ISSN 2707-1898 (print) YKpaiHCbKNUI KypHan iHPopMaLinHUX TEXHONOTIN
BY

Ukrainian Journal of Information Technology
http://science.lpnu.ua/uk/ujit
https://doi.org/10.23939/ujit2024.02.074
Article received 15.10.2024 p.

Article accepted 19.11.2024 p.
UDC 004.93

Correspondence author
I.Y. Kazymyra
iryna.y.kazymyra@Ilpnu.ua

V.Y. Chornenkyi, L. Y. Kazymyra

Lviv Polytechnic National University, Lviv, Ukraine

ML MODELS AND OPTIMIZATION STRATEGIES FOR ENHANCING
THE PERFORMANCE OF CLASSIFICATION ON MOBILE DEVICES

The paper highlights the increasing importance of machine learning (ML) in mobile applications, with mobile devices
becoming ubiquitous due to their accessibility and functionality. Various ML models, including Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs), are explored for their applications in real-time classification on mobile
devices. The paper identifies key challenges in deploying these models, such as limited computational resources, battery
consumption, and the need for real-time performance.

Central to the research is the comparison of MobileNetV2, a lightweight CNN designed for mobile applications, and
Vision Transformers (ViTs), which have shown success in image recognition tasks. MobileNetV2, with its depthwise sep-
arable convolutions and residual connections, is optimized for resource efficiency, while ViTs apply self-attention mecha-
nisms to achieve competitive performance in image classification. The study evaluates the performance of both models be-
fore and after applying optimization techniques like quantization and graph optimization.

It was discovered that quantization is one of the most effective optimization strategies for mobile environments, reduc-
ing model size by up to 74 % and improving inference speed by 44 % in ViTs. Additionally, graph optimization tech-
niques, such as operator fusion, pruning, and node reordering, are examined for their role in reducing computational com-
plexity and improving performance on resource-constrained devices.

Experimental results on different datasets, including MNIST and the ASL Alphabet dataset, demonstrate the signifi-
cant performance improvements achieved through optimization. The study shows that post-training quantization and graph
optimization can reduce model size, inference time, and CPU usage, making ML models more suitable for mobile applica-
tions. The experiments were conducted on a Xiaomi Redmi Note 8 Pro device, showcasing the practical benefits of these
optimizations in real-world mobile deployments.

The research concludes that optimization techniques like quantization and graph optimization are essential for deploy-
ing ML models on mobile devices, where resource constraints and real-time performance are critical. It also provides val-
uable insights into how ML architectures can be optimized for mobile environments, contributing to the advancement of

efficient Al-driven mobile applications.

Keywords: deep learning, convolutional neural networks, vision transformers, mobile applications.

Introduction / Betyn

Mobile devices, encompassing smartphones and tablets,
have become ubiquitous in modern life. According to the
International Telecommunication Union (ITU), there were
over 5.3 billion unique mobile phone users globally by the
end of 2022, reflecting an unprecedented level of connec-
tivity and engagement with mobile technology [1]. The
widespread adoption of mobile devices is driven by their af-
fordability, accessibility, and the extensive range of func-
tionalities they offer. Mobile devices are now integral to
everyday activities, from communication and entertainment
to productivity and health management [2].

Machine learning (ML) has increasingly been integrated
into mobile applications, enabling sophisticated features
and services directly on users’ devices. The proliferation of
on-device ML is largely attributed to advancements in mo-
bile hardware and software frameworks designed to support
such technologies. For instance, Google’s TensorFlow Lite

and Apple’s Core ML provide specialized tools for deploy-
ing ML models efficiently on mobile platforms.

The application of ML on mobile devices ranges from
real-time image and speech recognition to predictive text
input and personalized recommendations. Research indi-
cates that on-device ML can significantly enhance user ex-
perience by providing faster responses and preserving pri-
vacy through local data processing [3]. As of 2023, an in-
creasing number of mobile applications are leveraging ML
for functionalities like augmented reality (AR), health mon-
itoring, and autonomous navigation [4].

This paper explores the influence of machine learning
model characteristics — specifically Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs) — on per-
formance in mobile environments. It also examines the im-
pact of optimization techniques, such as quantization, on
these models. By understanding these factors, we aim to pro-
vide insights into how different ML architectures and optimi-
zations can be effectively utilized for mobile applications.

74 Ukrainian Journal of Information Technology, 2024, vol. 6, No. 2

The object of research — the overall performance cha-
racteristics of machine learning models on mobile devices.

The subject of research — the impact of model architec-
ture, optimization techniques, and resource constraints on
real-time applications performance, the specific application
of Vision Transformers (ViT) and MobileNetV2 for hand
gesture recognition, examining how these models work be-
fore and after optimization techniques like quantization and
graph optimization.

The purpose of the research — is to investigate and com-
pare the efficiency of applying Vision Transformers (ViT)
and MobileNetV2 architectures, before and after optimiza-
tion, in real-time recognition tasks, specifically focusing on
their inference speed, memory usage, and accuracy on mo-
bile devices.

To achieve this purpose, the following main research
objectives are identified:

e analyze current approaches to gesture recogni-
tion using Vision Transformers (ViT) and Mo-
bileNetV2;

e cvaluate the accuracy, loss, and model size for
both ViT and MobileNetV2 architectures before
and after quantization and graph optimization;

e investigate the performance of each model archi-
tecture on datasets, such as MNIST for ViT and
ASL Alphabet for MobileNetV2, with a focus on
mobile deployment;

e cexamine the impact of quantization and graph
optimization on the models' inference time,
memory usage, and CPU consumption, as well as
their real-time performance on mobile devices.

