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OPERATIONAL BASIS OF ARTIFICIAL NEURAL NETWORKS AND EVALUATION
OF HARDWARE CHARACTERISTICS FOR ITS IMPLEMENTATION

The tasks performed by the intelligent components of mobile robotic systems (MRS) are analyzed and their features
are determined. The operational basis for the implementation of hardware accelerators of artificial neural networks (ANN)
is defined and divided into three groups of neurooperations: preprocessing, processing and calculation of transfer func-
tions. It is shown that the operations of the first group provide the transformation of the input data to the form that will
give the best results, the operations of the second group (multiplication, addition, group summation, calculation of the dot
product, calculation of a two-dimensional convolution, multiplication of the matrix by a vector) are performed directly in
the neural network itself in the process of training and functioning, operations of the third group provide calculation of
transfer functions. It is determined that the specialized hardware of the intelligent components of the MRS should provide
real-time operation and take into account the limitations in terms of dimensions and power consumption. It is proposed to
carry out the development of specialized hardware of intelligent components of the MRS on the basis of an integrated ap-
proach, which covers the capabilities of the modern element base, parallel methods of data processing, algorithms and
structures of hardware and takes into account the requirements of specific applications. For the development of hardware
accelerators ANN, the following principles were chosen: modularity; homogeneity and regularity of the structure; localiza-
tion and reduction of the number of connections between elements; pipeline and spatial parallelism; coordination of inten-
sities in the receipt of input data, calculation and issuance of results; specialization and adaptation of hardware structures
to algorithms for the implementation of neurooperations. It is proposed to use the following characteristics to evaluate
specialized hardware: hardware resources, operation time and equipment utilization efficiency. Analytical expressions and
a simulation model for evaluating the characteristics of specialized hardware have been developed, the results of which are
used to select the most effective accelerator and elemental structure for the implementation of intelligent components of
the MRS. The method of selection of the element base for the implementation of intelligent components of the MRS has
been improved, which, by taking into account the results of the assessment of the characteristics of hardware accelerators,
the requirements of a specific application and the existing element base for their implementation, ensures the selection of

the most effective of the existing ones.

Keywords: artificial neural network, operational basis, specialized hardware, method of selection of element base, par-

allel algorithms, simulation model, real time, element base.

Introduction / Bctyn

The current stage of development of artificial neural
networks (ANNS5) is characterized by the expansion of their
applications, a significant part of which requires the pro-
cessing of intensive data streams in real-time by means that
must simultaneously take into account the limitations in
terms of size, weight, power consumption, and therefore
have high efficiency in the use of equipment. Such applica-
tions include mobile robotic systems (MRS), in which intel-
ligent components are implemented on the basis of ANN,
used to solve the following tasks: recovery of lost data, pa-
rameters measurement accuracy improvement for ground-
based MRS in conditions of interference and incomplete in-
formation, forecasting of spatial data, prediction of MRS
movement, neurofuzzy control of MRS movement, neuro-
like cryptographic data protection, obstacle recognition,
neurofuzzy control of a group of ground-based MRS.

The real-time mode in the intelligent components of the
MRS is provided through the use of specialized hardware

accelerators that implement the most complex basic opera-
tions of algorithms. For the implementation of hardware ac-
celerators, it is necessary to allocate the operational basis of
the ANN. Such an operational basis can consist of the fol-
lowing groups of neurooperations: preprocessing, pro-
cessing, and computation of transfer functions.

To ensure a wide range of applications, intelligent com-
ponents of MRS must have a variable composition of
equipment and be implemented on the basis of a problem-
oriented approach, which involves the use of universal pro-
cessor cores, supplemented by specialized hardware accel-
erators. Such hardware accelerators should provide high
performance by parallelizing the process of calculating
basic ANN operations, easily adapt to the requirements of
specific applications, and be used to synthesize a wide
range of intelligent components of MRS that operate in
real-time. The creation of hardware accelerators for the im-
plementation of basic ANN operations with high equipment
utilization efficiency is carried out on the basis of an inte-
grated approach, which includes a modern element base,
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technologies of ultra-large integrated circuits (VLSI),
methods, algorithms, and VLSI structures for parallel calcu-
lation of basic ANN operations.

When developing hardware ANN accelerators, an ur-
gent task is to assess their main characteristics: hardware
resources, operation time, and equipment utilization effi-
ciency. Based on the results of the evaluation, the VLSI
structure of the accelerator is compared and selected for its
hardware implementation based on programmable logic in-
tegrated circuits of the FPGA (Field-Programmable Gate
Array) type. When implementing an FPGA accelerator, it is
advisable to take the unit of measurement of hardware re-
sources as a logic gate that implements the operations NOT,
AND-NOT, OR-NOT. The execution time of the basic oper-
ation in the accelerator is estimated by the sum of the de-
lays on the gates during the passing of data from the input
to the output. Based on the results of the assessment of
hardware resources, the time of execution of the basic oper-
ation, and its complexity, the efficiency of the equipment
utilization is determined, which gives an assessment of the
resulting structure in terms of productivity. The results of
the evaluation of the main characteristics of hardware ac-
celerators and the requirements of a specific application are
taken into account when choosing the element base for the
implementation of intelligent components of the MRS. The
selection of the most effective element base should be car-
ried out on the basis of an integrated assessment of the ef-
fectiveness of each of its types.

Therefore, the urgent task is to determine the operation-
al basis of the ANN, to develop and evaluate the main char-
acteristics of the hardware accelerators of the ANN and to
select the element base for the implementation of intelligent
components of the MRP.

The object of the research is the processes of determin-
ing the operational basis of the ANN, the development and
evaluation of the characteristics of the hardware accelera-
tors of the ANN, and the selection of the element base for
the implementation of intelligent components of the ANN.

The subject of the research is the methods of develop-
ment and evaluation of the characteristics of hardware ac-
celerators of ANN and the selection of the element base for
the implementation of intelligent components of the MRS.

The aim of the work is to improve the method of select-
ing the element base, to develop simulation models for
evaluating the characteristics of hardware accelerators of
the ANN, and the selection of the element base, which will
allow the creation of intelligent components for the MRS
with high equipment utilization efficiency.

To achieve this goal, the following main tasks of the
study are defined:

e determine the operational basis;

e formulate requirements and select the principles
for the development of hardware accelerators for
ANN;

e to develop analytical expressions for evaluating
the characteristics of hardware ANN accelerators;

e to improve the method of selecting the element
base for the implementation of intelligent compo-
nents of the MRS;

e to develop a simulation model for evaluating the
characteristics of hardware accelerators of ANN;

e to develop a simulation model for the selection of
the element base for the implementation of intelli-
gent components of the MRS.

