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OPERATIONAL+BASIS+OF+ARTIFICIAL+NEURAL+NETWORKS+AND+EVALUATION++
OF+HARDWARE+CHARACTERISTICS+FOR+ITS+IMPLEMENTATION+

The tasks performed by the intelligent components of mobile robotic systems (MRS) are analyzed and their features

are determined. The operational basis for the implementation of hardware accelerators of artificial neural networks (ANN)

is defined and divided into three groups of neurooperations: preprocessing, processing and calculation of transfer func-

tions. It is shown that the operations of the first group provide the transformation of the input data to the form that will

give the best results, the operations of the second group (multiplication, addition, group summation, calculation of the dot

product, calculation of a two-dimensional convolution, multiplication of the matrix by a vector) are performed directly in

the neural network itself in the process of training and functioning, operations of the third group provide calculation of

transfer functions. It is determined that the specialized hardware of the intelligent components of the MRS should provide

real-time operation and take into account the limitations in terms of dimensions and power consumption. It is proposed to

carry out the development of specialized hardware of intelligent components of the MRS on the basis of an integrated ap-

proach, which covers the capabilities of the modern element base, parallel methods of data processing, algorithms and

structures of hardware and takes into account the requirements of specific applications. For the development of hardware

accelerators ANN, the following principles were chosen: modularity; homogeneity and regularity of the structure; localiza-

tion and reduction of the number of connections between elements; pipeline and spatial parallelism; coordination of inten-

sities in the receipt of input data, calculation and issuance of results; specialization and adaptation of hardware structures

to algorithms for the implementation of neurooperations. It is proposed to use the following characteristics to evaluate

specialized hardware: hardware resources, operation time and equipment utilization efficiency. Analytical expressions and

a simulation model for evaluating the characteristics of specialized hardware have been developed, the results of which are

used to select the most effective accelerator and elemental structure for the implementation of intelligent components of

the MRS. The method of selection of the element base for the implementation of intelligent components of the MRS has

been improved, which, by taking into account the results of the assessment of the characteristics of hardware accelerators,

the requirements of a specific application and the existing element base for their implementation, ensures the selection of

the most effective of the existing ones.

Keywords: artificial neural network, operational basis, specialized hardware, method of selection of element base, par-

allel algorithms, simulation model, real time, element base.

Introduction+/+9DFGI+
The current stage of development of artificial neural

networks (ANNs) is characterized by the expansion of their

applications, a significant part of which requires the pro-

cessing of intensive data streams in real-time by means that

must simultaneously take into account the limitations in

terms of size, weight, power consumption, and therefore

have high efficiency in the use of equipment. Such applica-

tions include mobile robotic systems (MRS), in which intel-

ligent components are implemented on the basis of ANN,

used to solve the following tasks: recovery of lost data, pa-

rameters measurement accuracy improvement for ground-

based MRS in conditions of interference and incomplete in-

formation, forecasting of spatial data, prediction of MRS

movement, neurofuzzy control of MRS movement, neuro-

like cryptographic data protection, obstacle recognition,

neurofuzzy control of a group of ground-based MRS.

The real-time mode in the intelligent components of the

MRS is provided through the use of specialized hardware

accelerators that implement the most complex basic opera-

tions of algorithms. For the implementation of hardware ac-

celerators, it is necessary to allocate the operational basis of

the ANN. Such an operational basis can consist of the fol-

lowing groups of neurooperations: preprocessing, pro-

cessing, and computation of transfer functions.

To ensure a wide range of applications, intelligent com-

ponents of MRS must have a variable composition of

equipment and be implemented on the basis of a problem-

oriented approach, which involves the use of universal pro-

cessor cores, supplemented by specialized hardware accel-

erators. Such hardware accelerators should provide high

performance by parallelizing the process of calculating

basic ANN operations, easily adapt to the requirements of

specific applications, and be used to synthesize a wide

range of intelligent components of MRS that operate in

real-time. The creation of hardware accelerators for the im-

plementation of basic ANN operations with high equipment

utilization efficiency is carried out on the basis of an inte-

grated approach, which includes a modern element base,
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technologies of ultra-large integrated circuits (VLSI),

methods, algorithms, and VLSI structures for parallel calcu-

lation of basic ANN operations.

When developing hardware ANN accelerators, an ur-

gent task is to assess their main characteristics: hardware

resources, operation time, and equipment utilization effi-

ciency. Based on the results of the evaluation, the VLSI

structure of the accelerator is compared and selected for its

hardware implementation based on programmable logic in-

tegrated circuits of the FPGA (Field-Programmable Gate

Array) type. When implementing an FPGA accelerator, it is

advisable to take the unit of measurement of hardware re-

sources as a logic gate that implements the operations NOT,

AND-NOT, OR-NOT. The execution time of the basic oper-

ation in the accelerator is estimated by the sum of the de-

lays on the gates during the passing of data from the input

to the output. Based on the results of the assessment of

hardware resources, the time of execution of the basic oper-

ation, and its complexity, the efficiency of the equipment

utilization is determined, which gives an assessment of the

resulting structure in terms of productivity. The results of

the evaluation of the main characteristics of hardware ac-

celerators and the requirements of a specific application are

taken into account when choosing the element base for the

implementation of intelligent components of the MRS. The

selection of the most effective element base should be car-

ried out on the basis of an integrated assessment of the ef-

fectiveness of each of its types.

Therefore, the urgent task is to determine the operation-

al basis of the ANN, to develop and evaluate the main char-

acteristics of the hardware accelerators of the ANN and to

select the element base for the implementation of intelligent

components of the MRP.

The object of the research is the processes of determin-

ing the operational basis of the ANN, the development and

evaluation of the characteristics of the hardware accelera-

tors of the ANN, and the selection of the element base for

the implementation of intelligent components of the ANN.

