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Inverse problems of determining an unknown depending on time coefficient for a parabolic
equation with involution and anti-periodicity conditions. The solution of the investigated
problem with an unknown coefficient in the equation was constructed using the method
of separation of variables. The properties of the induced spectral problem for the second-
order differential equation with involution are studied. The dependence of the spectrum
and its multiplicity and the structure of the system of root functions and partial solutions
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1. Introduction

Problems of determining the coefficients or the right-hand side of a differential equation simultaneously
with its solution are called inverse problems of mathematical physics. Such problems appear, for
example, in the simulation of hyperthermia, thrombosis and sclerosis of vessels, optical tomography.

Inverse heat conduction problems arise in various branches of applied heat engineering. In partic-
ular, the problem of modeling the thermo-diffusion process is described in the paper [1]. The authors
analyzed a problem that describes a mathematical model of the process of heat diffusion in a closed
metal rod, the insulation of which is slightly permeable. Therefore, the temperature at the point of
the rod on one side of the insulation affects the diffusion process in the rod on the other side of the
insulation. The authors proposed to consider the following heat conduction equation with involution
for modeling the process:

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
+ β

∂2u(−x, t)

∂x2
. (1)

In the paper [2] for equation

∂u(x, t)

∂t
−
∂2u(x, t)

∂x2
+
∂2u(−x, t)

∂x2
= f(x), (x, t) ∈ Ω, Ω = {−π < x < π, 0 < t < T} (2)

inverse problems of determining a pair of unknown functions {u(x, t), f(x)} with boundary conditions

u(−π, t) = u(π, t) = 0,

∂u(−π, t)

∂x
=
∂u(π, t)

∂x
= 0,

u(−π, t)− u(π, t) = 0,
∂u(−π, t)

∂x
−
∂u(π, t)

∂x
= 0, (3)

u(−π, t) + u(π, t) = 0,
∂u(−π, t)

∂x
+
∂u(π, t)

∂x
= 0

are investigated.
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In the paper [3] for equation (1), the inverse problem with nonlocal conditions, which are weak
perturbations of conditions (3):

∂u(−π, t)

∂x
−
∂u(π, t)

∂x
− αu(π, t) = 0, u(−π, t)− u(π, t) = 0

was considered.
In [4] for equation (2) the inverse problem of finding {u(x, t), f(x)} with the initial condition

u(x, 0) = ϕ(x),

condition of redefinition

u(x,E) = ψ(x)

and Ionkin–type conditions

∂u(−π, t)

∂x
+ α

∂u(π, t)

∂x
= 0, u(−π, t)− u(π, t) = 0,

are studied.
The inverse problem of mathematical biology is considered in [5], namely, the problem of finding

a time-dependent source function for a population model with nonlocal boundary conditions of the
population density.

So, in Ω = {0 < x < 1, 0 < t < T} for equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ r(t)u(x, t) + f(x, t) (4)

the inverse problem of finding {u(x, t), r(t)} with the initial condition

u(x, 0) = ϕ(x),

condition of redefinition
∫ 1

0
u(x, t) dt = E(t),

and perturbed antiperiodicity conditions

∂u(0, t)

∂x
+
∂u(1, t)

∂x
= 0, u(0, t) + bu(1, t) = 0,

was considered.
In [6–8], inverse problems of determining {u(x, t), r(t)} with nonlocal boundary conditions used in

models of population age description were analyzed.
Mixed and boundary value problems for equations with partial derivatives, which contain involution,

were studied in [4, 9–13]. For ordinary differential operators with involution boundary value problems
were studied in the papers [14–18].

2. Basic designations and results

Let

W 2
2 (−1, 1) :=

{

y ∈ L2(−1, 1): y(m) ∈ C[−1, 1], y(2) ∈ L2(−1, 1),m = 0, 1
}

,

(y;u)W 2

2
(−1,1) :=

2
∑

k=0

(

y(k);u(k)
)

L2(−1,1)
, ‖y‖2

W 2

2
(−1,1) := (y; y)W 2

2
(−1;1).

E be identical transformation in the space L2(−1, 1), I : L2(−1, 1) → L2(−1, 1), Iy(x) ≡ y(−x) be
involution operator in L2(−1, 1), pj :=

1
2(E + (−1)jI) are orthoprojectors of space L2(−1, 1) and

Lj,2(−1, 1) := {y ∈ L2(−1, 1): y = pjy}, j = 0, 1.

