Re-

thinking atrous convolution for semantic image segmentation.

ArXiv, abs/1706.05587.

14. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., &

Zhang, L. (2021). Cvt: Introducing convolutions to vision trans-

formers. In 2021 IEEE/CVF International Conference on Com-

puter Vision (ICCV) (pp. 22–31). https://doi.org/10.1109/

ICCV48922.2021.00009

15. Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., &

Vaswani, A. (2021). Bottleneck transformers for visual recogni-

tion. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (pp. 16519–16529).

https://doi.org/10.1109/CVPR46437.2021.01625

16. d'Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., &

Sagun, L. (2021). Convit: Improving vision transformers with

soft convolutional inductive biases. International Conference on

Machine Learning, 2286–2296. https://doi.org/10.1088/1742–

5468/ac9830

17. Ryoo, M., Piergiovanni, A. J., Arnab, A., Dehghani, M., & Ange-

lova, A. (2021). Tokenlearner: Adaptive space–time tokenization

for videos. Advances in Neural Information Processing Systems,

34.

18. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., &

Guo, B. (2021). Swin transformer: Hierarchical vision transfor-

mer using shifted windows. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision (pp. 10012–10022).

https://doi.org/10.1109/ICCV48922.2021.00986

19. Caron, M. (2021). Emerging properties in self-supervised vision

transformers. In 2021 IEEE/CVF International Conference on

Computer Vision (ICCV) (pp. 9630–9640). https://doi.org/

10.1109/ICCV48922.2021.00951

20. Kitaev, N., Kaiser, ., & Levskaya, A. (2020). Reformer: The ef-

ficient transformer. ArXiv. https://doi.org/10.48550/arXiv.2001.

04451

21. Mehta, S., & Rastegari, M. (2021). MobileViT: Light-weight,

general–purpose, and mobile–friendly vision transformer. ArXiv.

https://doi.org/10.48550/arXiv.2110.02178

22. Wu, H., Judd, P., Zhang, X., Isaev, M., & Micikevicius, P.

(2020). Integer quantization for deep learning inference: Princi-

ples and empirical evaluation. ArXiv. https://doi.org/10.48550/

arXiv.2004.09602

23. Wan, L. (2014). A study of factors affecting mobile application

download. Journal of Digital Convergence, 12, 189–196. https://

doi.org/10.14400/JDC.2014.12.7.189

Ukrainian Journal of Information Technology, 2024, vol. 6, No. 282

C."Q."`N(+F+P14H,":."Q."$%'464(%"

 "$%')"*+),. /)%1246,828 “:+1%16+;" <'*%82>)%;"”, @. :+1%1, A;4"B)"

:%f7@= :-2#//%n% /-!4-//1 +- %?+#:=g-h=9/=)+'-+7n=i f@1 ?=f!#m7//1
7D7$+#!/%)+= $@-)#D=$-h=i /- :%A=@B/#5 ?'#)+'%15

Y .%;%-0 .%846D5)-% $0A'%A: A% 9A%+3%5<6"55D 2%A"6"> 2<G:55%4% 5<97<55D) .<80 J' 8<+-%+)9<55D A6D 36<-

+:F03<I0J) 2%;06?5:' A%A<-3<', 9$6:9 %$-:208<I0>5:' -"'503 5< $0A9:V"55D "F"3-:95%+-0 36<+:F03<I0J 9 ."<6?-

5%2) 7<+0 5< 2%;06?5:' $.:+-.%D'.

W+5%95))9<4) 9 A%+60AE"550 $.:A06"5% $%.095D55@ MobileNetV2, 84%.-3%9%J 5">.%55%J 2"."E0, .%8.%;6"5%J

A6D 2%;06?5:' A%A<-309, 0 908)<6?5:' -.<5+F%.2".09 (ViT), D30 $.%A"2%5+-.)9<6:)+$0') 8<9A<55D' .%8$085<9<55D

8%;.<E"5?. ^<20+-? +-<5A<.-5:' 84%.-3%9:' %$".<I0> MobileNetV2 9:3%.:+-%9)C 46:;:550 90A%3."26"50 84%.-3:,

V% 0+-%-5% 82"5G)C 306?30+-? %;7:+6"5? -< $<.<2"-.09 2%A"60, < -<3%E 9:3%.:+-%9)C 8<6:G3%90 89’D83:, D30 A<@-?

82%4) 8;".04<-: 05F%.2<I0@ 08 $%$"."A50' G<.09, $%3.<V)@7: 5<97<55D 2%A"60. ViT 9:3%.:+-%9)C 2"'<5082 +<2%-

)9<4: A6D 9:D96"55D 46%;<6?5:' 8<6"E5%+-"> 20E 7<+-:5<2: 8%;.<E"55D, V% A<C 82%4) 9.<'%9)9<-: D3 6%3<6?50,

-<3 0 46%;<6?50 %85<3: ;"8 9:3%.:+-<55D 84%.-3%9:' G<.09. ^%;.<E"55D) ViT .%8A06D@-? 5< $<-70 F03+%9<5%4% .%-

820.) 0 3%E"5 $<-7 %;.%;6D@-? D3 “+6%9%” 9 -"3+-0) 89:7<>5:' -.<5+F%.2".<', V% +$.%V)C .%;%-) 8 9"6:3:2:

8%;.<E"55D2:.

Y +-<--0 %I05"5% $.%A)3-:950+-? %;:A9%' 2%A"6"> A% 0 $0+6D 8<+-%+)9<55D %$-:208<I0>5:' -"'503, -<3:' D3

39<5-:8<I0D – $.%I"+, D3:> 85:E)C -%750+-? 3%"F0I0C5-09 2%A"60 8 32-;0-5%J A% 8-;0-5%J, V% 0+-%-5% 82"5G)C .%820.