Analysis of the latest research and publications.
Intelligent components of mobile robotic systems (MRS)
are an integral part of ensuring their autonomous operation
and adaptability. Recent research in this area has largely
focused on the use of artificial neural networks (ANNSs) to
improve tasks such as navigation, pattern recognition, and
real-time decision-making. Advances have been made in
the application of deep learning and reinforcement learning
to solve problems of autonomous navigation and decision-
making by robots under uncertain conditions [1]. An
important aspect is the integration of ANN with other
artificial intelligence algorithms, which increases the
overall efficiency of systems [2].

The operational basis of ANN is based on mathematical
operations, such as multiplication and addition, which form
the basis of computational processes in neural networks [3].
ANN algorithms are optimized to improve performance at
the hardware level, allowing for efficient processing of
large amounts of data [4]. At the same time, studies show
the need to improve hardware accelerators to optimize
energy efficiency and computing speed [5].

The implementation of ANN requires significant com-
puting resources to ensure speed and low latency, which is
important when working with large neural networks. For
this purpose, specialized hardware accelerators are being
developed to optimize the performance of basic operations
of neural networks [6].

Studies of hardware ANN accelerators demonstrate that
their design principles are based on the spatio-temporal
mapping of neural networks and parallel data processing
[7]. This makes it possible to significantly increase machi-
ning efficiency and reduce energy costs, making such solu-
tions important for a wide range of applications [8].

The performance evaluation of hardware accelerators
is based on analytical models that allow you to calculate
the performance, power efficiency, and latency associated
with data processing. Such models are used to compare
hardware accelerators with software implementations on
CPU and GPU processors [9]. Studies show that the use of
hardware accelerators provides significant advantages in
performance and energy efficiency compared to traditi-
onal solutions [10].

The choice of the element base for the implementation
of hardware accelerators is an important step that affects
their performance and cost. Research shows that FPGAs are
the most flexible solution for implementing hardware
accelerators, as they allow a balance between energy effi-
ciency and performance, while ASICs provide maximum
performance at higher costs [11].

Modern simulation models make it possible to evaluate
the effectiveness of various configurations of hardware
components for ANN [12]. Such models help to select the
optimal element base for the implementation of systems,
which increases the overall efficiency of mobile robotic
systems adapted to work in complex environments [13].

Research also highlights the importance of developing
models that take into account power consumption, pro-
cessing speed, and compatibility with mobile system com-
ponents [14]. This makes it possible to provide flexibility
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and scalability of solutions for various tasks of autonomous
robotic systems.

Research results and their discussion /
Pe3y/ibTaTH AOCTiAXKEHHS TA iIX 06rOBOpPEHHS

1. Intelligent components of the MRS and deter-
mination of the operational basis of the ANN. The cur-
rent stage of MRS development is characterized by the
widespread use of ANN for the implementation of intelli-
gent components for data processing, obstacle detection,
platform traffic control, and data protection. The main re-
quirements for such components are real-time operation and
high technical and operational characteristics, the main of
which are restrictions on power consumption, dimensions,
and weight.

The analysis of the tasks that are implemented by the in-
tellectual components of the MRS has shown that they have
the following features:

e high intensity and consistency of incoming data
flows;

e constant complication of processing algorithms
and increased requirements for the accuracy of re-
sults;

e the ability to parallelize data processing both in
time and space;
ability to generalize and abstract;
learning, self-learning, and self-organization under
the influence of the external environment.

The development of highly efficient intelligent com-
ponents of MRS requires the widespread use of modern
element base (microprocessors, microcontrollers, a SoC
(System on Chip), programmable logic integrated circuits
such as FPGA (Field-Programmable Gate Array), the de-
velopment of new methods and algorithms for real-time
data processing and structures focused on the modern el-
ement base. In practice, intelligent components of MRS
can be implemented in software, hardware, or software
and hardware.

The software implementation of intelligent compo-
nents of the MRS involves the use of universal means
(microprocessors, microcontrollers). With the software
implementation of intelligent components, computing
processes are mainly deployed in time with a large amount
of information transfer between RAM and operating de-
vices. When using software, the problem arises of mini-
mizing the volume of programs and the time of their im-
plementation with a given accuracy of calculations. These
tools are characterized by high flexibility in terms of the
possibility of modifying and replacing operating algo-
rithms along with low speed.

Advances in the development of FPGAs make it possi-
ble to increasingly shift the implementation of neuroalgo-
rithms to hardware that deploys the computing process both
in time and space. The structural organization of such
hardware is based on the principle of adequate hardware
mapping of graphs of neuroalgorithms. Hardware is charac-
terized by high speed along with the complexity of modify-
ing and changing data processing algorithms.

In most cases, intelligent components of MRS are im-
plemented on the basis of SoC, which combines universal
and special approaches, software, and hardware. At the
same time, the development of intelligent components of

the MRS with specified technical parameters on the SoC
comes down to supplementing the universal computing core
with specialized hardware.

Specialized hardware of intelligent components of the
MRS is based on the operational basis of the ANN, which
is shown in Fig. 1.

The operational basis of ANN consists of three groups
of basic operations: the first group is neurooperations of
preprocessing, the second group is neurooperations of pro-
cessing, and the third group is the calculation of transfer
functions.

The first group is preprocessing neurooperations. The
operations of this group ensure that the input data is con-
verted to the form that produces the best results. The learn-
ing vector contains one value for each input of the neural
network and one value for each output of the network, de-
pending on the type of training (unsupervised or unsuper-
vised). As a rule, training a network on a “raw” set does not
give quality results. To improve the quality of the neural
network usage, input data is pre-processed, which boils
down to performing the following operations: normaliza-
tion, quantization, and filtration.

Normalization is a procedure for pre-processing input
data (training, testing, and working samples), in which the
values of the features that form the input vector are reduced
to a certain specified range. After normalization, all values
of the input features will be reduced to some narrow range
[0, 1] or [-1, 1].

Normalization of input data to the range [0, 1] is per-
formed as follows:

X Xi = Xmin

3y =S Smin )

Xmax ~ *min

where x; is the input data, X is the maximum value of

max
the input data, X

data.
Normalization of input data to the range [-1, 1] is as fol-
lows:

min and is the minimum value of the input

X X

X )

l |x|max

These kinds of normalization do not require complex
calculations and are widely used for x; inputs that tightly fill
a certain gap.