Definition 1. The system of elements {em}∞m=1 ⊂ H is called closed (complete) in the space H if the
linear shell of this system is dense everywhere in H. That is, an arbitrary element of the space H can
be approximated by a linear combination of the elements of this system with any precision according
to the norm of the space H.
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Definition 2. The system of elements {em}∞m=1 ⊂ H is called total in H, if only the zero element 0
of the space H is orthogonal to all elements of this system.

Definition 3. The system of elements {gs}
∞
s=1 ⊂ H is called biorthogonal in H to the system of

elements {em}∞m=1 ⊂ H, if (gs; em)H = δs,m, s,m ∈ N.

Definition 4. The system of elements {em}∞m=1 ⊂ H is called the Riesz basis of the space H, if there
exists a bounded operator A : H → H with its inverse such that the system {Aem}∞m=1 is orthonormal
basis in H.

Definition 5. Let the operator A : H → H has an eigenvalue λ ∈ C. Arbitrary solution of the
equations (A − λE)2ν = 0, (A − λE)ν 6= 0 will be called the root function of this operator, which
corresponds to the eigenvalue λ ∈ C [19].

Let us consider the heat conduction equation with involution in the region DT = {−1<x<1, 0<t6T}:

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ α1(1 + γx)

(

∂2u(x, t)

∂x2
−
∂2u(−x, t)

∂x2

)

+ α2

(

∂u(x, t)

∂x
+
∂u(−x, t)

∂x

)

− r(t)u(x, t) + f(x, t), (x, t) ∈ DT , (5)

with boundary conditions






β1u(−1, t) + β2u(1, t) = 0,
∂u(−1, t)

∂x
+
∂u(1, t)

∂x
= 0,

0 6 t 6 T, β1, β2 ∈ R, β1 6= β2, (6)

initial condition

u(x, 0) = η(x), −1 6 x 6 1 (7)

and redefinition condition
∫ 1

−1
xu(x, t) dx = E(t). (8)

Definition 6. A pair of functions {r(t), u(x, t)} from the set C[−1, 1] +
(

C2,1(DT ) ∩C
1,0(DT )

)

will
be called a classical solution of the inverse problem (5)–(8).

Let L : L2(−1, 1) → L2(−1, 1) be an operator of the problem

−ν ′′(x) +α1(1+ γx)
(

ν ′′(x)− ν ′′(−x)
)

+α2

(

ν ′(x) + ν ′(−x)
)

= f(x), α1, α2 ∈ R, −1 < x < 1, (9)
{

ℓ1ν := β1ν(−1) + β2ν(1) = 0,

ℓ2ν := ν ′(−1) + ν ′(1) = 0,
β1 6= β2. (10)

D(L) =
{

ν ∈W 2
2 (−1, 1): ℓ1ν = ℓ2ν = 0

}

.

Theorem 1. A. For any β1, β2 ∈ R, if β1 6= β2 then the operator L has the system of root functions

Vh :=
{

νs,m(x)∈L2(−1, 1): ν1,m(x)=(1+hx) sin
(

m− 1
2

)

πx, ν0,m=cos
(

m− 1
2

)

πx,m=1, . . .
}

, (11)

which is the Riesz basis of the space L2(−1, 1), h = β1+β2

β1−β2
.

In this case, there is a biorthogonal system

Wh :=
{

ws,m(x)∈L2(−1, 1): w1,m(x) = sin
(

m− 1
2

)

πx,w0,m = (1− hx) cos
(

m− 1
2

)

πx,m = 1, . . .
}

.

(12)
A.1. Let γ = α2 = β1+β2

β1−β2
. Then the operator L has the set of eigenvalues σ ∪ σ1, where σ :=

{

λk ∈ R, λk = π2(k − 1
2 )

2, k = 1, . . .
}

, σ1 := {λ1,k ∈ R, λ1,k = (1 − 2α1)λk, λk ∈ σ, k = 1, . . .} and the
system of eigenfunctions Vh.