Analysis of recent research and publications. Models
and architectures. Transformers, originally designed for
natural language processing (NLP) tasks, have revolutio-
nnized the field of machine learning. Their ability to model
long-range dependencies using self-attention mechanisms
has made them the backbone of many state-of-the-art NLP
models. Recently, transformers have been adapted for com-
puter vision tasks, leading to the development of Vision
Transformers (ViTs) [5]. ViTs treat images as sequences of
patches, akin to word tokens in text, and apply self-atten-
tion to capture global image features.

Vision Transformers (ViTs) have demonstrated signifi-
cant advancements in image recognition tasks. The Vision
Transformer achieves convolutional neural network (CNN)-
level accuracy when trained with large-scale datasets such as
JFT-300M [6]. By treating images as sequences of patches
and utilizing self-attention [5] to model extensive interactions
among image tokens, ViTs offer advantages such as global
processing capabilities and excellent scalability with increa-
sing dataset sizes. However, when it comes to lightweight
and mobile networks, models like MobileNets [7], [8] and
EfficientNets [9] continue to outperform ViTs. For example,
under a parameter budget of 6 million, DeiT [10] is 3 % less
accurate than MobileNetV3 [8] on the ImageNet classifica-
tion task and consumes six times more FLOPs.

Lightweight CNNs have been instrumental in enabling
numerous mobile vision tasks. Compared to CNNs, ViTs
are generally more complex, with larger parameter counts
(e.g., ViT-B/16 vs. MobileNetV3: 86 vs. 7.5 million pa-
rameters) [11]. ViTs also require significant data augmenta-
tion and regularization to prevent overfitting [10], and they

need high-cost decoders for downstream tasks involving
dense predictions. For instance, a ViT-based segmentation
network [12] learns around 345 million parameters and
achieves performance comparable to the CNN-based Deep-
Labv3 network [13], which only has 59 million parameters.
The increased parameter count in ViT-based models is
mainly due to the absence of image-specific inductive bia-
ses in CNNs.

Hybrid models that combine convolutions and trans-
formers are gaining attention to address these challenges.
Several designs have emerged to integrate the strengths of
both architectures, such as ViT-C [11], CvT [14], BoTNet
[15], and ConViT [16]. These models can achieve competi-
tive performance but generally carry a heavier computa-
tional load than efficient CNNs like EfficientNet [9]. They
are often outperformed by lightweight CNNs, such as Mo-
bileNetV2, when scaled down. These models also remain
resource-intensive and sensitive to data augmentation.

Optimization techniques. Significant work has been done
to improve the efficiency of transformers. Most approaches
focus on reducing the number of tokens in the transformer
block using various methods, including down-sampling [17]
and pyramidal structures [18]. The proposed separable self-
attention module is a drop-in replacement for multi-head at-
tention (MHA) and can be easily integrated into any trans-
former-based model to improve efficiency further.

ViT and its variants have produced state-of-the-art re-
sults in image processing domains and have been the foun-
dation for many pre-trained models, such as DINO [19] and
MOCOvV3 [20]. However, much research has focused on
performance improvement, with relatively little attention to
efficiency [10], [21]. Since multi-head self-attention (MSA)
has quadratic complexity with respect to input length, trans-
former models like ViT can be computationally intensive.
Consequently, classical transformers are not widely used in
mobile and other low-resource environments.

Recently, a lightweight and general-purpose vision
transformer called MobileViT has been introduced [22].
MobileViT addresses the limitations of traditional trans-
formers by combining input-adaptive weighting and global
processing with spatial inductive biases learned by CNN-
based networks. MobileViT integrates inverted residual
blocks from MobileNetV2 with the ViT encoder block, en-
coding both local and global information with fewer pa-
rameters. Despite these improvements, MobileViT remains
slower than lightweight CNNs [7] in terms of both infer-
ence and training time due to the lack of dedicated device-
level operations support for MSA layers. The entire Mv2
block can be expressed by formula (1):

}’e‘,'mn‘(1)[A'()rzz'\,,,d,, ,(!‘(f(mz‘(x’))) tx
M0sirian (12100 reone (D {(Peone()))
o oy L AP Cone(x
7 : stride , (1)

where: Mv2iq5c = {112} represents the MobileNetV2 block
for different stride values; PConv refers to the pointwise
convolution, which applies a 1x1 convolution to the input
to adjust the depth of the feature maps; DConv siqe denotes
the depthwise convolution, which applies a spatial convolu-
tion over each input channel separately.

Besides architecture optimizations, additional steps like
quantization and graph optimization techniques can be ap-
plied to achieve further improvements. Quantization can be

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2024, 1. 6, Ne 2 (10) 75

applied both during model creation and post-training to get
more improvements based on the expected data set. Post-
training quantization includes general techniques to reduce
CPU and hardware accelerator latency, processing, power,
and model size with little degradation in model accuracy.
These techniques can be performed on an already-trained
float TensorFlow model and applied during TensorFlow
Lite conversion.

There are a lot of different post-training quantization
techniques which can include dynamic range quantization,
full integer quantization, and float16 quantization. Based on
recent studies [23], integer quantization is the most aggres-
sive and gives the most results in a smaller model and in-
creased inferencing speed, which is valuable for low-power
devices such as microcontrollers, edge, and mobile devices.

Important performance metrics for mobile and edge de-
vices:

1. Limited Computational Resources — mobile devices
are constrained by significantly lower computational
power than desktop or server environments. Ad-
vanced gesture recognition algorithms, particularly
those employing deep learning models such as con-
volutional neural networks (CNNs), recurrent neural
networks (RNNs), and Vision Transformers (ViTs),
demand substantial computational resources. Opti-
mizing these complex models to run efficiently on
resource-limited devices remains a formidable chal-
lenge.