After normalizing the input data in the RBF and GRNN
networks, the Euclidean distance from each input vector to
all the others must be calculated. This calculation of the
Euclidean distance is performed using the operation:

e b2 e b2 e b2 e b2
yEllxy =x 7= =)+ (g = x)7 H e+ (xy —xy) ()

For other types of neural networks, filtering can be
used, which is performed on noisy input data and is reduced
to discarding values that are invalid. In addition, quantiza-
tion is performed on continuous quantities, which involves
the determination of a finite set of discrete values.

The second group is processing neurooperations.
This group includes operations that are performed direct-
ly in the neural network itself in the process of training
and functioning. The group of processing neuroopera-
tions includes the following: multiplication, addition,
group summation, calculation of a dot product, calcula-
tion of a two-dimensional convolution, and multiplica-
tion of a matrix by a vector.
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Fig. 1. The operational basis of ANN / Onepauiiinuii 6azuc IIIHM

The third group consists of the transfer function
computing operations. Neuroelement transfer func-
tions are mathematical functions that determine the
response of a neuroelement to input signals. In a neu-
roelement, the result of calculating a dot product is

converted into an output signal through an algorithmic
process known as the transfer function. The group of
transfer function computing operations provides the
following transfer functions: threshold, sigmoidal, and
piecewise linear.
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Analysis of the operational basis of the ANN shows that
neural network operations can be divided into one-operand
(square root, transfer functions), two-operands (addition,
division, multiplication), and multi-operands (determination
of minimum and maximum numbers, group summation,
calculation of dot product, calculation of the sum of squares
of differences, calculation of two-dimensional convolution,
multiplication of the matrix by a vector). Existing hardware
neuroelements and neural networks are implemented main-
ly on one- and two-operand operations, this is due to the
capabilities of the element base. The evolution of the de-
velopment of hardware for the implementation of basic
operations is closely related to the structural unit of pro-
cessing, that is, to the number of bits and the number of
operands that the operating device simultaneously proces-
ses. With the development of integral technology, there is a
tendency to change the structural unit of processing from
one- and two-operand to multi-operand, which is performed
in parallel.

The peculiarity of multi-operand neurooperations is that
they are performed on a set of operands and the result of the
operation is one number. Multi-operand neurooperations
are proposed to be performed on the basis of a multi-ope-
rand approach, in which the process of calculating a neuro-
operation is considered as the performance of a single oper-
ation based on elementary arithmetic operations.

2. Requirements and principles for the development
of hardware accelerators ANN. The main requirements
for specialized hardware of intelligent components of MRS
are minimization of dimensions, power consumption, relia-
bility, flexibility, and real-time operation. The creation of
such specialized hardware requires the widespread use of
modern element base, the development of new pipeline
methods and neural algorithms for processing data streams
of different intensities in real-time. Real-Time Mode im-
poses a limit on the time #sp for solving the problem, which
should not exceed data input period #py, i.e.:

tsp <tpy. 4)

The exchange time depends on the volume N, the num-
ber of bits n and the frequency Fp; of the incoming data, as
well as on the number of &k channels and their bit width ;.
This time is determined by the formula:

Nn

B FD]knk (5)

Tg

To ensure the processing of data streams in real time,
the performance of specialized tools must be:

BRFD[k”k
Nn '

where R is the complexity of algorithms for solving prob-
lems; S is the coefficient of taking into account the features
of the means of implementing the algorithm.

It is also possible to ensure the operation of conveyor
specialized hardware in real-time by matching the intensity
of data intake with the intensity of their processing. The in-
tensity of data receipt Pp depends on the number and bit
width of data channels and the frequency of data intake:

P= (6)

The intensity of data processing in conveyor specialized

hardware is defined as follows:
Dk = M , (8)
Ty
where m,, is the number of data channels in the conveyor
steps; n., is the number of bits of data channels in the pipe-
line steps; T is a conveyor cycle of data processing.

To ensure the processing of intensive data streams in re-
al time, the intelligent components of the MRS use convey-
or-specialized hardware that implements the basic opera-
tions of the ANN. Each such basic operation can have se-
veral variants of its hardware implementation. To select a
specific variant of the hardware implementation of the basic
operation of the ANN, it is proposed to use the criterion of
equipment utilization efficiency E, which links performance
to hardware costs and evaluates hardware by performance.
The quantitative value of the equipment utilization efficien-
cy is determined as follows:

E = L , 9)
tSPWsu
where Wy, is the hardware resources for the implementation
of specialized unit, R is the complexity of algorithms for the
operation of specialized hardware, fsp is the time for solving
the problem.

Principles of construction of specialized ANN hard-
ware. The development of specialized hardware for intelli-
gent components of the MRS is proposed to be carried out
on the basis of an integrated approach, which is based on
the capabilities of the modern element base, covers parallel
methods of data processing, algorithms, and structures of
hardware for the implementation of basic ANN operations
and takes into account the requirements of specific applica-
tions. For the fullest use of the advantages of the modern
element base, the development of structures for the hard-
ware implementation of basic operations is proposed ANN
algorithms should be carried out according to the following
principles:

e use of the basis of elementary arithmetic opera-
tions for the implementation of basic operations of
ANN algorithms;

e modularity, which involves the development of
specialized hardware for the implementation of
basic operations of ANN algorithms in the form of
functionally complete devices;

e Jlocalization and reduction of the number of con-
nections between elements of structures for the
implementation of basic operations of ANN algo-
rithms;

e pipeline and spatial parallelism in the develop-
ment of structures for the implementation of basic
operations of ANN algorithms;

e homogeneity and regularity of the hardware struc-
ture;

e consistency of the intensity of data intake with the
intensity of calculations in hardware;

e specialization and adaptation of hardware to the
structure of algorithms for the implementation of
the basic operation and the intensity of data in-
flow.

3. Evaluation of the characteristics of hardware
ANN accelerators. The main characteristics that are used
to evaluate the hardware for the implementation of the basic
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operations of the ANN algorithms are hardware resources,
operation execution time, and equipment utilization effi-
ciency.