A.2. Let α1 = 0, γ 6= β1+β2

β1−β2
. Then the operator L has the set of double eigenvalues σ and the

system of eigenfunctions Vh.
A.3. Let α1 = 0, γ = β1+β2

β1−β2
. Then the operator L has the set of double eigenvalues σand the

system of eigenfunctions Vh.
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Let

f(t, x) =
∞
∑

k=1

(

f0,k(t) ν0,k(x) + f1,k(t) ν1,k(x)
)

,

η(x) =
∞
∑

k=1

(

η0,k ν0,k(x) + η1,k ν1,k(x)
)

.

Theorem 2. A.1. Let γ = α2 =
β1+β2

β1−β2
and the following assumptions hold:

B1. η ∈ C4[−1, 1], β1η(−1) + β2η(1) = 0, η′(−1) + η′(1) = 0,
∫ 1
−1 x η(x) dx = E(0);

B2. E(t) ∈ C1[−1, 1];

B3. f(x, t) ∈ C(DT )∩C
4(DT ), β1f(−1, t)+β2f(1, t) = 0, ∂f(−1,t)

∂x
+ ∂f(1,t)

∂x
= 0,

∫ 1
−1 x f(x, t) dx 6= 0;

B4. µk = (2k − 1)πh, k = 1, . . ..
Then, there is an unique solution of the problem (5)–(7):

u(x, t) =

∞
∑

k=1

((

η1,k e
−λ1,kt +

∫ t

0
r(τ) f1,k(τ) e

−λ1,k(t−τ) dτ

)

ν1,k(x)

+

(

η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

)

ν0,k(x)

)

, (13)

and the pair of functions {r(t), u(x, t)} is the unique solution of the inverse problem (5)–(8);
A.2. Let α1 = 0, γ 6= β1−β2

β2+β1
and the Assumptions B1–B4 hold.

Then, there is an unique solution of the problem (5)–(7):

u(x, t) =
∞
∑

k=1

((

η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

)

ν0,k(x)

− µk

∫ t

0

(
∫ τ

0
r(ρ) f1,k(ρ) e

−λk(ρ−τ) dρ

)

e−λk(τ−t) dτ ν0,k(x)

+

(

η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(τ−t) dτ

)

ν1,k(x)

)

, (14)

and the pair of functions {r(t), u(x, t)} is the unique solution of the inverse problem (5)–(8);
A.3. Let α1 = 0, γ = β1−β2

β2+β1
, and the Assumptions B1–B3 hold. Then, there is an unique solution

of the problem (5)–(7):

u(x, t) =

∞
∑

k=1

((

η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

)

ν0,k(x)

+

(

η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(t−τ) dτ

)

ν1,k(x)

)

, (15)

and the pair of functions {r(t), u(x, t)} is the unique solution of the inverse problem (5)–(8).

3. Proof of the Theorem 1

3.1. Let us consider the eigenvalue problem for equation

−ν ′′(x) = λ ν(x), λ ∈ C, −1 6 x 6 1, (16)

with boundary conditions (10).
Determine the fundamental system of solutions for the equation (16)

{

ν0(x, ̺) = e̺ x + e−̺ x,

ν1(x, ̺) = e̺ x − e−̺ x,
Re ̺ 6 0, λ = ̺2,

and substitute the general solution

ν(x, ̺) = C0 ν0(x, ̺) +C1 ν1(x, ̺), C0, C1 ∈ R,

of the equation (16) in boundary conditions (10).
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There is obtained the system of linear algebraic equations with a matrix of coefficients

Ω(̺) =

(

ω1(̺) ω2(̺)
0 ω3(̺)

)

to determine the parameters C0, C1, where ω2(̺) = −2(β1−β2)(e
̺−e−̺), ω1(̺) = 2(β1+β2)(e

−̺+e̺),
ω3(̺) = 2̺(e−̺ + e̺).

To determine the eigenvalues of problem (16), (10) the characteristic equation is used detΩ(̺) =
4̺(β1 + β2)(e

−̺ + e̺)2, with the roots 0, π(k − 1
2), k = ±1,±2, . . ..

Therefore, problem (15), (10) has eigenvalues λk = π2
(

k − 1
2

)2
, k = 1, . . ., and corresponding

eigenfunctions ν0,k(x) := cos π
(

k − 1
2

)

x, k = 1, . . ..
The associated functions of the problem are defined by relations

ν1,k := (1 + hx) sinπ
(

k − 1
2

)

x, k = 1, . . . .