The subject of the research is the methods of develop-

ment and evaluation of the characteristics of hardware ac-

celerators of ANN and the selection of the element base for

the implementation of intelligent components of the MRS.

The aim of the work is to improve the method of select-

ing the element base, to develop simulation models for

evaluating the characteristics of hardware accelerators of

the ANN, and the selection of the element base, which will

allow the creation of intelligent components for the MRS

with high equipment utilization efficiency.

To achieve this goal, the following main tasks of the

study are defined:

 determine the operational basis;
 formulate requirements and select the principles

for the development of hardware accelerators for

ANN;
 to develop analytical expressions for evaluating

the characteristics of hardware ANN accelerators;
 to improve the method of selecting the element

base for the implementation of intelligent compo-

nents of the MRS;
 to develop a simulation model for evaluating the

characteristics of hardware accelerators of ANN;

 to develop a simulation model for the selection of
the element base for the implementation of intelli-
gent components of the MRS.

Analysis of the latest research and publications.

Intelligent components of mobile robotic systems (MRS)

are an integral part of ensuring their autonomous operation

and adaptability. Recent research in this area has largely

focused on the use of artificial neural networks (ANNs) to

improve tasks such as navigation, pattern recognition, and

real-time decision-making. Advances have been made in

the application of deep learning and reinforcement learning

to solve problems of autonomous navigation and decision-

making by robots under uncertain conditions [1]. An

important aspect is the integration of ANN with other

artificial intelligence algorithms, which increases the

overall efficiency of systems [2].

The operational basis of ANN is based on mathematical

operations, such as multiplication and addition, which form

the basis of computational processes in neural networks [3].

ANN algorithms are optimized to improve performance at

the hardware level, allowing for efficient processing of

large amounts of data [4]. At the same time, studies show

the need to improve hardware accelerators to optimize

energy efficiency and computing speed [5].

The implementation of ANN requires significant com-

puting resources to ensure speed and low latency, which is

important when working with large neural networks. For

this purpose, specialized hardware accelerators are being

developed to optimize the performance of basic operations

of neural networks [6].

Studies of hardware ANN accelerators demonstrate that

their design principles are based on the spatio-temporal

mapping of neural networks and parallel data processing

[7]. This makes it possible to significantly increase machi-

ning efficiency and reduce energy costs, making such solu-

tions important for a wide range of applications [8].

The performance evaluation of hardware accelerators

is based on analytical models that allow you to calculate

the performance, power efficiency, and latency associated

with data processing. Such models are used to compare

hardware accelerators with software implementations on

CPU and GPU processors [9]. Studies show that the use of

hardware accelerators provides significant advantages in

performance and energy efficiency compared to traditi-

onal solutions [10].

The choice of the element base for the implementation

of hardware accelerators is an important step that affects

their performance and cost. Research shows that FPGAs are

the most flexible solution for implementing hardware

accelerators, as they allow a balance between energy effi-

ciency and performance, while ASICs provide maximum

performance at higher costs [11].

Modern simulation models make it possible to evaluate

the effectiveness of various configurations of hardware

components for ANN [12]. Such models help to select the

optimal element base for the implementation of systems,

which increases the overall efficiency of mobile robotic

systems adapted to work in complex environments [13].

Research also highlights the importance of developing

models that take into account power consumption, pro-

cessing speed, and compatibility with mobile system com-

ponents [14]. This makes it possible to provide flexibility
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and scalability of solutions for various tasks of autonomous

robotic systems.

Research+results+and+their+discussion+/+
0JLGMNFOFQ+RSDMURWJXXY+FO+Z]+S_`SaSbJXXY+

1. Intelligent components of the MRS and deter-

mination of the operational basis of the ANN. The cur-

rent stage of MRS development is characterized by the

widespread use of ANN for the implementation of intelli-

gent components for data processing, obstacle detection,

platform traffic control, and data protection. The main re-

quirements for such components are real-time operation and

high technical and operational characteristics, the main of

which are restrictions on power consumption, dimensions,

and weight.

The analysis of the tasks that are implemented by the in-

tellectual components of the MRS has shown that they have

the following features:

 high intensity and consistency of incoming data
flows;

 constant complication of processing algorithms
and increased requirements for the accuracy of re-
sults;

 the ability to parallelize data processing both in
time and space;

 ability to generalize and abstract;
 learning, self-learning, and self-organization under

the influence of the external environment.

The development of highly efficient intelligent com-

ponents of MRS requires the widespread use of modern

element base (microprocessors, microcontrollers, a SoC

(System on Chip), programmable logic integrated circuits

such as FPGA (Field-Programmable Gate Array), the de-

velopment of new methods and algorithms for real-time

data processing and structures focused on the modern el-

ement base. In practice, intelligent components of MRS

can be implemented in software, hardware, or software

and hardware.

The software implementation of intelligent compo-

nents of the MRS involves the use of universal means

(microprocessors, microcontrollers). With the software

implementation of intelligent components, computing

processes are mainly deployed in time with a large amount

of information transfer between RAM and operating de-

vices. When using software, the problem arises of mini-

mizing the volume of programs and the time of their im-

plementation with a given accuracy of calculations. These

tools are characterized by high flexibility in terms of the

possibility of modifying and replacing operating algo-

rithms along with low speed.

Advances in the development of FPGAs make it possi-

ble to increasingly shift the implementation of neuroalgo-

rithms to hardware that deploys the computing process both

in time and space. The structural organization of such

hardware is based on the principle of adequate hardware

mapping of graphs of neuroalgorithms. Hardware is charac-

terized by high speed along with the complexity of modify-

ing and changing data processing algorithms.

In most cases, intelligent components of MRS are im-

plemented on the basis of SoC, which combines universal

and special approaches, software, and hardware. At the

same time, the development of intelligent components of

the MRS with specified technical parameters on the SoC

comes down to supplementing the universal computing core

with specialized hardware.
Specialized hardware of intelligent components of the

MRS is based on the operational basis of the ANN, which
is shown in Fig. 1.