Hardware resources are the amount of equipment that is
required to build specialized hardware, expressed in certain
units. The unit of measurement of hardware resources can
be: the number of blocks of standard sizes; the number of
printed circuit boards; the number of ultra-large integrated
circuits (VLSIs) of the same type or conditional packages
reduced to one type of package; the number of gates or
transistors when implementing specialized hardware in the
form of VLSI. For specialized hardware that implements
the basic operations of ANN algorithms using FPGAs, it is
advisable to take a logic gate that implements NOT, AND-
NOT, OR-NOT operations as a unit of measurement of
hardware resources. Such hardware is implemented on the
basis of functional nodes (triggers, registers, adders,

switches, decoders, multiplication devices, memory ele-
ments, etc.), which are characterized by the speed and
hardware resources for their implementation. To estimate
the hardware resources (in the number of gates) and speed
(which is determined by the sum of delays on the stages of
logic gates) of individual functional nodes of MRS intelli-
gent components, analytical expressions have been deve-
loped, which are given in Table 1, where # is the number of
bits of functional nodes, m is the number of inputs, 7 is the
data delay time when passing through the gate.

These values were obtained by modeling functional
nodes in the implementation of specialized VLSI processors
for fast cosine and sine Fourier transforms [15] and devices
for parallel-flow calculation of scalar products [16]. With
the use of the developed analytical expressions (Table 1),
the estimation of hardware resources for the implementa-
tion of specialized unit is carried out.

Table 1. Analytical expressions for estimating hardware resources and performance of functional units /
AHaITHYHI BUPa3H JUTS OIIHIOBAHHS BUTPAT OOJIQIHAHHS Ta IIBUAKO/IT (YHKI[IOHATBHUX BY3JIiB

Si}zljy Names of functional units Hardw(agreelt::iiources Number of delay stages (T gates)
1 Trigger 6 3
2 Register Tn 3
3 Single-digit adder 18 7
4 Single-digit subtractor 18 7
5 Single-digit adder-subtractor 20 8
6 n-bit Adder 20 n 7 logan
7 n-digit Subtractor 21 n 8 logan
8 n-digit Adder-Subtractor 23 n 8 logan
9 m-input n-bit Adder (m-1)20n 7 logzn logam
m-input
10 n-digit Conviyor Adder 27 (m=1)n 10
11 Multiplication Device 18 n2 14n
12 Square Elevation Device 9 n2 12n
13 Division Device 20 n2 16 n
14 Comparison Scheme Tn 3logan
15 Binary Counter 12n 5logan
16 Decoder m x/ (2 m+2loga /) m
m-input
v it Switch 3mn m
18 m-input n-bit ROM 2mn (m+3)
19 ] ’th”;p:;/[ 2m3n (m+3)
Estimation of hardware resources for the implementa- M k,
tion of the r-th component of the ANN is carried out ac- -
cording to the formulr:l: Wann = rZ::]]g]WF N g > (n

k

Weann: = 2 WFNrj 4rj- (10)
j=1

where Wy, is the hardware resources for the imple-

mentation of the r-th component of the ANN; k. is the
number of types of functional nodes in the r-th component

of the ANN, WFNU- is the hardware resources for the j-th

type of the functional node of the r-th component of the
ANN, ¢,; is the number of functional nodes of the j-th type
of the r-th component of the ANN. Estimation of hardware
resources for implementation of ANN is carried out accor-
ding to the formula:

where M is the number of ANN components.

The speed of an asynchronous ANN is determined by the
delay time when data passes through components that are
on the longest path of execution of the neuroalgorithm and
is estimated using the following formula:

M
tann = 2LCaNN, -

r=1

(13)

where fcann- is the delay time for data to pass through the r-
th component in the ANN.

Estimating the execution time of the basic ANN opera-
tion. In the asynchronous (single-clock) mode of operation,
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the speed of the r-th hardware component of the ANN is
determined by the delay time when data passes through the
functional nodes that lie on the longest path of execution of
the r-th component algorithm and is estimated by the fol-
lowing formula:
P,

Leanne = thrjs , (12)
where #,5; is the delay time when data passes through the s-
th functional node j-th of the r-th component of the ANN,
P, is the number of functional nodes that lie on the longest
path of execution of the algorithm of the -4 component of
the ANN.

In the synchronous (conveyor) mode of operation, the
speed of the r-th hardware component and the ANN is de-
termined by the conveyor cycle of operation 7, which is
equal to the greatest delay in the data passage in the con-
veyor steps and is estimated by the formula:

z
T, =) maxt,,
=1

(14)

where #; is the delay time when the data in the conveyor
step passes through the /-th functional node of the j-th type,
Z is the number of functional nodes through which the data
passes through the pipeline step.

Evaluation of the equipment utilization efficiency. To
process continuous, intensive data streams, it is advisable to
use pipelined specialized hardware. The efficiency of using
the equipment by conveyor specialized hardware that im-
plements the r-th basic operation (r-th component) of the
ANN is determined as follows:

Ecynne = 7 ];E K

T,
CANNF
D maxt; Wi, 4,
= il

(15)

The equipment utilization efficiency by conveyor spe-
cialized hardware that implements ANN as a whole is de-
termined as follows:

R R

z M & - TW ann '
2 max? jl I WFNr/. q,;
I=1 r=1j=1 ’

(16)

E vy =

When evaluating the equipment utilization efficiency
for components that are implemented in the form of VLSI,
it is necessary to take into account the number of interface
pins, geometric, dynamic and other parameters of active el-
ements and the relationships between them. The equipment
utilization efficiency by conveyor components, which are
implemented in the form of VLSI, is determined by:

R

Eyrg = 3 > (17)
Tyhky 2 Wen, 4, + kY
j=1

where k; is the coefficient of taking into account the homo-
geneity of the structure, & is the coefficient of taking into
account the regularity and locality of connections, k3 is the
coefficient of taking into account the number of pins of the
communication interface k3 = f(Y).

Taking into account the coefficients ki, k» and k3 is due
to the fact that the cost of the VLSI component is largely
determined by the area of the crystal. Reducing the size of
active elements leads to a proportional increase in their
speed and a decrease in the length of communication lines.

Improvement of the method of selection of the ele-
ment base for the MRS intelligent components imple-
mentation.

A promising element base for the implementation of in-
telligent components for the MRS is SoC (System on Chip),
which includes built-in processor cores and an FPGA field
with high integration of gates on a chip (more than 10 mil-
lion gates). The use of SoC for the implementation of intel-
ligent components of the MRS will provide:

e integration of software and hardware;

e increase in productivity due to the hardware im-
plementation of basic ANN operations;
reducing the cost of components;
reduction of power consumption due to the ability
to turn off the power supply to the FPGA field;

e reduction of development time due to the availa-
bility of a large set of development and debugging
tools.