Substituting these expressions into the boundary conditions (10), one can obtain h = β1−β2

β2+β1
.

Therefore, the operator of problem (16), (10) has a spectrum σ and the system of functions Vh,
being the root functions in the sense of ratios [20]:

{

−ν ′′0,k(x) = λk ν0,k(x),

−ν ′′1,k(x) = λk ν1,k(x) + µk ν0,k(x),
k = 1, . . . ,

where µk = (2k − 1)πh, k = 1, . . ..

Remark 1. Note, that in the case β2 = −β1 the boundary conditions (10) coincide with the an-
tiperiodic conditions, µk = 0, k = 1, . . ., and the system of functions (11) is an orthonormal basis in
L2(−1, 1): V0 =

{

τs,k(x) ∈ L2(−1, 1): τ0,k(x) = cos π
(

k − 1
2

)

x, τ1,k(x) = sinπ
(

k − 1
2

)

x, k = 1, . . .
}

.

If β2 = −β1, then the boundary conditions (10) are singular and detΩ(̺) ≡ 0.
The operator of the associated problem to (16), (10)

−w′′(x) = λw(x), λ ∈ C, −1 6 x 6 1,
{

w(−1) + w(1) = 0,

β2w
′(−1) + β1w

′(1) = 0,

has the system (12) of root functions that is bi orthogonal in the sense of equalities
(

νr,k, ws,m

)

L2(−1,1)
= δr,s δr,m, r, s = 0, 1, k,m = 1, . . . .

Lemma 1. For arbitrary numbers β1, β2 ∈ R, β1 6= −β2 the system of functions Vh is the Riesz basis
in the space L2(−1, 1).

Proof. The boundary conditions (10) are regular by Birkhoff. Therefore, systems of functions Vh, Wh

are complete and minimal in space L2(−1, 1).
From the definition of these systems for an arbitrary function ϕ ∈ L2(−1, 1) we obtain Bessel

inequalities [21]:






















∞
∑

k=1

1
∑

r=0

(

ϕ, νr,k
)2

L2(−1,1)
6M0‖ϕ‖

2
L2(−1,1),

∞
∑

m=1

1
∑

s=0

(

ϕ,ws,m

)2

L2(−1,1)
6M0‖ϕ‖

2
L2(−1,1),

M0 = 2(1 + h2).

Therefore, applying theorem N.K.Bari (see [21]), we obtain the statement of Lemma 1.
Thus, the statement A.1 of Theorem 1 is proved.
3.2. Let O(Vh, σ) be the set of operators L : L2(−1, 1) → L2(−1, 1), which have the point spectrum

σ and the system of root functions Vh in the sense of ratios
{

Lν0,k(x) = λkν0,k(x), k = 1 . . . ,

Lν1,k(x) = λkν1,k(x) + µkν0,k(x), k = 1, . . . ,
(17)

for some real numbers µk, k = 1, . . ..
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Let us consider the operator L : L2(−1, 1) → L2(−1, 1), generated by equation

Lν := −ν ′′(x) + α2

(

ν ′(x) + ν ′(−x)
)

= λν(x) = 0, λ ∈ C, α2 ∈ R, −1 < x < 1, (18)

and boundary conditions (10).
By substituting functions (11) into equation (18), we obtain the relations (17), where

µk = (α2 − h)2kπ, k = 1, . . . .

Therefore, L ∈ O(Vh, σ). Thus, the statement A.2 of Theorem 1 is proved.
If equality α2 = h holds, then µk = 0. In this case the elements of system Vh are eigenfunctions of

operator L. Therefore, A.3 of Theorem 1 is proved.
Let σ1 := {λ1,k ∈ R, k = 1, . . .} and O(Vh, σ, σ1) be the set of operators L : L2(−1, 1) → L2(−1, 1),

with the point spectrum σ ∪ σ1 and system of eigenfunctions Vh:
{

Lν0,k(x) = λkν0,k(x), λk ∈ σ, k = 1, . . . ,

Lν1,k(x) = λ1,kν1,k(x), λ1,k ∈ σ1.