2. Battery Consumption — the high computational load
associated with gesture recognition algorithms can
lead to increased power consumption, thereby quick-
ly depleting the battery life of mobile devices. En-
suring the energy-efficient operation of recognition
systems is critical to maintaining user satisfaction
and device usability.

3. Real-Time Performance — gesture recognition sys-
tems must provide responses in real-time to ensure a
seamless user experience. Achieving low-latency
performance is challenging due to the computational
demands of the algorithms and potential delays in-
troduced by network dependencies, particularly in
scenarios where computations are offloaded to cloud
services.

CNN architecture. For experiment purposes, we have
used models with 2 different architectures and 3 datasets.
For the CNN architecture representative, MobileNet2 was
used. MobileNetV2 is a lightweight deep learning model
developed by Google, specifically designed for mobile and
edge devices. It employs depthwise separable convolutions,
which break down standard convolution operations into
simpler components, significantly reducing the number of
parameters and computational complexity. The architecture
features linear bottlenecks, where the last layer of each
block is a linear layer instead of a non-linear activation
function, enhancing information preservation and gradient
flow during training. Additionally, MobileNetV2 incorpo-
rates residual connections to facilitate the learning of identi-
ty mappings, helping to mitigate the vanishing gradient
problem and improve feature extraction [7].

ViT architecture. For the ViT architecture, a default
structure was used. The core of the architecture consists of
multiple transformer encoder layers, each featuring a self-
attention mechanism that allows the model to assess the im-

portance of different patches relative to one another. Follo-
wing the self-attention layer, the output is processed through
a feed-forward neural network, with normalization and resid-
ual connections enhancing training stability and performance.
A special classification token is included in the sequence of
patch embeddings, aggregating information for the final clas-
sification task. The output corresponding to this classification
token is then passed through a linear layer to produce class
probabilities. Overall, ViT represents a significant shift from
traditional convolutional neural networks (CNNs) by treating
images as sequences of patches, leveraging self-attention
mechanisms to achieve competitive performance across vari-
ous image classification benchmarks while offering a flexible
and scalable architecture [5].

Post-Training Quantization Scheme. Models were also
passed through post-training optimizations. Full integer
quantization is an optimization strategy that converts 32-bit
floating-point numbers (such as weights and activation out-
puts) to the nearest 8-bit fixed-point numbers using the fol-
lowing formula (2).

real value = (ll/lt8 value T z€ro pn[nt) X SCCZZ@, (2)

where: real vane 1s the original floating-point value that the
integer value represents after quantization; int8 yuu. 1s the
quantized 8-bit integer value; zero vawe defines shift for the
range of the quantized values to ensure that 0 in floating-
point maps correctly to an integer value; scale is a scaling
factor that maps the integer value back to its original floa-
ting-point value.

After applying the full integer quantization formula, the
model undergoes optimizations that improve its efficiency
while preserving as much accuracy as possible. During full
integer quantization, the original 32-bit floating-point
weights and activation outputs are approximated by 8-bit
integer values. This conversion reduces memory usage and
computational demands, enabling faster inference and lo-
wer power consumption, particularly on devices with lim-
ited hardware resources like mobile phones or edge devices.
The zero point ensures that the floating-point value of 0 is
accurately represented within the integer range, which can
include both positive and negative numbers depending on
the model. This is critical for maintaining numerical stabi-
lity and accuracy after quantization. The zero point allows
the integer values to shift in such a way that floating-point
operations like multiplication and addition still produce
meaningful results when mapped back to their floating-
point equivalents. After converting the floating-point values
to integers, matrix multiplications are performed in the in-
teger domain, which is much more efficient on certain
hardware platforms. Once these operations are completed,
the scale factor is used to revert the results back to their ap-
proximate floating-point equivalents for subsequent layers
or final outputs.

Graph Optimization in Deep Learning. Graph optimi-
zation in deep learning refers to a suite of techniques used
to improve the computational efficiency and performance
of a model by restructuring and optimizing the computa-
tional graph. A computational graph is a directed acyclic
graph (DAG) where nodes represent operations (e. g., ma-
trix multiplications, convolutions) and edges represent the
flow of data (tensors) between these operations. Each edge
carries the result of one operation to be used as input for the

76 Ukrainian Journal of Information Technology, 2024, vol. 6, No. 2

next. Optimizing this graph is crucial for reducing the com-
putational complexity, memory usage, and execution time,
which becomes especially important when deploying deep
learning models on resource-constrained devices like mo-
bile phones, embedded systems, or other edge devices.

At its core, graph optimization seeks to minimize the
number of operations, eliminate redundancies, and maximize
the parallelism of computations, all while maintaining the ac-
curacy and performance of the model. Consider a deep learn-
ing model as a sequence of mathematical operations, where
each operation depends on the results of previous ones.
Graph optimization identifies opportunities to fuse, prune, or
reorder these operations, thereby improving efficiency.

For example, the time complexity of a model is often de-
termined by the number of operations in its computational
graph, denoted by 7'(n), where n represents the size of the in-

put or number of layers. Reducing the number of redundant
nodes (pruning) or combining operations (fusion) can decrease
T(n), improving the overall execution time. These optimiza-

tions directly affect the model’s inference time, making it more

suitable for real-time applications on mobile devices.
Mathematically, we can represent the impact of graph

optimization techniques on performance by formula (3):

T;)ptimized (n):(xT(n)-l-B M(I’l), (3)

where: T(n) — is the original time complexity of the model;
M (n) — is the memory complexity; o and B are the con-

stants representing the optimization factors for computation
and memory, respectively.

Through graph optimization, the constants a/alphaa and
B/betaP are reduced, leading to improved performance in
both time and memory usage.