The operational basis of ANN consists of three groups
of basic operations: the first group is neurooperations of
preprocessing, the second group is neurooperations of pro-
cessing, and the third group is the calculation of transfer
functions.

The first group is preprocessing neurooperations. The
operations of this group ensure that the input data is con-
verted to the form that produces the best results. The learn-
ing vector contains one value for each input of the neural
network and one value for each output of the network, de-
pending on the type of training (unsupervised or unsuper-
vised). As a rule, training a network on a “raw” set does not
give quality results. To improve the quality of the neural
network usage, input data is pre-processed, which boils
down to performing the following operations: normaliza-
tion, quantization, and filtration.

Normalization is a procedure for pre-processing input
data (training, testing, and working samples), in which the
values of the features that form the input vector are reduced
to a certain specified range. After normalization, all values
of the input features will be reduced to some narrow range
[0, 1] or [–1, 1].

Normalization of input data to the range [0, 1] is per-
formed as follows:

min

max min

i
i

x x
x

x x

´ -
=

-
, (1)

where xi is the input data, maxx is the maximum value of

the input data, minx and is the minimum value of the input

data.
Normalization of input data to the range [-1, 1] is as fol-

lows:

max

i
i

x
x

x

´ = . (2)

These kinds of normalization do not require complex
calculations and are widely used for xi inputs that tightly fill
a certain gap.

After normalizing the input data in the RBF and GRNN
networks, the Euclidean distance from each input vector to
all the others must be calculated. This calculation of the
Euclidean distance is performed using the operation:

2 2 2 2
1 1 2 2|| || ( ) ( ) ... ( )e b e b e b e b

i i N Ny x x x x x x x x= - = - + - + + - .(3)

For other types of neural networks, filtering can be
used, which is performed on noisy input data and is reduced
to discarding values that are invalid. In addition, quantiza-
tion is performed on continuous quantities, which involves
the determination of a finite set of discrete values.

The second group is processing neurooperations.
This group includes operations that are performed direct-
ly in the neural network itself in the process of training
and functioning. The group of processing neuroopera-
tions includes the following: multiplication, addition,
group summation, calculation of a dot product, calcula-
tion of a two-dimensional convolution, and multiplica-
tion of a matrix by a vector.
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Fig. 1. The operational basis of ANN / W.2/#5(K"9K D#;9%gei

The third group consists of the transfer function

computing operations. Neuroelement transfer func-

tions are mathematical functions that determine the

response of a neuroelement to input signals. In a neu-

roelement, the result of calculating a dot product is

converted into an output signal through an algorithmic

process known as the transfer function. The group of

transfer function computing operations provides the

following transfer functions: threshold, sigmoidal, and

piecewise linear.
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Analysis of the operational basis of the ANN shows that

neural network operations can be divided into one-operand

(square root, transfer functions), two-operands (addition,

division, multiplication), and multi-operands (determination

of minimum and maximum numbers, group summation,

calculation of dot product, calculation of the sum of squares

of differences, calculation of two-dimensional convolution,

multiplication of the matrix by a vector). Existing hardware

neuroelements and neural networks are implemented main-

ly on one- and two-operand operations, this is due to the

capabilities of the element base. The evolution of the de-

velopment of hardware for the implementation of basic

operations is closely related to the structural unit of pro-

cessing, that is, to the number of bits and the number of

operands that the operating device simultaneously proces-

ses. With the development of integral technology, there is a

tendency to change the structural unit of processing from

one- and two-operand to multi-operand, which is performed

in parallel.

The peculiarity of multi-operand neurooperations is that

they are performed on a set of operands and the result of the

operation is one number. Multi-operand neurooperations

are proposed to be performed on the basis of a multi-ope-

rand approach, in which the process of calculating a neuro-

operation is considered as the performance of a single oper-

ation based on elementary arithmetic operations.

2. Requirements and principles for the development

of hardware accelerators ANN. The main requirements

for specialized hardware of intelligent components of MRS

are minimization of dimensions, power consumption, relia-

bility, flexibility, and real-time operation. The creation of

such specialized hardware requires the widespread use of

modern element base, the development of new pipeline

methods and neural algorithms for processing data streams

of different intensities in real-time. Real-Time Mode im-

poses a limit on the time tSP for solving the problem, which

should not exceed data input period tDI, i.e.:

DISP tt £ . (4)

The exchange time depends on the volume N, the num-

ber of bits n and the frequency FDI of the incoming data, as

well as on the number of k channels and their bit width nk.

This time is determined by the formula:

kDI
E

knF

Nn
T = . (5)

To ensure the processing of data streams in real time,

the performance of specialized tools must be:

Nn

knRF
P kDIb
= , (6)

where R is the complexity of algorithms for solving prob-

lems; U is the coefficient of taking into account the features

of the means of implementing the algorithm.

It is also possible to ensure the operation of conveyor

specialized hardware in real-time by matching the intensity

of data intake with the intensity of their processing. The in-

tensity of data receipt PD depends on the number and bit

width of data channels and the frequency of data intake:

DID knFP = . (7)

The intensity of data processing in conveyor specialized
hardware is defined as follows:

k

mm
k

T

nm
D = , (8)

where mm is the number of data channels in the conveyor
steps; nm is the number of bits of data channels in the pipe-
line steps; Vk is a conveyor cycle of data processing.

To ensure the processing of intensive data streams in re-
al time, the intelligent components of the MRS use convey-
or-specialized hardware that implements the basic opera-
tions of the ANN. Each such basic operation can have se-
veral variants of its hardware implementation. To select a
specific variant of the hardware implementation of the basic
operation of the ANN, it is proposed to use the criterion of
equipment utilization efficiency E, which links performance
to hardware costs and evaluates hardware by performance.
The quantitative value of the equipment utilization efficien-
cy is determined as follows:

suSPWt

R
E = , (9)

where Wsu is the hardware resources for the implementation
of specialized unit, R is the complexity of algorithms for the
operation of specialized hardware, tSP is the time for solving
the problem.