Let us consider the operator L of problem (9)–(10). By substituting functions (11) into equation (9),
we obtain

{

Lν0,k(x) = λk ν0,k(x),

Lν1,k(x) = λk ν1,k(x)− 2α1 λk (1 + γx) τ1,k(x) + µk ν0,k(x),
k = 1, . . . ,

µk = (h− α2)(2kπ − 1), k = 1, . . . ,

Lν1,k(x) = λ1,k ν1,k(x) + µk ν0,k(x), λ1,k := (1− 2α1)λk, k = 1, . . . .

Therefore, L /∈ O(Vh, σ).
If γ = α2 = h = β1−β2

β2+β1
, then µk = 0, k = 1, . . ..

Therefore,
{

Lν0,k(x) = λk ν0,k(x),

Lν1,k(x) = λ1,k ν1,k(x),
k = 1, . . . . (19)

Thus, Vh is the system of eigenfunctions of operator L for which the equalities (19) hold, where
σ1 := {λ1,k ∈ R, λ1,k = (1− 2α1)λk, k = 1, . . .}.

Then, L ∈ O(Vh, σ, σ1). Therefore, taking into account Lemma 1, we obtain the following state-
ment.

Lemma 2. For any numbers α1, α2, β1, β2 ∈ R, where 2α1 6= 1, β1 6= −β2, the system of eigenfunc-
tions Vh of operator L is Riesz basis of the space L2(−1, 1).

Consequently, the statement A.1 of Theorem 1 holds.
Note, that for the case α2 = γ = 0 the spectral properties of operator L are investigated in [16,20].

4. Existence and uniqueness of solution to the problem (5)–(8)

4.1. Let the conditions γ = α2 = β1−β2

β2+β1
and Assumptions B1–B3 are true. Partial solutions of

problem (5)–(7) are determined by relations
{

u0,k(x, t) = T0,k(t) ν0,k(x),

u1,k(x, t) = T1,k(t) ν1,k(x),
k = 1, . . . .

To determine functions Tr,k(t), we obtain problems that are solved sequentially
{

T ′
0,k(t) = λk T0,k(t) + r(t) f0,k, T0,k(0) = η0,k,

T ′
1,k(t) = λ1,k T1,k(t) + r(t) f1,k(t), T1,k(0) = η1,k,

k = 1, . . . .

Therefore,














T1,k(t) = η1,k e
−λ1,kt +

∫ 1

0
r(τ) f1,k(τ) e

−λ1,k(t−τ) dτ,

T0,k(t) = η0,k e
−λkt +

∫ 1

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ,

k = 1, . . . .
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













u1,k(x, t) =

(

η1,k e
−λ1,kt +

∫ t

0
r(τ) f1,k(τ) e

−λ1,k(t−τ) dτ

)

ν1,k(x),

u0,k(x, t) =

(

η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

)

ν0,k(x),

k = 1, . . . .

From the continuity of η(x) and the boundedness of functions (11) we obtain

|ηr,k| 6M0, max |r(t)| =M1, max |fr,k(t)| =M2, max |v1,k(x)| = 1 + h =M3, r = 0, 1, k = 1, . . . .

Taking into account these correlations, we have the estimates

|u0,k(x, t)| 6 (|η0,k|+max |r(t)| ·max |fr,k(t)|)e
−λkε 6M4e

−λkε, M4 =M0 +M1M2; (20)

|u1,k(x, t)| 6 max |v1,k(x)|(|η1,k|+max |r(t)| ·max |f1,k(t)|)e
−λ1,kε 6M5e

−λ1,kε, M5 =M3M4. (21)

Therefore given M6 = (1 +M3)M4 the functional series

∞
∑

k=1

1
∑

s=0

us,k(x, t) (22)

is majorized with an absolutely convergent numerical series

M6

∞
∑

k=1

(

e−λ1,kε + e−λkε
)

.

Therefore, according to the Weierstrass sign, the series (22) are uniformly convergent and continuous
for t > ε functions. Thus, the sum of the series (22) determines the continuous function u(x, t),
satisfying the initial condition (7).

We differentiate element-by-element the series (22) by variable t:
∞
∑

k=1

((

− λ1,k η1,k e
−λ1,kt + r(t) f1,k(t) +

∫ t

0
r(τ) f1,k(τ) e

−λ1,k(t−τ) dτ

)

ν1,k(x)

+

(

− λk η0,k e
−λkt + r(t) f0,k(t) +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

)

ν0,k(x)

)

.