For the selection of the element base (SoC) in the im-
plementation of intelligent components of the MRS, the
method has been improved, which is based on the applica-
tion of the theory of multi-criteria analysis and takes into
account the requirements of a specific application (perfor-
mance of the processor core, memory capacity, power con-
sumption of the processor core, number of FPGA gates,
clock speed of the FPGA, power consumption and cost of
the FPGA, weight, dimensions, temperature range, reliabil-
ity, resistance to special factors, etc.).

The basis of the method for selecting the element base
for the MRS intelligent components implementation is the
calculation of an integrated assessment of its efficiency on
the basis of partial efficiency criteria, which are formed for
each specific application.

The calculation of the integrated performance assess-
ment will be carried out according to the scheme of trade-
offs. According to this scheme, the integrated assessment of
the efficiency of the j-th element base is calculated in ac-
cordance with the expression:

n
Epy = > ME,; = max, (18)
i=1
where i = 1,..., n is the number of partial performance crite-
ria of the hardware and software component included in the

convolution; A; — i-th weighting coefficient; E,~; — nor-

malized assessment of the effectiveness of the i-th partial
criterion.

The method of selecting the element base for the MRS
intelligent components implementation requires the follo-
wing stages:

e to form a list of partial criteria on which the effec-
tiveness of the element base depends;

e determine the scale of changes in numerical va-
lues of partial criteria for the effectiveness of the
element base;

e determine the set of elements that meet the re-
quirements of the terms of reference;
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e determine the values of the weighting coefficients
that determine the relative importance of the i-th
partial criterion;

e calculate the values of i-th partial normalized effi-
ciency criteria for the element base;

e calculate an integrated assessment of the effec-
tiveness of each j-th element base;

e compare and select the element base for the im-
plementation of intelligent components of the
MRS.

At the first stage of selection of the element base for the
MRS intellectual components implementation, a list of par-

tial criteria for the effectiveness of the element base is
formed. The list of partial criteria for the efficiency of the
element base for the MRS intellectual components imple-
mentation is given in Table 2.

At the second stage of selection of the element base for

the MRS intellectual components implementation, the scale
of changes in the numerical values of the partial efficiency
criteria is determined. The formation of the scale of chan-
ges in these numerical values is carried out on the basis of
the terms of reference for the development of intelligent
components of the MRS.

Table 2. A list of partial criteria for the equipment utilization efficiency of the elementary base for the MRS intellectual components
implementation / Ilepemnik 4acTKOBHX KpUTEPiiB e(hEeKTHBHOCTI €IEMEHTHOI 0a3u peanizalii iHTeNneKTyalbHIX KoMIoHeHTiB MPC

Criterion Name Denomination
Performance of the j-th processor core g
Memory capacity of the j-th SoC 9]

Clock speed of the j-th processor core Frgy

Power consumption of the j-th SoC Prgj
Clock speed of the j-th FPGA FrrGaj

Number of logic elements of the j-th FPGA Koz
Memory capacity of the j-th FPGA configuration OFpPG4j
Power consumption of the j-th FPGA Prprcaj
External interface of the j-th SoC Rsocj

J-th SoC Enclosure Ysocj

Availability of tools for the development of the j-th SoC Bsogj

Maximum operating temperature of the j-th SoC tmaxj

Minimum operating temperature of the j-th SoC tmin
The cost of the j-th SoC Csocj

The cost of tools for the development of the j-th SoC Cisogi
Reliability of the j-th SoC Hsog

At the third stage of the selection of the element base
for the MRS intellectual components implementation, a set
of SoCs that meet the requirements of the terms of refe-
rence is determined. Threshold coefficients are used to se-
lect such a set. The selection of a set of possible SoCs for
the MRS intellectual components implementation is carried
out according to the following formulas:

N
Wege = ZlESon”A/qjP/Cjmjsjfjd/’f/‘yjbjtjhﬂj’ (19)
=

where E SoCj is the j-th SoC; N is the number of elements

of the set; n;, qj, pj, Vi dj, fjs ¢j My 8js 15 Vi by iy By, 3 —
threshold coefficients j-th SoC respectively in terms of per-
formance, memory capacity, power consumption, data
transfer rate, bit width of the processor core, clock speed,
cost, weight, dimensions, interface, die area, development
tools, temperature range, reliability, resistance to special
factors. Threshold coefficients can take one of two values:
1 — when a particular parameter meets the requirements of
the terms of reference or 0 — when a particular parameter
does not meet the requirements of the terms of reference.

At the fourth stage of selecting the element base for the
MRS intellectual components implementation, we deter-
mine the values of the weighting coefficients 7»‘ ; for the par-

tial criteria of the elements’ efficiency. The value of the
weighting coefficients is determined by the importance of
the criterion for the functioning of the intellectual compo-
nents of the MRS. When determining the weighting coeffi-
cients, it must be borne in mind that the sum of all

n
weighting coefficients must be equal to one Y A ;=1.The
i=l
determination of weighting coefficients is carried out by
means of an expert survey. In the process of developing the
intellectual components of MRS, the method of attribution
of points or the method of ranking is often used.

At the fifth stage of the selection of the element base for
the MRS intellectual components implementation, the nor-
malization of partial efficiency criteria is performed. For
each j-th variant of the SoC, normalization of performance
efficiency criteria Epg, memory capacity Ey; power con-
sumption Ep;, data transfer rate Epg;, cost Ecj, weight Epy;,
dimensions Ep, and reliability Eg; is performed by dividing
the corresponding parameter by its value specified in the
terms of reference.

At the sixth stage of selecting the element base for the
MRS intellectual components implementation, an integra-
ted assessment of the efficiency of the j-th SoC is calcula-
ted. The calculation of the integrated efficiency score of the
J-th SoC is performed using the formula:

Eigsge, = peEppj * Ay Eyy + hpEp; +.