Principles of construction of specialized ANN hard-
ware. The development of specialized hardware for intelli-
gent components of the MRS is proposed to be carried out
on the basis of an integrated approach, which is based on
the capabilities of the modern element base, covers parallel
methods of data processing, algorithms, and structures of
hardware for the implementation of basic ANN operations
and takes into account the requirements of specific applica-
tions. For the fullest use of the advantages of the modern
element base, the development of structures for the hard-
ware implementation of basic operations is proposed ANN
algorithms should be carried out according to the following
principles:

 use of the basis of elementary arithmetic opera-
tions for the implementation of basic operations of
ANN algorithms;

 modularity, which involves the development of
specialized hardware for the implementation of
basic operations of ANN algorithms in the form of
functionally complete devices;

 localization and reduction of the number of con-
nections between elements of structures for the
implementation of basic operations of ANN algo-
rithms;

 pipeline and spatial parallelism in the develop-
ment of structures for the implementation of basic
operations of ANN algorithms;

 homogeneity and regularity of the hardware struc-
ture;

 consistency of the intensity of data intake with the
intensity of calculations in hardware;

 specialization and adaptation of hardware to the
structure of algorithms for the implementation of
the basic operation and the intensity of data in-
flow.

3. Evaluation of the characteristics of hardware

ANN accelerators. The main characteristics that are used

to evaluate the hardware for the implementation of the basic
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operations of the ANN algorithms are hardware resources,

operation execution time, and equipment utilization effi-

ciency.

Hardware resources are the amount of equipment that is

required to build specialized hardware, expressed in certain

units. The unit of measurement of hardware resources can

be: the number of blocks of standard sizes; the number of

printed circuit boards; the number of ultra-large integrated

circuits (VLSIs) of the same type or conditional packages

reduced to one type of package; the number of gates or

transistors when implementing specialized hardware in the

form of VLSI. For specialized hardware that implements

the basic operations of ANN algorithms using FPGAs, it is

advisable to take a logic gate that implements NOT, AND-

NOT, OR-NOT operations as a unit of measurement of

hardware resources. Such hardware is implemented on the

basis of functional nodes (triggers, registers, adders,

switches, decoders, multiplication devices, memory ele-

ments, etc.), which are characterized by the speed and

hardware resources for their implementation. To estimate

the hardware resources (in the number of gates) and speed

(which is determined by the sum of delays on the stages of

logic gates) of individual functional nodes of MRS intelli-

gent components, analytical expressions have been deve-

loped, which are given in Table 1, where n is the number of

bits of functional nodes, m is the number of inputs, X is the

data delay time when passing through the gate.

These values were obtained by modeling functional

nodes in the implementation of specialized VLSI processors

for fast cosine and sine Fourier transforms [15] and devices

for parallel-flow calculation of scalar products [16]. With

the use of the developed analytical expressions (Table 1),

the estimation of hardware resources for the implementa-

tion of specialized unit is carried out.

Table 1. Analytical expressions for estimating hardware resources and performance of functional units /

`"#'(79:"( 69/#;9 *'4 +5("I6#""4 697/#7 +D'#*"#""4 7# 869*-+*(F =>"-5(+"#'A"9B 6>;'(6

Salary

No.
Names of functional units

Hardware resources

(gates)
Number of delay stages (} gates)

1 Trigger 6 3

2 Register 7 n 3

3 Single-digit adder 18 7

4 Single-digit subtractor 18 7

5 Single-digit adder-subtractor 20 8

6 n-bit Adder 20 n 7 log2 n

7 n-digit Subtractor 21 n 8 log2 n

8 n-digit Adder-Subtractor 23 n 8 log2 n

9 m-input n-bit Adder (m–1) 20 n 7 log2 n log2 m

10
m-input

n-digit Conveyor Adder
27 (m–1) n 10

11 Multiplication Device 18 n2 14 n

12 Square Elevation Device 9 n2 12 n

13 Division Device 20 n2 16 n

14 Comparison Scheme 7 n 3 log2 n

15 Binary Counter 12 n 5 log2 n

16 Decoder mYl (2 m+2log2 l) m

17
m-input

n-bit Switch
3mn m

18 m-input n-bit ROM 2 m n (m+3)

19
m-input

n-bit RAM
2 m 3 n (m+3)

Estimation of hardware resources for the implementa-
tion of the r-th component of the ANN is carried out ac-
cording to the formula:

rj

k

j
FNCANNr qWW

r

rj
å
=

=
1

, (10)

where CANNrW is the hardware resources for the imple-

mentation of the r-th component of the ANN; kr is the
number of types of functional nodes in the r-th component

of the ANN,
rjFNW is the hardware resources for the j-th

type of the functional node of the r-th component of the
ANN, qrj is the number of functional nodes of the j-th type
of the r-th component of the ANN. Estimation of hardware
resources for implementation of ANN is carried out accor-
ding to the formula:

å å
= =

=
M

r
rj

k

j
FNrANN qWW

r

j
1 1

, (11)

where M is the number of ANN components.

The speed of an asynchronous ANN is determined by the

delay time when data passes through components that are

on the longest path of execution of the neuroalgorithm and

is estimated using the following formula:

å
=

=
M

r
CANNANN r

tt
1

, (13)

where tCANNr is the delay time for data to pass through the r-

th component in the ANN.