Let us consider
∣

∣

∣

∣

∂u1,k(x, t)

∂t

∣

∣

∣

∣

6M3

(

M1 |f1,k(t)|+
(

|λ1,k|M0M2 +M1TM2

)

e−λ1,kε
)

, (23)

∣

∣

∣

∣

∂u0,k(x, t)

∂t

∣

∣

∣

∣

6M1 |f0,k(t)|+
(

λkM0M2 +M1TM2

)

e−λkε, (24)

t > ε > 0, k = 1, . . . .

Taking into account the inequalities (23), (24), we get

∞
∑

k=1

1
∑

s=0

∣

∣

∣

∣

∂us,k(x, t)

∂t

∣

∣

∣

∣

6 (M3 + 1)M2

∞
∑

k=1

M0

(

|λ1,k| e
−λ1,kε + λk e

−λkε
)

+M1T
(

e−λ1,kε + e−λkε
)

+M1(M3 + 1)
∞
∑

k=1

(

|f0,k(t)|+ |f1,k(t)|
)

.

Using Assumption B3 and the Abel’s theorem of convergence of functional series, uniform conver-
gence and continuity of the sum of series is obtained

∑∞
k=1

(

|f0,k(t)| + |f1,k(t)|
)

in the domain DT .
Therefore is M7 > 0 an inequality that is correct

∞
∑

k=1

(

|f0,k(t)|+ |f1,k(t)|
)

6M7.

Therefore, the sum of the series
∞
∑

k=1

1
∑

s=0

∂us,k(x, t)

∂t
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is continuous function in DT and coincides with ∂u(x,t)
∂t

.
We differentiate the series (22) element by element twice by the variable x:

∞
∑

k=1

1
∑

s=0

∂2us,k(x, t)

∂x2
=

∞
∑

k=1

(

− λ1,k

(

η1,k e
−λ1,kt +

∫ t

0
r(τ) f1,k(τ) e

−λ1,k(t−τ) dτ

)

ν1,k(x)

− λk

(

η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

)

ν0,k(x)

)

.

Taking into account the formulas (20), (21) we get
∣

∣

∣

∣

∂2u1,k(x, t)

∂x2

∣

∣

∣

∣

6 |λ1,k|M5 e
−λ1,kε,

∣

∣

∣

∣

∂2u0,k(x, t)

∂x2

∣

∣

∣

∣

6 λkM4 e
−λkε, k = 1, . . . .

The resulting series is majorized given some t > ε > 0 by series

M6

∞
∑

k=1

(

|λ1,k| e
−λ1,kε + λk e

−λkε
)

.

Therefore, sum of this series is continuous function in DT and coincides with ∂2u(x,t)
∂x2 .

Similarly, the smoothness of the function ∂2u(−x,t)
∂x2 is investigated. Further, by the embedding

theorems we obtain the continuity of functions ∂u(x,t)
∂x

, ∂u(−x,t)
∂x

in DT .
Therefore, the sum of the series (22) is a classical solution of the problem (5)–(7).
Let us consider the equation to define the function r(t):

∫ 1

0
x
∂u(x, t)

∂t
dx = E′(t) =

∞
∑

k=1

(−1)k

λk

(

r(t)f1,k(t)− λ1,k

(

η1,ke
−λ1,kt +

∫ t

0
r(τ)f1,k(τ)e

−λ1,k(t−τ)dτ

))

;

8r(t)

∞
∑

k=1

(−1)k

λk
f1,k(t) = E′(t) + 8

∞
∑

k=1

λ1,k
(−1)k

λk

(

η1,ke
−λ1,kt +

∫ t

0
r(τ)f1,k(τ)e

−λ1,k(t−τ)dτ

)

;

8r(t)

∞
∑

k=1

(−1)k

λk
f1,k(t) = E′(t) + (1− 2α1)

∞
∑

k=1

8(−1)k
(

η1,ke
−λ1,kt +

∫ t

0
r(τ)f1,k(τ)e

−λ1,k(t−τ)dτ

)

;

r(t) =
E′(t) + 8(1 − 2α1)

∑∞
k=1 (−1)kη1,ke

−λ1,kt

8
∑∞

k=1
(−1)k

λk
f1,k(t)

+
(1− 2α1)

∑∞
k=1(−1)k

∫ t

0 r(τ)f1,k(τ)e
−λ1,k(t−τ)dτ

∑∞
k=1

(−1)k

λk
f1,k(t)

.