+AprEpr; + Ao Eq; +hy Eyy + My Epy + g E; (20)

At the seventh stage of the selection of the element base,
the SoC is determined, which will be used to implement the
intelligent components of the MRS. From the set of SoCs
that meet the requirements of the terms of reference, the
SoC whose integrated performance assessment is the largest
E s .max is selected.
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Fig. 2. The user interface of the software tools for evaluating the
characteristics of the ANN components / KopucryBarpkuii
iHTepdelic mporpaMHHUX 3aCO0IB /IS OLIHFOBAHHS
XapakTepucTuk kommonentis [ITHM

The improved method makes it possible to automate the
selection of the optimal element base for the MRS intelli-
gent components implementation in accordance with the
requirements of the terms of reference.
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Fig. 3. Addition of functional nodes to the designed structure
of the ANN component / JlonaBanHs QpyHKIIOHaTEHHX
BY3JIiB y IPOEKTOBaHY CTPYKTypy KomnonenTu [IIHM

5. Development of a simulation model for evaluating
the characteristics of hardware accelerators of ANN. To
implement the simulation model for evaluating the charac-
teristics of hardware accelerators of ANN, software tools
have been developed to evaluate the characteristics of
hardware for the implementation of basic operations of
ANN algorithms. The developed software tools make it
possible to calculate the hardware resources and the execu-
tion time of an individual component of the ANN, taking
into account the basic characteristics of the constituent ele-
ments of the hardware implementation, which are presented
in Table 1. These data are further used to evaluate the equ-
ipment utilization efficiency. The user interface of the de-
veloped software tools is presented in Fig. 2.

In the process of use, the program offers: select the bit
size of the created ANN component, set the value of the
number of inputs, and other basic parameters. With the help
of the interface (Fig. 3), individual functional units are ad-
ded to the designed structure of the ANN component.

After determining all the functional nodes of the de-
signed structure of the ANN component, the calculation of
hardware resources and data processing delays is carried
out, and the corresponding graphs are built, which make it
possible to visualize the obtained characteristics of the
ANN component for different parameters of the input data
bit depth and the number of inputs.

Microsoft Excel tools can be used to visualize the re-
sults of the assessment of hardware resources, speed, and
equipment utilization efficiency used in the specialized
hardware development stage for the implementation of
basic operations of ANN algorithms. The performed calcu-
lations data is exported to a CSV file format, which pro-
vides ample opportunities for creating various graphs and
diagrams and helps in evaluating the parameters of the cre-
ated specialized hardware of the ANN components.

Let us consider the evaluation of the characteristics of
hardware accelerators of ANN on the example of a device
for calculating a dot product with the formation of a group
of partial products [15, 16]. The parallel-flow structure of
the device for calculating the dot product with the for-
mation of group partial products is shown in Fig. 4, where
T1, are the first clock pulses; 77— conveyor clock pulses; N
is the number of inputs X; and weights W, j = 1,..., N; k is
the number of digits of the factors X; , which are analyzed
to calculate the group partial products of Pj; h = 1,..., m;

m= {%—l, m is the number of conveyor steps, ( _l is the

rounded sign to a larger integer; CS; — h-th stage of the
conveyor; Rg — register; Ad — adder; GPPFB — block for the
formation of group partial products; PPF is a partial product
former, which is implemented on the basis of #n logical ele-
ments [; kAd is the k — input adder; Z is the output of the
dot product.

The calculation of the dot product in this device in-
volves dividing the factors of X; into groups of k digits
(k>3) [16]. As a result of this partition, we get m groups.
For each A-th group of digits of the multiplier Xj, the group
partial product Pj, is calculated using the following
formula:

ko ~A—(s-1
Pjh = 25:12 (9 )Wijhs . (21)

After the group partial products Pj, are formed, the A-th
macropartial product is calculated using the following for-
mula:

N
Py =22 Py - (22)
j=1
The calculation of the dot product Z with the formation
of group partial products is performed as follows:

Z,=2"%2, ,+By,. (23)

The device works in such a way that with each clock
pulse 77i, which enters the clock inputs of the registers of
the data format converter, the input data X; and the
weighting factors W; are written to the registers RgW; and
RgX. After n cycles in the registers of the format conver-
ter, we get N input data X; and N weighting factors W},
which are rewritten by the front edge of the clock pulse 77
into the registers RgWi,..., RgWn, RgXj,..., RgXn of the
first step of CS;.

In each h-th cycle of operation, data from the outputs
(h—1) of the conveyor stage CS;-1 are recorded into regis-
ters RgWi,..., RgWx, RgXi,..., RgXx and RgZ, of the A-th
conveyor stage CS;. In the block A-th conveyor stage CS;,
for the A-th group of digits X, X, X, of the multipli-

er at the outputs of PPFy,..., PPF; is formed k partial prod-
ucts according to the formula P, =W X, .
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Fig. 4. The parallel-flow structure of the device for calculating the scalar product with the formation of group partial products /
[NapanenpHO-I0TOKOBA CTPYKTYpa MPUCTPOIO OOYHCIIEHHS CKaSIPHOTO T00YTKY 3 ()OPMYBaHHSIM I'PYIIOBUX YaCTKOBHX JOOYTKIB

The formed partial products go to the input of the &~  The result of the calculation of the first dot product is ob-
input adder, and the s-th (s = 1,..., k) partial product tained at the output of the device after the m-th clock pulse
wW.X s is shifted relative to (s—1)-th of the partial pro- TIK.‘In ea}ch sub.sequent cycle of the 71, the‘ output of the

I device will receive the results of the calculation of the fol-
lowing dot products.
at the output VVJX Jh(s=1) of the k-input adder, we obtain This device works with a conveyor cycle, which is cal-
culated using the formula:

duct by one digit to the right. By adding the partial products

the group partial product Pj, according to the formula (21).

The formed group partial product Pj; goes to the j-th in- T, =t,, +1, + 1, +ly, +1,, = [6+1+7log, nxlog, k+
put of the N-input adder NAd, at the output of which, in ac- .
cordance with the formula (22), we obtain the /-th macro- /108, nxlog, N +7log, nl 24)
partial product Pip. The computed /-th macropartial pro-  where #z, is the time of writing/reading from the regis-
duct Py enters the input of the adder Ad, where it is added  ter; # is the data delay time on logical element I; fi4q
to the (h—1)-th partial result Z,_; according to formula (23).  and #y4s are the time of addition on the k-input and N-
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input adders, respectively; 744 is the time when two
numbers were added.

The hardware resources for the implementation of the
dot product calculation device are determined by the ex-
pression:

VV‘(}D = WPI’F + mI:NVVvGI’I’FB + WNA({ + W4d + Wkg]
» (25)

=2NW,, + m[N(ZWRg B A Wy )+ W + W, + WR} -

=14Nn+m| N (14n+kn -+ (k =1)20n) + (N =1)20n+20n + 7n ]

where Wppris the hardware resources for the dot product
calculation device; Wepprs 1s the hardware resources for the
block of formation of group partial products; partial product
former; Wg, —hardware resources for the implementation of
the register; Wy,q— hardware resources for the implementa-
tion of logical element /; Wi and Wiy4q are the hardware
resources for implementation, respectively, for & — input
and N — input combiners; W4 is the hardware resources for
the implementation of the adder.