Estimating the execution time of the basic ANN opera-

tion. In the asynchronous (single-clock) mode of operation,



 !"$&()+!,- ./"($1 2(45"7$82-(,9 ;<9(515>2-, 2024, ;. 6, ? 2 (10) 131

the speed of the r-th hardware component of the ANN is

determined by the delay time when data passes through the

functional nodes that lie on the longest path of execution of

the r-th component algorithm and is estimated by the fol-

lowing formula:

1

rP

CANNr rjs
s

t t
=

=å , (12)

where trjs is the delay time when data passes through the s-

th functional node j-th of the r-th component of the ANN,

Pr is the number of functional nodes that lie on the longest

path of execution of the algorithm of the r-th component of

the ANN.

In the synchronous (conveyor) mode of operation, the

speed of the r-th hardware component and the ANN is de-

termined by the conveyor cycle of operation Tk, which is

equal to the greatest delay in the data passage in the con-

veyor steps and is estimated by the formula:

1

max
Z

k jl
l

T t
=

=å , (14)

where tjl is the delay time when the data in the conveyor

step passes through the l-th functional node of the j-th type,

Z is the number of functional nodes through which the data

passes through the pipeline step.

Evaluation of the equipment utilization efficiency. To

process continuous, intensive data streams, it is advisable to

use pipelined specialized hardware. The efficiency of using

the equipment by conveyor specialized hardware that im-

plements the r-th basic operation (r-th component) of the

ANN is determined as follows:

1 1

max
r

rj

CANNr kZ
k CANNr

jl FN rj
l j

R R
E .

T W
t W q

= =

= =

å å
(15)

The equipment utilization efficiency by conveyor spe-

cialized hardware that implements ANN as a whole is de-

termined as follows:

1 1 1

max
r

j

ANN kZ M
k ANN

jl FNr rj
l r j

R R
E .

T W
t W q

= = =

= =

å åå
(16)

When evaluating the equipment utilization efficiency

for components that are implemented in the form of VLSI,

it is necessary to take into account the number of interface

pins, geometric, dynamic and other parameters of active el-

ements and the relationships between them. The equipment

utilization efficiency by conveyor components, which are

implemented in the form of VLSI, is determined by:

1 2 3
1

r

rj

VLSI k

k FN rj
j

R
E

V k k W q k Y
=

=

+å
, (17)

where k1 is the coefficient of taking into account the homo-

geneity of the structure, k2 is the coefficient of taking into

account the regularity and locality of connections, k3 is the

coefficient of taking into account the number of pins of the

communication interface k3 = f (Y).

Taking into account the coefficients k1, k2 and k3 is due

to the fact that the cost of the VLSI component is largely

determined by the area of the crystal. Reducing the size of

active elements leads to a proportional increase in their

speed and a decrease in the length of communication lines.

Improvement of the method of selection of the ele-

ment base for the MRS intelligent components imple-

mentation.

A promising element base for the implementation of in-

telligent components for the MRS is SoC (System on Chip),

which includes built-in processor cores and an FPGA field

with high integration of gates on a chip (more than 10 mil-

lion gates). The use of SoC for the implementation of intel-

ligent components of the MRS will provide:

 integration of software and hardware;
 increase in productivity due to the hardware im-

plementation of basic ANN operations;
 reducing the cost of components;
 reduction of power consumption due to the ability

to turn off the power supply to the FPGA field;
 reduction of development time due to the availa-

bility of a large set of development and debugging

tools.

For the selection of the element base (SoC) in the im-

plementation of intelligent components of the MRS, the

method has been improved, which is based on the applica-

tion of the theory of multi-criteria analysis and takes into

account the requirements of a specific application (perfor-

mance of the processor core, memory capacity, power con-

sumption of the processor core, number of FPGA gates,

clock speed of the FPGA, power consumption and cost of

the FPGA, weight, dimensions, temperature range, reliabil-

ity, resistance to special factors, etc.).

The basis of the method for selecting the element base

for the MRS intelligent components implementation is the

calculation of an integrated assessment of its efficiency on

the basis of partial efficiency criteria, which are formed for

each specific application.

The calculation of the integrated performance assess-

ment will be carried out according to the scheme of trade-

offs. According to this scheme, the integrated assessment of

the efficiency of the j-th element base is calculated in ac-

cordance with the expression:

max
n

IPAj i nCi
i 1

E Zl
=

= Þå , (18)

where i = 1,..., n is the number of partial performance crite-

ria of the hardware and software component included in the

convolution; %l – i-th weighting coefficient; nC%Z – nor-

malized assessment of the effectiveness of the i-th partial

criterion.

The method of selecting the element base for the MRS

intelligent components implementation requires the follo-

wing stages:

 to form a list of partial criteria on which the effec-

tiveness of the element base depends;
 determine the scale of changes in numerical va-

lues of partial criteria for the effectiveness of the

element base;
 determine the set of elements that meet the re-

quirements of the terms of reference;
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 determine the values of the weighting coefficients
that determine the relative importance of the i-th
partial criterion;

 calculate the values of i-th partial normalized effi-
ciency criteria for the element base;

 calculate an integrated assessment of the effec-
tiveness of each j-th element base;

 compare and select the element base for the im-
plementation of intelligent components of the
MRS.

At the first stage of selection of the element base for the

MRS intellectual components implementation, a list of par-

tial criteria for the effectiveness of the element base is

formed. The list of partial criteria for the efficiency of the

element base for the MRS intellectual components imple-

mentation is given in Table 2.

At the second stage of selection of the element base for

the MRS intellectual components implementation, the scale

of changes in the numerical values of the partial efficiency

criteria is determined. The formation of the scale of chan-

ges in these numerical values is carried out on the basis of

the terms of reference for the development of intelligent

components of the MRS.