So, to determine the function r(t) the Volterra integral equation of the second kind is obtained:

r(t) = F (t) +

∫ t

0
K(t, τ) r(τ) dτ, (25)

where

F (t) =
E′(t) + 8(1− 2α1)

∑∞
k=1 (−1)kη1,k e

−λ1,kt

∑∞
k=1 8

(−1)k

λk
f1,k(t)

, (26)

K(t, τ) =
(1− 2α1)

∑∞
k=1 (−1)kf1,k(τ) e

−λ1,k(t−τ)

∞
∑

k=1

(−1)k

λk
f1,k(t)

, (27)

The denominator of fractions (26), (27) is not equal to zero, because the Assumption B3 is obtained
∫ 1

−1
x f(x, t) dx = 8

∞
∑

k=1

(−1)k

λk
f1,k(t) 6= 0.

According to Assumptions B1–B3, the function F (t) and the kernel K(t, τ) are continuous functions
on [0, T ] and [0, 1] × [0, T ] respectively.

Therefore, equation (25) has an unique solution. This solution is a continuous function r(t) on
[0, T ], which forms an unique solution {r(t), u(x, t)} of inverse problem (5)–(8) together with the given
Fourier series (13) as a solution u(x, t) of the direct problem (5)–(7).
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Then, the statement A.1 of Theorem 2 is proved.
4.2. Let α1 = 0. Then λk = λ1,k, k = 1, . . ..

In the case of γ 6= β1−β2

β2+β1
the elements of system Vh are the root functions of the operator L for

which equalities (17) hold.
Let us consider the proof of statement A.2 of Theorem 2.
The partial solutions of problem (5)–(7) are determined by relations (19). To find the functions

Tr,k(t) we obtain the following problems
{

T ′
0,k(t) = −λk T0,k(t)− r(t) f0,k(t), T0,k(0) = η0,k,

T ′
1,k(t) = −λk T1,k(t)− µk η0,k + r(t) f0,k(t), T1,k(0) = η1,k,

k = 1, . . . ,

that are solved sequentially.
Therefore,















T0,k(t) = η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ,

T1,k(t) = η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(t−τ) dτ,

k = 1, . . . ,















u0,k(x, t) =

(

η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

)

ν0,k(x),

u1,k(x, t) =

(

η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(t−τ) dτ

)

ν1,k(x),

k = 1, . . . .

Taking into account the Assumptions B1–B3 of the theorem and the formulas (20), (21), we obtain
the estimates

|u1,k(x, t)| 6 max |v1,k|
(

|η1,k|+ |f1,k(t)| ·max |r(t)|
)

e−λkε 6M5 e
−λkε,

|u0,k(x, t)| 6
(

|η0,k|+ |f0,k(t)| ·max |r(t)|
)

e−λkε 6M4 e
−λkε.

Therefore, the functional series (22) is majorized by an absolutely convergent numerical series

2M6

∞
∑

k=1

e−λkε

for t > ε > 0. This is why based on the Weierstrass test, series (22) is uniformly convergent and
continuous functions for t > ε.

Thus, the sum of the series (22) defines a continuous function that satisfies the initial condition (7).
By direct substitution, we make sure that















∂u0,k(x, t)

∂t
=

(

r(t) f0,k(t)− λk

(

η0,k e
−λkt +

∫ t

0
r(τ) f0,k(τ) e

−λk(t−τ) dτ

))

ν0,k(x),

∂u1,k(x, t)

∂t
=

(

r(t) f1,k(t)− λk

(

η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(t−τ) dτ

))

ν1,k(x),

for k = 1, . . ..
Taking into account the formulas (23), (24) we get

∣

∣

∣

∣

∂u1,k(x, t)

∂t

∣

∣

∣

∣

6 max |v1,k(x)|
(

M1 |f1,k(t)|+ λk(M0 +M1M2) e
−λkε

)

6 (M0 +M1M2)M3λke
−λkε +M1M3 |f1,k(t)|,

∣

∣

∣

∣

∂u0,k(x, t)

∂t

∣

∣

∣

∣

6
(

M0 + |f0,k(t)| ·M1

)

e−λkε 6M4 e
−λkε, k = 1, . . . .