Techniques for Graph Optimization. One of the most
impactful techniques for graph optimization is operator fu-
sion. Operator fusion involves the combination of sequen-
tial operations into a single, more efficient one, reducing
the overhead associated with memory accesses and impro-
ving the throughput of computation. Consider a scenario
where a convolutional layer is followed by batch normali-
zation and an activation function. Instead of executing these
three operations in separate steps, operator fusion merges
them into a single computational kernel. This not only re-
duces the number of memory accesses but also makes better
use of hardware resources by executing the operations in
parallel.

The benefits of operator fusion can be expressed as a
reduction in latency (4):

L, ;
_ sequential (4)

L ‘fused — A ’

where: L — is the latency of executing operations se-

sequential
quentially; k& — represents the number of operations fused
into a single kernel.

By reducing k&, the total execution time decreases,
which is particularly important for mobile devices where
low latency is crucial.

Another key technique is graph pruning, which involves
removing redundant or less significant nodes and edges
from the computational graph. This method simplifies the
model and reduces the number of computations required for

inference. Pruning can be performed in multiple ways: by
removing individual weights, entire neurons, or even whole
layers, depending on their contribution to the model’s per-
formance. For instance, if certain weights contribute mini-
mally to the final output, they can be set to zero without
significantly impacting model accuracy. This leads to a
sparse representation of the model, which is more efficient
in terms of both computation and memory usage.

The impact of pruning on the size of the model can be
described by the following formula (5):

Spruned = Soriginal - ZVVz > (5)
i

where: S, 1s the size of the original model; W, are the

pruned weights.

This equation highlights the reduction in model size af-
ter pruning, which translates into faster inference times and
lower memory consumption, both critical for mobile appli-
cations.

Finally, node reordering plays a pivotal role in optimizing
the execution order of operations within the computational
graph. By reordering operations, we aim to minimize data de-
pendencies and maximize parallelism, ensuring that independ-
ent computations are performed simultaneously. This optimi-
zation allows the hardware (whether it be a CPU, GPU, or neu-
ral processing unit) to process data more efficiently, reducing
execution stalls and improving cache utilization.

The benefit of node reordering can be modelled as an in-
crease in parallelism cap with the following relationship (6):

P

_ “original
})reordered - d ’ (6)

where: P.,,...c represents the new level of parallelism af-
ter node reordering; £,,;,;,,, refers to the initial level of para-

llelism before node reordering; d is the degree of data de-
pendency between operations.

By reducing ¢ we increase the potential for parallel
execution, thus improving the overall efficiency of the
model.

Research results and their discussion /
Pe3y/sibTaTu A0CTiAXKEHDb TA iX 0GrOBOPEHHA

For our practical implementation, we focused on opti-
mizing a Vision Transformer (ViT) model using the
MNIST dataset. The MNIST dataset is a widely used
benchmark in the machine-learning community and con-
sists of grayscale images of handwritten digits (0-9). Each
image is 28x28 pixels in size, represented by grayscale va-
lues ranging from 0 to 255. The training set contains
60 000 images, while the test set includes 10,000 images.
Given the relatively simple structure of the MNIST dataset,
it provides a good foundation for testing and optimizing our
model for tasks such as digit recognition.

We trained the initial ViT model on the MNIST dataset,
which contained 870 937 parameters, and we monitored its
performance (Fig. 1) regarding training and validation ac-
curacy and loss. The model converged quickly, achieving
near-perfect accuracy on both the training and validation
sets, with losses dropping significantly in the early epochs.
This indicated that the model was highly effective at lear-
ning the representations of handwritten digits.

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2024, 1. 6, Ne 2 (10) 77

Training and Validation Loss

0.10 1 =& Training Loss
&~ Validation Loss
0.08
0.06 1
w
w
a
0.04
0.02 1
0.00
1] 5 10 15 20 25
Epochs

Training and Validation Accuracy

1.000 A

0.995

0.990

0.985

Accuracy

0.980

0.975

=&~ Training Accuracy
=& Validation Accuracy

0.970 1

0 5 10 15 20 25
Epochs

Fig. 1. Training and validation loss (left) and accuracy (right) over 25 epochs for the ViT model on the MNIST dataset / Brpatu mix gac
HaBYaHHI Ta MepeBIPKH (JTiBOPYY) i TOYHOCTI (IpaBopyd) npoTsiroM 25 enox Juist Mojeni ViT na Habopi nannx MNIST

Model Conversion to TensorFlow Lite (TFLite).
Once the ViT model was trained, we converted it into Ten-
sorFlow Lite (TFLite) format. This conversion is essential
for deploying deep learning models on mobile and embed-
ded devices, where computational resources are often li-
mited. Testing the TFLite model on a real device allowed
us to evaluate its performance in terms of inference speed,
memory consumption, and CPU utilization.

While the model performed well in its initial form, it
was still relatively large in size (3.5 MB) and could benefit
from further optimization to improve its deployment feasi-
bility on mobile devices.

Quantization for Model Size Reduction and Speed Op-
timization. To enhance the efficiency of the ViT model, we
applied quantization. Quantization reduces the precision of
the model’s weights from 32-bit floating-point values to 8-
bit integers, resulting in a significantly smaller model size
and faster inference times. After quantization, the model
size dropped from 3.5 MB to just 899 KB, making it much
more suitable for mobile devices with limited storage.

Although quantization often results in a slight increase
in loss, the impact on accuracy was minimal.

The quantized ViT model retained near-perfect accuracy
(Fig. 2), with only a small increase in loss (from 3.93
e-08 to 2.49 e-06), which is negligible given the substantial
gains in efficiency (Fig. 3). Moreover, the inference time
improved dramatically. The inference time decreased from
16 milliseconds in the original model to 10 milliseconds in
the quantized version for the 95th percentile, showcasing
the benefits of quantization for speed improvements.