Table 2. A list of partial criteria for the equipment utilization efficiency of the elementary base for the MRS intellectual components

implementation / L2/2'(- :#%7-+69B -/972/(F6 2=2-796"+%7( 2'2@2"7"+F D#;9 /2#'(;#5(F ("72'2-7>#'A"9B -+@.+"2"7(6 iU]

Criterion Name Denomination

Performance of the j-th processor core LL\j

Memory capacity of the j-th SoC Qj

Clock speed of the j-th processor core FL\j

Power consumption of the j-th SoC PL\j

Clock speed of the j-th  FPGA FFPGAj

Number of logic elements of the j-th FPGA T:Zj

Memory capacity of the j-th FPGA configuration QFPGAj

Power consumption of the j-th FPGA PFPGAj

External interface of the j-th SoC RSoCj

J-th SoC Enclosure YSoCj

Availability of tools for the development of the j-th SoC BSoCj

Maximum operating temperature of the j-th SoC tmaxj

Minimum operating temperature of the j-th SoC tminj

The cost of the j-th SoC CSoCj

The cost of tools for the development of the j-th SoC CISoCj

Reliability of the j-th SoC HSoCj

At the third stage of the selection of the element base

for the MRS intellectual components implementation, a set

of SoCs that meet the requirements of the terms of refe-

rence is determined. Threshold coefficients are used to se-

lect such a set. The selection of a set of possible SoCs for

the MRS intellectual components implementation is carried

out according to the following formulas:

1
SoC

N

Z SoCj j j j j j j j j j j j j j j
j

W Z n q p c m s f d r y b t h g
=

= å , (19)

where SoCjZ is the j-th SoC; N is the number of elements

of the set; nj, qj, pj, vj, dj, fj, cj, mj, sj, rj, yj, bj, tji, hj, ]j –

threshold coefficients j-th SoC respectively in terms of per-

formance, memory capacity, power consumption, data

transfer rate, bit width of the processor core, clock speed,

cost, weight, dimensions, interface, die area, development

tools, temperature range, reliability, resistance to special

factors. Threshold coefficients can take one of two values:

1 – when a particular parameter meets the requirements of

the terms of reference or 0 – when a particular parameter

does not meet the requirements of the terms of reference.
At the fourth stage of selecting the element base for the

MRS intellectual components implementation, we deter-

mine the values of the weighting coefficients jl for the par-

tial criteria of the elements’ efficiency. The value of the
weighting coefficients is determined by the importance of
the criterion for the functioning of the intellectual compo-
nents of the MRS. When determining the weighting coeffi-
cients, it must be borne in mind that the sum of all

weighting coefficients must be equal to one
1

1
n

j
i

l
=

=å . The

determination of weighting coefficients is carried out by
means of an expert survey. In the process of developing the
intellectual components of MRS, the method of attribution
of points or the method of ranking is often used.

At the fifth stage of the selection of the element base for
the MRS intellectual components implementation, the nor-
malization of partial efficiency criteria is performed. For
each j-th variant of the SoC, normalization of performance
efficiency criteria EPEj, memory capacity EMj, power con-
sumption EPj, data transfer rate EDRj, cost ECj, weight EWj,
dimensions EDj and reliability ERj is performed by dividing
the corresponding parameter by its value specified in the
terms of reference.

At the sixth stage of selecting the element base for the
MRS intellectual components implementation, an integra-
ted assessment of the efficiency of the j-th SoC is calcula-
ted. The calculation of the integrated efficiency score of the
j-th SoC is performed using the formula:

S o C j^E S P E P E j M M j P P jE Z Z Zl l l l= + + +

+ D RDR DRj C Cj W Wj Dj RjZ Z Z Z Zl l l l l+ + + + + (20)

At the seventh stage of the selection of the element base,

the SoC is determined, which will be used to implement the

intelligent components of the MRS. From the set of SoCs

that meet the requirements of the terms of reference, the

SoC whose integrated performance assessment is the largest

E max
SoCIES is selected.
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Fig. 2. The user interface of the software tools for evaluating the

characteristics of the ANN components / Q+/9%7>6#5A-9K

("72/=2K% ./+E/#@"9B ;#%+D(6 *'4 +5("I6#""4

B#/#-72/9%79- -+@.+"2"7(6 gei

The improved method makes it possible to automate the

selection of the optimal element base for the MRS intelli-

gent components implementation in accordance with the

requirements of the terms of reference.

Fig. 3. Addition of functional nodes to the designed structure

of the ANN component / N+*#6#""4 =>"-5(+"#'A"9B

6>;'(6 > ./+J-7+6#"> %7/>-7>/> -+@.+"2"79gei

5. Development of a simulation model for evaluating

the characteristics of hardware accelerators of ANN. To

implement the simulation model for evaluating the charac-

teristics of hardware accelerators of ANN, software tools

have been developed to evaluate the characteristics of

hardware for the implementation of basic operations of

ANN algorithms. The developed software tools make it

possible to calculate the hardware resources and the execu-

tion time of an individual component of the ANN, taking

into account the basic characteristics of the constituent ele-

ments of the hardware implementation, which are presented

in Table 1. These data are further used to evaluate the equ-

ipment utilization efficiency. The user interface of the de-

veloped software tools is presented in Fig. 2.

In the process of use, the program offers: select the bit

size of the created ANN component, set the value of the

number of inputs, and other basic parameters. With the help

of the interface (Fig. 3), individual functional units are ad-

ded to the designed structure of the ANN component.

After determining all the functional nodes of the de-

signed structure of the ANN component, the calculation of

hardware resources and data processing delays is carried

out, and the corresponding graphs are built, which make it

possible to visualize the obtained characteristics of the

ANN component for different parameters of the input data

bit depth and the number of inputs.

Microsoft Excel tools can be used to visualize the re-

sults of the assessment of hardware resources, speed, and

equipment utilization efficiency used in the specialized

hardware development stage for the implementation of

basic operations of ANN algorithms. The performed calcu-

lations data is exported to a CSV file format, which pro-

vides ample opportunities for creating various graphs and

diagrams and helps in evaluating the parameters of the cre-

ated specialized hardware of the ANN components.