The equipment utilization efficiency by a conveyor de-
vice for calculating the dot product is determined by:

R
Z;cWCD
where R = N(n+1), R is the complexity of the algorithm for
calculating the dot product in the number of addition opera-
tions.

An example of the evaluation of the ANN component
developed above, and visualization of characteristics is
shown in Fig. 5, 6.

A family of graphs for estimating the hardware re-
sources of the developed parallel-flow structure of the de-
vice for calculating the dot product with the formation of
group partial products is presented on Fig. 5. The depen-
dencies of the calculated hardware resources on the number
of inputs for the values of 8, 16, 24, and 32 bits and the bit
width of the data in the range from 4 to 32 bits are given.

Graphs for estimating data processing delays for the de-
veloped parallel-stream structure device (Fig. 6) depending

Ep = (26)

200000

on the number of inputs and data bit depth are given simi-
larly to Fig. 5.

6. Development of a simulation model for the selec-
tion of the element base for the MRS intelligent compo-
nents implementation.

On the basis of the improved method of selecting the
element base for the MRS intelligent components imple-
mentation, a simulation model is developed. The algorithm
of the simulation model for selecting the element base con-
sists of the following steps:

Step 1: Initialization of the simulation model.

Step 2: Initialization of the connection with the database
on the structure of the hardware accelerator and the MRS
intelligent component, the composition of the available
element base, and the requirements of the terms of refe-
rence.

Step 3: Reading the technical characteristics of the ele-
ment base.

Step 4: Reading the search criteria and limitation data.

Step 5: Reading information about the structure of the
hardware accelerator and the MRS intelligent component.

Step 6: Filtering the element base according to the
min/max values of the element criteria.

Step 7: Normalization of weights for each of the criteria.

Step 8: Normalization of the partial criteria of each of
the filtered elements.

Step 9: Calculation of the integrated performance score
for each of the elements.

Step 10: Sorting items in descending order of integrated
efficiency value.

Step 11: Synthesize the alternative connections of a sub-
set of elements into a module. Validate component interfa-
ces and select alternatives that satisfy interface compatibi-
lity.

Step 12: Compute an integrated performance score for
each of the synthesized modules.

Step 13: Sort items in descending order of integrated
performance value.
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Step 14: Output the results to the user.

The developed simulation model provides the selection
of the element base for the MRS intelligent components
implementation. It takes into account the structure of spe-
cialized components, the results of the performance as-
sessment, and the requirements of specific applications in
accordance with the terms of reference.

Discussion of the results obtained. Analysis of the
tasks of intelligent components of mobile robotic systems
makes it possible to formulate an operational basis for the
implementation of hardware accelerators of artificial neural
networks. In general, it is worth distinguishing three groups
of neurooperations: preprocessing, processing, and compu-
ting of transfer functions. The operations of the first group
provide the transformation of input data, the operations of
the second group, for example, multiplication, addition,
group summation, matrix multiplication by vector, etc., are
performed in neural networks, and the operations of the
third group provide the calculation of transfer functions.

The specialized hardware of the intelligent components
of the MRS must provide real-time operation while taking
into account dimensional and power consumption con-
straints. Therefore, it is expedient to implement such means
on a certain element base. Since there can be several vari-
ants of circuit implementation, and they are determined by
the capabilities of a specific element base, the question
arises of evaluating the characteristics of specialized hard-
ware. The results of such evaluation are used to select the
most effective accelerator structure and element base for
the implementation of intelligent components of the MRS.

It is proposed to use the characteristics of hardware re-
sources, operation time and equipment utilization efficiency
to evaluate specialized hardware in comparison with the
one given in [17], for which appropriate analytical expres-
sions and a simulation model have been developed. The ad-
vantage of the improved method of selecting the element
base is taking into account the results of the assessment of
the characteristics of hardware accelerators, the require-
ments of a specific application, and the element base in the

implementation of intelligent components of the MRS. A
feature of the improved method is that it is adapted to the
requirements of a particular application by using a hard-
ware SoC with a hardware implementation of basic ANN
operations on FPGAs.

The scientific novelty of the obtained results of the study
is that the method of selecting the element base for the
MRS intelligent components implementation has been im-
proved, which, by taking into account the results of the as-
sessment of the characteristics of hardware accelerators, the
requirements of a specific application and the existing ele-
ment base for their implementation, ensures the selection of
the most effective of the existing ones.

Practical significance of the research results — the use
of the results of the evaluation of the characteristics of
hardware accelerators provides the choice of the most effec-
tive structure for its implementation on FPGAs. The use of
the developed simulation model for the selection of the
element base for the MRS intelligent components imple-
mentation ensures the selection of the most effective ele-
ment base for their implementation.

Conclusions / BucHOBKu

The operational basis of the ANN has been determined,
the requirements have been formulated, the principles of
development have been selected, analytical expressions
have been proposed, and a simulation model for evaluating
the characteristics of hardware accelerators has been deve-
loped, the method for the selection of the element base for
the MRS intelligent components implementation has been
improved, and a corresponding simulation model has been
developed.

Based on the results of the research, the following main
conclusions can be drawn.

The operational basis for the implementation of hard-
ware accelerators of the ANN has been determined, which
consists of the following groups of neurooperations: pre-
processing, processing and calculation of transfer functions.

136

Ukrainian Journal of Information Technology, 2024, vol. 6, No. 2



It is proposed to carry out the development of intelligent
components for the MRS on the basis of an integrated ap-
proach, which is based on the capabilities of the modern
element base, covers parallel methods of data processing,
algorithms, and structures of hardware for the implementa-
tion of basic operations of the ANN and takes into account
the requirements of a specific application.

The following principles have been defined for the de-
velopment of hardware accelerators ANN: modularity; ho-
mogeneity and regularity of the structure; localization and
reduction of the number of connections between elements;
pipeline and spatial parallelism; coordination of intensities
of the receipt of input data, calculation and issuance of re-
sults; specialization and adaptation of hardware structures
to algorithms for the neurooperations implementation.