Graph Optimization for Further Efficiency. In our
model, we employed a combination of these advanced
graph optimization techniques to enhance the model’s
performance, particularly for deployment on mobile de-
vices. To maximize the benefits of these optimizations,
we used TensorFlow Lite’s operator fusion, graph prun-
ing, and node reordering alongside mixed-precision
quantization based on the nuclear norm of the attention
maps and output features.

Accuracy Comparison: Original vs Quantized

1.0000
104

0.8 A1

0.6 4

Accuracy

0.4 1

0.2 5

1.0000

0.0 -

Original

Quantized

Fig. 2. Accuracy comparison between the original and quantized ViT models /
TTopiBHSHHS TOYHOCTI BHXITHOT Ta KBAaHTH30BaHO1 Mojienet ViT

78

Ukrainian Journal of Information Technology, 2024, vol. 6, No. 2

le-6 Loss Comparison:

Original vs Quantized

3.0 1

2.5 1

2.04

Loss

1.5 4

1.0 1

0.5 4
3.93e-08

0.0

2.49e-06

Original

Quantized

Fig. 3. Loss comparison between the original and quantized ViT models /
[MopiBHSAHHS BTpAT MiXK IIOYaTKOBOIO Ta KBAHTU30BaHOIO MoziersiMu ViT

Among the optimization techniques, we found operator
fusion to be particularly effective in reducing the latency of
our model. By fusing operations such as convolution, batch
normalization, and activation into a single kernel, we were
able to significantly lower the number of memory accesses
and improve throughput. This led to an impressive reduc-
tion in both execution time and memory footprint, making
the model more suitable for mobile deployment.

These optimizations should provide significant ad-
vantages for mobile use by reducing model size, speeding
up inference, lowering power consumption, and improving
hardware utilization, all while maintaining acceptable accu-
racy levels.

For comparison and variability, we also tested the Mo-
bileNetV2 architecture using the ASL Alphabet dataset
(Fig. 4). This dataset comprises 87 000 images, each of size
200x%200 pixels, and includes 29 classes representing dif-
ferent hand gestures in the American Sign Language alpha-
bet. Testing MobileNetV2 alongside our optimized, quan-
tized ViT model allowed us to evaluate how these two dif-
ferent architectures performed on the gesture recognition
task. By comparing their performance in terms of accuracy,
inference speed, and resource usage, we gained valuable in-
sights into the strengths and weaknesses of each architec-
ture, providing a comprehensive understanding of how well
these models adapt to real-world tasks on mobile devices.

MobileNet-V2 accuracy

10 M

09

08

o7

06

Accuracy

0s
04

031 | — Tain
Validabon

oz

0 20 &0 60 B0 100
Number of epochs

MobileNet-V2 loss

200 — Fan
\alidation

150
125
100

Loss

07s
050 \

025 -
‘—_“_"\.ﬁ__

000

0 .i] L] &0 B0 100
Number of epochs

Fig. 4. MobileNetV2 training and validation accuracy (left) and loss (right) over 100 epochs on the ASL Alphabet dataset /
TounicTe HaBuaHHs Ta nepeBipkr MobileNetV2 (;iBopyu) i Brpatu (mpaBopyd) npotsirom 100 erox Ha Habopi mannx ASL Alphabet

Table 1. Models and datasets used for experiments / Mopeni Ta Habopu JaHUX, BUKOPUCTaHI JUIsl €KCIIEPUMEHTIB

Model Architecture Dataset
MobileNetV2 CNN ImageNet
Quantized MobileNetV2 CNN ImageNet
MobileNetV2 CNN ASL Alphabet
MobTransformer ViT MNIST
Quantized MobTransformer ViT MNIST
Gt it Qe st

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2024, 1. 6, Ne 2 (10) 79

Measuring models’ performance. To better understand
the influence of optimization techniques, experiments were
conducted with 6 different models (see Table 1).

Model size is one of the most critical characteristics of
ML models for mobile devices. Mobile devices typically
have limited computational resources compared to desktop
or server environments. Therefore, models must be light-
weight to ensure they can be deployed effectively without
consuming excessive memory or processing power. Smaller
models not only save memory but also reduce latency or in-
ference speed, which is crucial for real-time applications
such as image recognition or natural language processing.
The inference speed can be influenced by various factors,
including the model architecture, the optimization tech-

niques used (such as quantization and pruning), and the un-
derlying hardware capabilities.

To better understand which models suit our specific
needs, we evaluated several parameters important for the
usage of mobile phones: model physical size, random-
access memory (RAM) and central processing unit (CPU)
usage, and inference time.

All experiments were conducted on an Android device —
Xiaomi Redmi Note 8 Pro, which was equipped with a Me-
diatek MT6785 CPU (8 cores) and 6 GB of RAM. Metrics
measured with built in profilers in Android Studio integra-
ted development environment over 1200 iterations. The
models were integrated into the mobile app using Tensor-
Flow Lite without graphics processing unit usage. The re-
sults are presented in Table 2.