Let us consider the evaluation of the characteristics of

hardware accelerators of ANN on the example of a device

for calculating a dot product with the formation of a group

of partial products [15, 16]. The parallel-flow structure of

the device for calculating the dot product with the for-

mation of group partial products is shown in Fig. 4, where

V^1 are the first clock pulses; V^; – conveyor clock pulses; N

is the number of inputs Xj and weights Wj, j = 1,..., N; k is

the number of digits of the factors Xj , which are analyzed

to calculate the group partial products of Pjh; h = 1,…, m;

n
m

k

é ù= ê úê ú
, m is the number of conveyor steps, é ùê ú is the

rounded sign to a larger integer; CSh – h-th stage of the

conveyor; Rg – register; Ad – adder; GPPFB – block for the

formation of group partial products; PPF is a partial product

former, which is implemented on the basis of n logical ele-

ments I; kAd is the k – input adder; Z is the output of the

dot product.

The calculation of the dot product in this device in-

volves dividing the factors of Xj into groups of k digits

(k`3) [16]. As a result of this partition, we get m groups.

For each h-th group of digits of the multiplier Xj, the group

partial product Pjh is calculated using the following

formula:

( )1

1
2

k s
jh j jhss

P W X
- -

==å . (21)

After the group partial products Pjh are formed, the h-th

macropartial product is calculated using the following for-

mula:

1

N

Nh jh
j

P P
=

= å . (22)

The calculation of the dot product Z with the formation

of group partial products is performed as follows:

12 k
h h MhZ Z P-

-= + . (23)

The device works in such a way that with each clock

pulse V^1, which enters the clock inputs of the registers of

the data format converter, the input data Xj and the

weighting factors Wj are written to the registers RgW1 and

RgX1. After n cycles in the registers of the format conver-

ter, we get N input data Xj and N weighting factors Wj ,

which are rewritten by the front edge of the clock pulse V^;
into the registers RgW1,..., RgWN, RgX1,..., RgXN of the

first step of CS1.

In each h-th cycle of operation, data from the outputs

(h–1) of the conveyor stage CSh-1 are recorded into regis-

ters RgW1,..., RgWN, RgX1,..., RgXN and RgZ1 of the h-th

conveyor stage CSh. In the block h-th conveyor stage CSh

for the h-th group of digits 1, 2,...,jh jh JhkX X X of the multipli-

er at the outputs of PPF1,…, PPFk is formed k partial prod-

ucts according to the formula jhs j jhsP W X= .
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Fig. 4. The parallel-flow structure of the device for calculating the scalar product with the formation of group partial products /
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The formed partial products go to the input of the k-

input adder, and the s-th (s = 1,..., k) partial product

jhsj XW is shifted relative to (s–1)-th of the partial pro-

duct by one digit to the right. By adding the partial products

at the output )1( -sjhj XW of the k-input adder, we obtain

the group partial product Pjh according to the formula (21).

The formed group partial product Pjh goes to the j-th in-

put of the N-input adder NAd, at the output of which, in ac-

cordance with the formula (22), we obtain the h-th macro-

partial product PMh. The computed h-th macropartial pro-

duct PMh enters the input of the adder Ad, where it is added

to the (h–1)-th partial result Zh–1 according to formula (23).

The result of the calculation of the first dot product is ob-

tained at the output of the device after the m-th clock pulse

V^;. In each subsequent cycle of the V^;, the output of the

device will receive the results of the calculation of the fol-

lowing dot products.

This device works with a conveyor cycle, which is cal-

culated using the formula:

[ 2 26 1 7log log 7k Rg I kAd NAd AdT t t t t t n k= + + + + = + + ´ +

+ ]2 2 27 log log 7 logn N n
t

+ ´ + , (24)

where tRg is the time of writing/reading from the regis-

ter; t^ is the data delay time on logical element I; tkAd

and tNAd are the time of addition on the k-input and N-
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input adders, respectively; tAd is the time when two

numbers were added.

The hardware resources for the implementation of the

dot product calculation device are determined by the ex-

pression:

( )
( )

2 2

14 14 ( 1 20 ) ( 1)20 20 7

CD PPF GPPFB NAd Ad Rg

Rg Rg LogI kAd NAd Ad Rg

W W m NW W W W

NW m N W kW W W W W

Nn m N n kn k n N n n n

é ù= + + + +ë û

é ù= + + + + + + =ë û

= + + + - + - + +é ùë û

, (25)

where WPPF is the hardware resources for the dot product

calculation device; WGPPFB is the hardware resources for the

block of formation of group partial products; partial product

former; WRg – hardware resources for the implementation of

the register; WLog^ – hardware resources for the implementa-

tion of logical element I; WkAd and WNAd are the hardware

resources for implementation, respectively, for k – input

and N – input combiners; WAd is the hardware resources for

the implementation of the adder.

The equipment utilization efficiency by a conveyor de-

vice for calculating the dot product is determined by:

CD

k CD

R
E

T W
= , (26)

where R = N(n+1), R is the complexity of the algorithm for

calculating the dot product in the number of addition opera-

tions.

An example of the evaluation of the ANN component

developed above, and visualization of characteristics is

shown in Fig. 5, 6.

A family of graphs for estimating the hardware re-

sources of the developed parallel-flow structure of the de-

vice for calculating the dot product with the formation of

group partial products is presented on Fig. 5. The depen-

dencies of the calculated hardware resources on the number

of inputs for the values of 8, 16, 24, and 32 bits and the bit

width of the data in the range from 4 to 32 bits are given.

Graphs for estimating data processing delays for the de-

veloped parallel-stream structure device (Fig. 6) depending

on the number of inputs and data bit depth are given simi-

larly to Fig. 5.

6. Development of a simulation model for the selec-

tion of the element base for the MRS intelligent compo-

nents implementation.
On the basis of the improved method of selecting the

element base for the MRS intelligent components imple-
mentation, a simulation model is developed. The algorithm
of the simulation model for selecting the element base con-
sists of the following steps:

Step 1: Initialization of the simulation model.