Analytical expressions and a simulation model for eva-
luating the characteristics of hardware accelerators have
been developed, the results of which are used to select the
most effective accelerator structure and element base for
the implementation of intelligent components for the MRS.

The method of selection of the element base for the
MRS intelligent components implementation has been im-
proved. By taking into account the results of the assessment
of the characteristics of hardware accelerators, the require-
ments of a specific application, and the existing types of the
element base for their implementation, it ensures the selec-
tion of the most effective of the existing ones.
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L I. IImoyy, I0. B. Onomsk, b. B. llImoezpineyy, T. . Mamuyp, O. O. OailiHuk
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ONEPAIIMHUA BA3UC INTYYHUX HEHPOHHUX MEPEXX TA OLITHIOBAHHA
XAPAKTEPUCTHUK ATIAPATHMX 3ACOBIB JIJI MOT'0 PEAJII3ALIL

IIpoananizoBaHo 3aBJaHHS, SIKI BHKOHYIOTh IHTEJIEKTyalbHI KOMIIOHEHTH MOOITBHUX POOOTOTEXHIYHUX CHCTEM
(MPC), i Bu3HaueHO ixHi ocoOnuBocTi. BusHaueHo omnepartiitauii 6a3uc i peaizallii anapaTHiuX NIPUCKOPIOBAYIB MITYY-
Hux HeilpoHHux Mepex (ILIHM) i po3nineHo ioro Ha Tpu rpynu Heiipoonepatiid: monepeaHboro o0poOIeHHs, Mporecop-
HUX Ta o0uHciIeHHs nepeaatHux (yHkiii. [Tokasano, mo oneparii nepioi rpynu 3a0e3neuyTh IePETBOPCHHS BXiTHUX
JIAHUX JI0 BUIIISLY, SIKUH 1acTh Hafikpalli pe3ynbTaT, onepallii Ipyroi rpynu (MHOXEHHsI, 0/IaBaHHs, IPYMNOBOTrO MiaCy-
MOBYBaHHSI, 00YHCIICHHS CKAJIIPHOTO 100YTKY, OOYMCICHHS IBOBUMIPHOT 3rOPTKH, MHOKEHHS MATPHUIl Ha BEKTOP) BHUKO-
HYIOTbCSL Oe310cepeIHbO Y caMill Helipomepeski y mpolieci HaBuaHHS Ta (QyHKIIOHYBaHHS, ONEpaLil TPeThoi IPynu 3a0e3-
MeYyrTh 00YNCIICHHS nepeaaTHuX QyHKIii. BrusHaueHo, 1o crenianizoBaHi anapaTHi 3aCO0M IHTEICKTYAIbHUX KOMITO-
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HeHTiB MPC noBuHHi 3a0e3ne4yBaTtu poOOTY B pealbHOMY 4Yaci Ta BpaXOBYBAaTH OOMEKEHHSI CTOCOBHO rabapHTiB i eHep-
TrOCHOXHMBAHHS. 3aNpPOIIOHOBAHO PO3POOJICHHS CIeliali30BaHUX anapaTHUX 3ac00iB IHTENIEKTyalbHUX KoMIOHeHTiB MPC
3I1MCHIOBATH HAa OCHOBI 1HTEIPOBAHOTO MIAXO/Y, SIKUI OXOTUTIOE MOKIIMBOCTI CydacHOT eIEMEHTHOI 0a3u, mapaiesibHi Me-
TOAN 0OPOOJICHHS JAHUX, aJTOPUTMH Ta CTPYKTYPH allapaTHUX 3aC00iB 1 BpaXOBY€ BUMOTY KOHKPETHHUX 3aCTOCYBaHb. JIist
po3po0IIeHHs anapaTHUX npuckoproBauis [ITHM BuOpaHO NPUHIMITK: MOAYJILHOCTI; OJJHOPITHOCTI Ta PEryJIsIPHOCTI CTPY-
KTYypH; JIOKaJi3alil Ta 3MEHIICHHS KiJIBKOCTI 3B’SI3KiB MIXK €JIEMEHTaMM; KOHBEEpH3allii Ta MPOCTOPOBOro MapaliesizMy;
Y3TO/IKCHHSI IHTCHCUBHOCTEH ITi]] Yac HaIXO/KCHHS BXIJIHUX JaHWX, OOYHMCIICHHS Ta BUJIABAaHHS PE3yJIbTATIB; CIelianiza-
1ii Ta aganTauii anapaTHUX CTPYKTYp 0 alrOpUTMIB peasizauii Helipoonepaliil. 3alponOHOBAHO IS OL[IHIOBAHHS CIELli-
ai30BaHMX anapaTHUX 3ac0o0iB BUKOPHCTOBYBATH TaKi XapaKTEPUCTHUKHU: BUTPATH OOJaHAHHS, YaC BUKOHAHHS OIeparii
Ta e(heKTUBHICTb BUKOPUCTAHHA 00safHaHH. Po3po0iieHO aHaIITUYHI BUPaA3y Ta iMiTalliiHy MOJENb OLIHIOBAHHS Xapak-
TEPUCTHK CIICI[Ialli30BAHNX arapaTHUX 3aC00IB, pE3yJbTATH OLIHIOBAHHS SIKUX BUKOPUCTOBYIOTH JJIsi BUOOPY HaleeKTH-
BHIIIIOT CTPYKTYpH IIPUCKOPIOBAYA i eIEMEHTHOI A1 pealtizalii iHTenexTyanbHux komnoHenTis MPC. BiockonaneHo mMe-
TOJI BUOOPY €JIeMEHTHOT 0a3u JuIsl peaisailii IHTeeKTyalbHUX KOMIOHeHTIiB MPC, sIKuii 3aBIIsIKM BpaxyBaHHIO pe3yJibTa-
TIB OLIHIOBAHHS XapaKTEPUCTHUK allapaTHUX IPHUCKOPIOBAYIB, BUMOI KOHKPETHOTO 3aCTOCYBAHHS Ta HAsBHOI €JIEMEHTHOT
6a3u muis 1X peasnizaiiii 3a0e3nedye BUOip HalePEKTUBHIIIOT 3 HASBHUX.

Knrwuosi cnosa: mtydHa HEHpOHHA Mepexa, omepauiiHui 6asuc, crenianizoBaHi anaparHi 3aco0u, MeToa BHOOPY
CJIEMEHTHOI 0a3H, TTapalielibHi aJrOpUTMH, IMiTalliiiHa MOJICNb, PEalIbHHI Yac, eJIeMeHTHa 0a3a.
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