Table 2. Results of the experiments / Pe3ynpraTi ekcriepuMeHTiB

Model Physical size

RAM usage, Mb

Inference time,
percentile/ms

Average model load

CPU usage, % ;
time, ms

MobileNet v2 + ImageNet 14 Mb 140-155

0.95/53
0.9/46
0.5/37
0.1/32

18-22 968

Quantized MobileNet v2 + ImageNet 3.6 Mb 140-155

0.95/65
0.9/58
0.5/48
0.1/47

18-20 950

MobileNet v2 + ASL Alphabet 3.3 Mb 120-135

0.95/50
0.9/46
0.5/36
0.1/33

12-16 947

ViT + MNIST 3.5Mb 118-145

0.95/16
09/16
05/12

0.1/7

932

Quantized ViT + MNIST 899 Kb 109-140

0.95/10
0.9/10
0.5/5
0.1/3

906

Graph optimized, Quantized ViT +

MNIST 899 Kb

105-130

095/9
09/8
05/5
0.1/3

904

Discussion of research results. As a result of these op-
timizations, the model's inference speed improved signifi-
cantly across all tested confidence levels. The inference
time was reduced by approximately 44 % for the 95th per-
centile, from 16 ms in the regular ViT model to 9 ms in the
graph-optimized, quantized version, and 58 % for the 50th
percentile, respectively. This reduction in time was accom-
panied by a decrease in memory usage and CPU load, ma-
king the model far more efficient for deployment on mobile
devices. The optimized model demonstrated a lower RAM
footprint (from 145 MB to 130 MB maximum) and CPU
usage (dropping from 14 % to 12 % maximum), which
translates into reduced energy consumption — an essential
factor for battery-powered mobile devices. Less noticeable
improvements were observed in the MobileNetV2 model in
regards to inference time, still giving a noticeable reduction
in the model size.

For both models, post-training optimizations helped to
reduce the physical size by 74 %, which can positively in-
fluence the overall rate of app download [23], and slightly,

about 3 %, improve the initial model loading time during
application launch.

These improvements not only enable real-time per-
formance for lightweight applications such as gesture
recognition and image classification, but they also set the
stage for deploying larger, more complex deep learning
models on mobile platforms. The combination of quanti-
zation and graph optimization ensures that the model op-
erates within the strict resource constraints of mobile
hardware while maintaining high accuracy and respon-
siveness. These gains in efficiency will likely become
even more pronounced as we scale the model and da-
taset, making graph optimization a key factor in ensuring
practical and effective deep-learning solutions for mobile
and embedded environments.

The scientific novelty of the obtained research results is
the proposed approach to the use of machine learning mo-
dels together with optimization techniques that lead to im-
proved classification performance on mobile devices.

The practical significance of the research results — the
research demonstrates the effectiveness of the machine

80 Ukrainian Journal of Information Technology, 2024, vol. 6, No. 2

learning model optimizations and their potential impact on
the development and deployment of applications in mobile
and embedded environments.

Conclusions / BuUCHOBKU

The research results indicate that quantization and graph
optimization can lead to significant reductions in model
size and inference time, making it more suitable for mobile
and embedded deployment. While there may be some trade-
offs in inference time for certain models, the overall effi-
ciency in terms of CPU usage and the drastic reduction in
physical size make optimized models a compelling choice
for mobile applications. The performance of the models al-
so highlights the importance of dataset selection, as it can
impact both accuracy and inference speed. Ultimately, the
choice between optimization techniques should consider the
specific application requirements, including the need for
speed, resource constraints, and the nature of the data being
processed.

Several experiments can be conducted to discover fur-
ther areas for improvement in machine learning models for
mobile deployment. These include comparing various quan-
tization techniques, exploring alternative lightweight archi-
tectures, and optimizing hyperparameters to assess their
impact on performance. Evaluating models on diverse da-
tasets and under real-world conditions can provide insights
into robustness and generalization.

References

1. ITU/UN tech agency (2024, May 19). Measuring Digital Devel-
opment — Facts and Figures 2023. International Telecommunica-
tion Union. https:/www.itu.int/hub/publication/d—ind—ict mdd—
2023-1/

2. Statista (2024, June 14). Topic: US smartphone market.
https://www.statista.com/topics/271 1 /us—smartphone—market/#
topicOverview

3. Brand, L. (2023). Towards improved user experience for artificial
intelligence systems. In Engineering Applications of Neural Net-
works (pp. 33-44). Cham. https:/doi.org/10.1007/978-3-031—
342042 4

4. Li, Y., Dang, X., Tian, H., Sun, T., Wang, Z., Ma, L., Klein, J., &
Bissyande, T. F. (2022). Al-driven mobile apps: An explorative
study. ArXiv. https://doi.org/10.48550/arxiv.2212.01635

5. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., & Polosukhin, 1. (2017). Attention is
all you need. ArXiv. https://doi.org/10.48550/arxiv.1706.03762

6. Sun, C., Shrivastava, A., Singh, S., & Gupta, A. K. (2017). Revis-
iting unreasonable effectiveness of data in deep learning era. In
2017 IEEFE International Conference on Computer Vision (ICCV)
(pp. 843-852). https://doi.org/10.48550/arXiv.1707.02968

7. Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., &
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear
bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 4510-4520). https://doi.org/
10.1109/CVPR.2018.00474

8. Howard, A. G., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V.,
& Adam, H. (2019). Searching for mobilenetv3. In 20719

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

IEEE/CVF International Conference on Computer Vision (ICCV)
(pp- 1314-1324). https://doi.org/10.1109/ICCV.2019.00140

Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model sca-
ling for convolutional neural networks. ArXiv. https://doi.org/
10.48550/arXiv.1905.11946

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., &
Jegou, H. (2021). Training data—efficient image transformers &
distillation through attention. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, 10347-10357.

Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollar, P., &
Girshick, R. (2021). Early convolutions help transformers see
better. ArXiv. https://doi.org/10.48550/arXiv.2106.14881

Ranftl, R., Bochkovskiy, A., & Koltun, V. (2021). Vision trans-
formers for dense prediction. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV) (pp. 12159-12168).
https://doi.org/10.1109/ICCV48922.2021.01196

Chen, L., Papandreou, G., Schroff, F., & Adam, H. (2017). Re-
thinking atrous convolution for semantic image segmentation.
ArXiv, abs/1706.05587.

Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., &
Zhang, L. (2021). Cvt: Introducing convolutions to vision trans-
formers. In 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV) (pp. 22-31). https://doi.org/10.1109/
ICCV48922.2021.00009

Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., &
Vaswani, A. (2021). Bottleneck transformers for visual recogni-
tion. In Proceedings of the IEEE/CVF Conference on Computer
Vision —and Pattern Recognition (pp. 16519-16529).
https://doi.org/10.1109/CVPR46437.2021.01625

d'Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., &
Sagun, L. (2021). Convit: Improving vision transformers with
soft convolutional inductive biases. International Conference on
Machine Learning, 2286-2296. https://doi.org/10.1088/1742—
5468/ac9830

Ryoo, M., Piergiovanni, A. J., Arnab, A., Dehghani, M., & Ange-
lova, A. (2021). Tokenlearner: Adaptive space—time tokenization
for videos. Advances in Neural Information Processing Systems,
34.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., &
Guo, B. (2021). Swin transformer: Hierarchical vision transfor-
mer using shifted windows. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (pp. 10012-10022).
https://doi.org/10.1109/ICCV48922.2021.00986

Caron, M. (2021). Emerging properties in self-supervised vision
transformers. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV) (pp. 9630-9640). https:/doi.org/
10.1109/ICCV48922.2021.00951

Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Reformer: The ef-
ficient transformer. ArXiv. https://doi.org/10.48550/arXiv.2001.
04451

Mehta, S., & Rastegari, M. (2021). MobileViT: Light-weight,
general-purpose, and mobile—friendly vision transformer. ArXiv.
https://doi.org/10.48550/arXiv.2110.02178

Wu, H., Judd, P., Zhang, X., Isaev, M., & Micikevicius, P.
(2020). Integer quantization for deep learning inference: Princi-
ples and empirical evaluation. ArXiv. https://doi.org/10.48550/
arXiv.2004.09602

Wan, L. (2014). A study of factors affecting mobile application
download. Journal of Digital Convergence, 12, 189-196. https://
doi.org/10.14400/JDC.2014.12.7.189

YKpaiHCbKWi }ypHan iHbopmauiiHmx TexHonorin, 2024, 1. 6, Ne 2 (10)

81

B. A. Yopuenvkuii, 1. 4. Kazumupa

Hayionanonuii ynieepcumem “Jlvsiscorka nonimexuixa”, m. Jlvsis, Yxpaina

MO/IEJII MAIIMHHOTO HABYAHHSA TA ONITUMI3ALIMHI CTPATETI /14 MIIBUILIEHHA
E®EKTUBHOCTI KJIACU®IKAILIII HA MOBIJIbHUX IPUCTPOAX

YV po06OTi pO3MIHYTO MiAXOAU 10 BAOCKOHAJICHHS MOJEJeH MallMHHOTO HAaBYAHHA Yy pasi iX 3acTocyBaHHS Ul Kila-
cudikarii y MOOITBHUX JI0JaTKaX, BIUIMB ONTHUMI3aliiHUX TEXHIK Ha MiJBUIICHHS e()EeKTUBHOCTI Kiacuikailii B peaib-
HOMY 4aci Ha MOOLIbHUX IIPUCTPOSIX.

OCHOBHY yBary B JIOCII/DKCHHI MpUIisieHo nopiBHsHHIO MobileNetV2, 3ropTkoBoi HeiipoHHOT Mepexi, po3pobaeHOT
JUISL MOOLIBHUX JOJATKIB, 1 BidyansHux TpaHchopmepis (ViT), siki IpoaeMOHCTpYBaIM yCHIiX y 3aBIAHHAX PO3Ii3HABAHHS
300pakeHb. 3aMICTh CTAHJAPTHHUX 3TOPTKOBHX orepariii MobileNetV2 BuKopHCTOBYE MIMOMHHI BiJOKPEMIICH] 3rOPTKH,
10 ICTOTHO 3MEHIIY€E KUIBKICTh OOYNCIIEHb Ta MapaMeTpiB MO, a TAKOXK BUKOPHCTOBYE 3aJIUILKOBI 3B’ SI3KH, SIKi Ial0Th
3Mory 30epiratu iHpOpMAIitO 13 MONepPeIHIX IapiB, MOKPAIIYIOYH HaBYaHHS Mozesi. ViT BUKOPHCTOBYE MEXaHi3M caMo-
yBaru Juisi BUSIBJICHHS IVIO0AJbHUX 3aJIeKHOCTEN MK YaCTHHAMU 300pa)KE€HHS, 110 Ja€ 3MOTY BPAaXOBYBATH SIK JOKAJIbHI,
TaK i ro0aibHi 03HAKK 0€3 BUKOPHCTAHHS 3rOPTKOBUX IapiB. 300paxenHs y ViT po3ainistoTs Ha naTdi (ikCOBAHOTO po-
3Mipy 1 KOXKEH IaTd 00poOIAIoTh K “CI0BO” B TEKCTI y 3BUYaHUX TpaHChOpMepax, L0 CHpollye poOOTY 3 BEIUKUMU
300paKEHHSIMH.