Step 2: Initialization of the connection with the database

on the structure of the hardware accelerator and the MRS

intelligent component, the composition of the available

element base, and the requirements of the terms of refe-

rence.

Step 3: Reading the technical characteristics of the ele-

ment base.

Step 4: Reading the search criteria and limitation data.

Step 5: Reading information about the structure of the

hardware accelerator and the MRS intelligent component.

Step 6: Filtering the element base according to the

min/max values of the element criteria.

Step 7: Normalization of weights for each of the criteria.

Step 8: Normalization of the partial criteria of each of

the filtered elements.

Step 9: Calculation of the integrated performance score

for each of the elements.

Step 10: Sorting items in descending order of integrated

efficiency value.

Step 11: Synthesize the alternative connections of a sub-

set of elements into a module. Validate component interfa-

ces and select alternatives that satisfy interface compatibi-

lity.

Step 12: Compute an integrated performance score for

each of the synthesized modules.

Step 13: Sort items in descending order of integrated

performance value.

Fig. 5.  Evaluation of hardware resources depending on the number of inputs and bit rate of the developed ANN component / W5("-# 697/#7

+D'#*"#""4 ;#'2<"+ 6(* -('A-+%7( 6B+*(6 7# /+;/4*"+%7( /+;/+D'2"+F -+@.+"2"79gei
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Fig. 6.  Evaluation of data processing delays depending on the number of inputs and bit rate for the developed ANN component / W5("-#

;#7/9@+- +D/+D'2""4 *#"9B ;#'2<"+ 6(* -('A-+%7( 6B+*(6 7# /+;/4*"+%7( *'4 /+;/+D'2"+F -+@.+"2"79gei

Step 14: Output the results to the user.

The developed simulation model provides the selection

of the element base for the MRS intelligent components

implementation. It takes into account the structure of spe-

cialized components, the results of the performance as-

sessment, and the requirements of specific applications in

accordance with the terms of reference.

Discussion of the results obtained. Analysis of the

tasks of intelligent components of mobile robotic systems

makes it possible to formulate an operational basis for the

implementation of hardware accelerators of artificial neural

networks. In general, it is worth distinguishing three groups

of neurooperations: preprocessing, processing, and compu-

ting of transfer functions. The operations of the first group

provide the transformation of input data, the operations of

the second group, for example, multiplication, addition,

group summation, matrix multiplication by vector, etc., are

performed in neural networks, and the operations of the

third group provide the calculation of transfer functions.

The specialized hardware of the intelligent components

of the MRS must provide real-time operation while taking

into account dimensional and power consumption con-

straints. Therefore, it is expedient to implement such means

on a certain element base. Since there can be several vari-

ants of circuit implementation, and they are determined by

the capabilities of a specific element base, the question

arises of evaluating the characteristics of specialized hard-

ware. The results of such evaluation are used to select the

most effective accelerator structure and element base for

the implementation of intelligent components of the MRS.

It is proposed to use the characteristics of hardware re-

sources, operation time and equipment utilization efficiency

to evaluate specialized hardware in comparison with the

one given in [17], for which appropriate analytical expres-

sions and a simulation model have been developed. The ad-

vantage of the improved method of selecting the element

base is taking into account the results of the assessment of

the characteristics of hardware accelerators, the require-

ments of a specific application, and the element base in the

implementation of intelligent components of the MRS. A

feature of the improved method is that it is adapted to the

requirements of a particular application by using a hard-

ware SoC with a hardware implementation of basic ANN

operations on FPGAs.

The scientific novelty of the obtained results of the study

is that the method of selecting the element base for the

MRS intelligent components implementation has been im-

proved, which, by taking into account the results of the as-

sessment of the characteristics of hardware accelerators, the

requirements of a specific application and the existing ele-

ment base for their implementation, ensures the selection of

the most effective of the existing ones.

Practical significance of the research results – the use

of the results of the evaluation of the characteristics of

hardware accelerators provides the choice of the most effec-

tive structure for its implementation on FPGAs. The use of

the developed simulation model for the selection of the

element base for the MRS intelligent components imple-

mentation ensures the selection of the most effective ele-

ment base for their implementation.

Conclusions+/+9QDXSadQ+
The operational basis of the ANN has been determined,

the requirements have been formulated, the principles of

development have been selected, analytical expressions

have been proposed, and a simulation model for evaluating

the characteristics of hardware accelerators has been deve-

loped, the method for the selection of the element base for

the MRS intelligent components implementation has been

improved, and a corresponding simulation model has been

developed.

Based on the results of the research, the following main

conclusions can be drawn.

The operational basis for the implementation of hard-

ware accelerators of the ANN has been determined, which

consists of the following groups of neurooperations: pre-

processing, processing and calculation of transfer functions.
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It is proposed to carry out the development of intelligent

components for the MRS on the basis of an integrated ap-

proach, which is based on the capabilities of the modern

element base, covers parallel methods of data processing,

algorithms, and structures of hardware for the implementa-

tion of basic operations of the ANN and takes into account

the requirements of a specific application.

The following principles have been defined for the de-

velopment of hardware accelerators ANN: modularity; ho-

mogeneity and regularity of the structure; localization and

reduction of the number of connections between elements;

pipeline and spatial parallelism; coordination of intensities

of the receipt of input data, calculation and issuance of re-

sults; specialization and adaptation of hardware structures

to algorithms for the neurooperations implementation.

Analytical expressions and a simulation model for eva-

luating the characteristics of hardware accelerators have

been developed, the results of which are used to select the

most effective accelerator structure and element base for

the implementation of intelligent components for the MRS.

The method of selection of the element base for the

MRS intelligent components implementation has been im-

proved. By taking into account the results of the assessment

of the characteristics of hardware accelerators, the require-

ments of a specific application, and the existing types of the

element base for their implementation, it ensures the selec-

tion of the most effective of the existing ones.
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