+<2%J 2%A"60 -< $0A9:V)C G9:A30+-? 36<+:F03<I0J. +-<5%96"5%, V% 39<5-:8<I0D – %A5< 08 5<>"F"3-:950G:' %$-:-

208<I0>5:' +-.<-"40> A6D 2%;06?5:' +"."A%9:V, %+306?3: 82"5G)C .%820. 2%A"60 A% 74 % 0 8;06?G)C G9:A30+-?

36<+:F03<I0J A% 44 %) ViT. i.02 -%4%, A%+60AE"5% .%6? -"'503 %$-:208<I0J 4.<F<, -<3:' D3 86:--D %$".<-%.09, %;.0-

8<55D -< 8205< $%+60A%95%+-0 9:3%5<55D %$".<I0>,) 82"5G"550 %;7:+6@9<6?5%J +36<A5%+-0 -< $0A9:V"550 $.%A)3-

-:95%+-0 5< $.:+-.%D' 08 %;2"E"5:2: ."+).+<2:. _0 -"'503: %$-:208)@-? 9:3%5<55D %$".<I0>) 2"E<' %;7:+6@-

9<6?5%4% 4.<F<, 2050208)@7: 9:3%.:+-<55D $<2’D-0 -< $0A9:V)@7: $<.<6"6082, V% C 3.:-:75:2 A6D A%A<-309) ."-

<6?5%2) 7<+0 5< 2%;06?5:' $.:+-.%D'.

^A0>+5"5% "3+$".:2"5-: -< A%+60AE"5% ."8)6?-<-: 5< .085:' 5<;%.<' A<5:', 8%3."2< MNIST 0 ASL Alphabet,

V% A"2%5+-.)@-? 0+-%-5" $0A9:V"55D $.%A)3-:95%+-0, A%+D45)-" 8<9AD3: %$-:208<I0J. H%+60AE"55D $%3<8)C, V%

$0+6D-."5)9<6?5< 39<5-:8<I0D -< %$-:208<I0D 4.<F< 2%E)-? 82"5G:-: .%820. 2%A"60, 7<+ 36<+:F03<I0J -< 9:3%.:+-

-<55D I"5-.<6?5%4% $.%I"+%.<, .%;6D7: 2%A"60 2<G:55%4% 5<97<55D $.:A<-50G:2: A6D 2%;06?5:' A%A<-309. k3+-

$".:2"5-:, 8A0>+5"50 5< $.:+-.%J Xiaomi Redmi Note 8 Pro 8 %$".<I0>5%@ +:+-"2%@ Android -< 9:3%.:+-<55D2

TensorFlow Lite A6D 05-"4.<I0J, $.%A"2%5+-.)9<6:: $.<3-:750 $"."9<4: -<3%J %$-:208<I0J) ."<6?5:' 2%;06?5:' +"-

."A%9:V<'.

 :D96"5%, V% -<30 %$-:208<I0>50 -"'503:, D3 39<5-:8<I0D -< %$-:208<I0D 4.<F<, 9<E6:90 A6D .%84%.-<55D 2%A"-

6"> 2<G:55%4% 5<97<55D 5< 2%;06?5:' $.:+-.%D', A6D D3:' %;2"E"55D ."+).+09 0 $.%A)3-:950+-?) ."<6?5%2) 7<+0

2<@-? 9:.0G<6?5" 85<7"55D. _0 -"'503: A<@-? 82%4) 0+-%-5% 82"5G:-: .%820. 2%A"60 -< 7<+ 36<+:F03<I0J, 5" E".--

9)@7: -%750+-@, V%)2%E6:96@C $.<3-:75" 9:3%.:+-<55D 2%A"6"> 46:;:55%4% 5<97<55D) 2%;06?5:' A%A<-3<'.

 !"#$&')!$&+: 46:;:55" 5<97<55D, 84%.-3%9< 5">.%55< 2"."E<, 908)<6?50 -.<5+F%.2".:, 2%;06?50 8<+-%+)53:.

 "#$&()+,. /&$)01$&,0:

b$&"6"V?;: M$D$9;(;& W&$@D)0$0;<, &+E4 &*=, %&6>B & &C=79&=.D7C&*.; +.+=>9 1E &C34**F.

E-mail: volodymyr.y.chornenkyi@lpnu.ua; https://orcid.org/0009–0000–0569–6623

2)3;(;&) &;") W&$@D)0,0"), %&*B. =>;*. *&1%, B7:>*=, %&6>B & &C=79&=.D7C&*.; +.+=>9 1E &C34**F.

E-mail:iryna.y.kazymyra@lpnu.ua; https://orcid.org/0009–0000–0569–6623

R;1I0)"". 3) SPGT: j7 *>*-%./ X. a., I&D.9. & T. a. M7B>34 9&G.**7@7 *&CH&**F =& 7E=.94D&:4/*4 += &=>@4(B3F E4BC.`>**F

>6>%=.C*7+=4 %3&+.64%&:4(*& 97[43-*.; E .+= 7F;. $% &(*+-%./ 01 *&3 4*67 9&:4/*.; =>;*737@4/. 2024, =. 6, A 2. ". 74–82.

Citation APA: Chornenkyi, V. Y., & Kazymyra, I. Y. (2024). ML models and optimization strategies for enhancing the performance of

classification on mobile devices. Ukrainian Journal of Information Technology, 6(2), 74–82.

https://doi.org/10.23939/ujit2024.02.074