YV craTTi OLIHEHO MPOAYKTHBHICTH OOMIBOX MOJENEH J0 1 MiCHs 3aCTOCYBaHHS ONTHUMI3ALIHUX TEXHIK, TAKUX SK
KBaHTH3AIlisl — IPOIIEC, IKUI 3HIKYE TOUHICTh KoedimieHTiB Moei 3 32-6iTHOT 10 8-01THOT, 1110 ICTOTHO 3MEHIIIY€e PO3MIp
camoi MoJieli Ta MiJBHIY€e MIBUIKICTh Kiacu@ikamii. BcTaHOBIIEHO, 110 KBaHTH3AMlIS — OAHA 13 Halle()eKTUBHIIIMX ONTH-
Mi3amifHUX CTpaTerii Uil MOOITBHUX CEpEelOBHUIN, OCKUIBKM 3MEHIIye po3Mip Monemi a0 74 % i 30imblIye MIBUIKICTH
kinacudikanii 1o 44 % y ViT. Kpim Toro, nociikeHo posb TeXHIK onTuMizanii rpada, Takux sK 3JIUTTs olepaTopis, 00pi-
3aHHS Ta 3MiHa MOCIIIOBHOCTI BUKOHAHHS OTIepalliid, y 3MCHIIICHHI 00YHCITIOBAIBHOT CKIIAHOCTI Ta MiJBHUIICHHI MTPOAYK-
THUBHOCTI Ha MPUCTPOSIX i3 00MEKEHUMHU pecypcami. L{i TEXHIKM ONTHUMI3YIOTh BUKOHAHHS OTepallii y Mexax 004HCITo-
BaJILHOTO rpada, MiHIMI3yl0ud BUKOPUCTAHHS I1aM’ATi Ta MiBUIIYIOUH Mapajei3M, o € KPUTUYHUM IJIs JOJATKIiB y pe-
IBHOMY Yaci Ha MOOITBHUX TPUCTPOSIX.

31ifiCHEHO eKCIIEPUMEHTH Ta JOCIIDKEHO Pe3ylbTaTH Ha Pi3HUX Habopax naHuX, 3okpema MNIST i ASL Alphabet,
10 JEMOHCTPYIOTh 1CTOTHE MiJIBUILIECHHS MPOAYKTHBHOCTI, JOCSATHYTE 3aBASKM onTuMizallii. JlocaiKeHHs TIOKa3ye, 110
HicasaTpeHyBalbHA KBAaHTU3Allis Ta ONTUMI3aLis rpada MOXKYTh 3MEHIIUTU PO3MIp MOAEN, yac kiacudikauii Ta BUKOpHC-
TaHHS [IEHTPAIBHOTO MPOIEcopa, POOIISTUM MOJIEII MAIIMHHOTO HAaBYAHHS MPHUIATHIIIMMHI JUT MOOIJTBHUX OMaTKIB. Exc-
MepUMEHTH, 3AilicHeHi Ha npuctpoi Xiaomi Redmi Note 8 Pro 3 onepariiinoro cucremoro Android Ta BUKOpPHUCTaHHSIM
TensorFlow Lite s iHTerpaltii, mpoIeMOHCTPYBAJIMH MPAKTHYHI IepeBark Takol ONTUMI3aIlil y peajbHuX MOOIJIBHUX Ce-
PEIOBUIIAX.

BusiBiieHO, 1110 Taki ONTHMI3alidHI TEXHIKH, SIK KBAHTH3AIlis Ta ONTHMI3allis rpada, BaKINBI U pO3TOPTaHHS MOJIe-
JIel MallMHHOTO HaBYaHHS HAa MOOUIBLHUX MPUCTPOSIX, IS IKUX 0OMEKEHHS PeCypCiB 1 MPOAYKTHBHICTh Y pealbHOMY Yaci
MAaIOTh BHpilIaNbHE 3HaYeHHs. [[i TeXHIKH 1ar0Th 3MOT'Y ICTOTHO 3MEHIIIUTH PO3Mip MOJIENI Ta yac kiacuikarlii, He)KepT-
BYIOUH TOYHICTIO, III0 YMOJKJIUBIIIOE TPAKTUYHE BUKOPUCTAHHS MOJIeIeH INTMOMHHOTO HABYaHHS Y MOOLIBHUX IOaTKaX.

Knrouosi cnosa: rimbuHHE HaBYaHHSI, 3rOPTKOBA HEHPOHHA MEpeka, Bi3yallbHI TpaHc(hopMepH, MOOLIBHI 3aCTOCYHKH.

IHpopmauia npo aBTOpIB:
YopHeHbKuit Bonogummp ipocnaBoBuy, acnipaHT, Kadeapa aBTOMaTU30BaHMX CUCTEM YNPABAIHHSA.

E-mail: volodymyr.y.chornenkyi@Ipnu.ua; https://orcid.org/0009—-0000-0569—6623

Kasumupa IpuHa fipocnaBiBHA, KaHA. TEXH. HAYK, AOLEHT, Kadeapa aBTOMATU30BAHUX CUCTEM YMPABAIHHSA.

E-mail:iryna.y.kazymyra@lpnu.ua; https://orcid.org/0009—0000-0569-6623

LiutyBaHHa 3a ACTY: YopHeHbKui B. ., Kasaumupa I. A. Mogeni maluMHHOro HaBYaHHA Ta ONTUMI3aLiMHI cTpaTerii A1 NiABULWEHHA

edeKkTMBHOCTI KnacudikaLii Ha MoBiINbHUX NPUCTPOAX. YKPATHCbKMI KypHan iHbopmaLinHUX TexHonorin. 2024, 1. 6, Ne 2. C. 74-82.

Citation APA: Chornenkyi, V. Y., & Kazymyra, I. Y. (2024). ML models and optimization strategies for enhancing the performance of

classification on mobile devices. Ukrainian Journal of Information Technology, 6(2), 74-82.
https://doi.org/10.23939/ujit2024.02.074

82

Ukrainian Journal of Information Technology, 2024, vol. 6, No. 2