Let us differentiate element by element series (22), by two times with regard to argument x

∞
∑

k=1

1
∑

s=0

∂2us,k(x, t)

∂x2
=

∞
∑

k=1

((

− λk T0,k(t) + µk T1,k(t)
)

ν0,k(x)− λk T1,k(t) ν1,k(x)
)

.
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Taking into account the formulas (20), (21) we get
∣

∣

∣

∣

∂2u0,k(x, t)

∂x2

∣

∣

∣

∣

6M4 λk e
−λkε + |µk|M5 e

−λ1,kε 6 2
(

λk + |µk|
)

M5 e
−λ1,k ,

∣

∣

∣

∣

∂2u1,k(x, t)

∂x2

∣

∣

∣

∣

6 λkM5 e
−λkε, k = 1, . . . .

For some t > ε > 0, M8 > 0 we get
∞
∑

k=1

1
∑

s=0

∣

∣

∣

∣

∂2us,k(x, t)

∂x2

∣

∣

∣

∣

6M8

∞
∑

k=1

(

λk +
√

λk
)

e−λkε.

Therefore, its sums is continuous function in the domain DT and coincides with ∂2u(x,t)
∂x2 . Similarly,

the smoothness of the function ∂2u(−x,t)
∂x2 is obtained. By embedding theorems, we obtain continuity of

functions ∂u(x,t)
∂x

, ∂u(−x,t)
∂x

in DT . Thus, defined by series (14) function u(x, t) is a classical solution of
the problem (5)–(7),
∫ 1

0
x
∂u(x, t)

∂t
dx = E′(t) = 8

∞
∑

k=1

(−1)k

λk

(

r(t) f1,k(t)− λk

(

η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(t−τ) dτ

))

;

8

∞
∑

k=1

(−1)k

λk
r(t) f1,k(t) = E′(t) + 8

∞
∑

k=1

(

η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(t−τ) dτ

)

;

8r(t)

∞
∑

k=1

(−1)k

λk
f1,k(t) = E′(t) +

∞
∑

k=1

8(−1)k−1

(

η1,k e
−λkt +

∫ t

0
r(τ) f1,k(τ) e

−λk(t−τ) dτ

)

;

r(t) =
E′(t) + 8

∑∞
k=1 (−1)kη1,k e

−λkt

∑∞
k=1

8(−1)k

λk
f1,k(t)

+

∑∞
k=1(−1)k

∫ t

0 r(τ) f1,k(τ) e
−λk(t−τ) dτ

∑∞
k=1

(−1)k

λk
f1,k(t)

.

So, to determine the function r(t) the Volterra integral equation of the second kind is obtained:

r(t) = F (t) +

∫ t

0
K(t, τ) r(τ) dτ, (28)

where

F (t) =
E′(t) + 8

∑∞
k=1 (−1)k η1,k e

−λkt

∑∞
k=1 8

(−1)k

λk
f1,k(t)

, (29)

K(t, τ) =

∑∞
k=1 (−1)kf1,k(τ) e

−λk(t−τ)

∑∞
k=1

(−1)k

λk
f1,k(t)

.

The denominator of fractions (28), (29) is not equal to zero, because the Assumption B3 is obtained
∫ 1

−1
x f(x, t) dx = 8

∞
∑

k=1

(−1)k

λk
f1,k(t) 6= 0.

According to Assumptions B1–B3, the function F (t) and the kernel K(t, τ) are continuous functions
on [0, T ] and [0, 1] × [0, T ] respectively.

Therefore, equation (25) has an unique solution. This solution is a continuous function r(t) on
[0, T ], which forms an unique solution {r(t), u(x, t)} of inverse problem (5)–(8) together with the given
Fourier series (13) as a solution u(x, t) of the direct problem (5)–(7).

According to Assumptions B1–B3, the function F (t) and the kernel K(t, τ) are continuous functions
on [0, T ] and [0, 1] × [0, T ] respectively.

Therefore, equation (22) has an unique solution. This solution is a continuous function r(t) on
[0, T ], which forms an unique solution {r(t), u(x, t)} of inverse problem (5)–(8) together with solution
u(x, t) of the direct problem (5)–(7).
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The statement A.2 of Theorem 2 is proved.
4.3. Let α2 = h = β2−β1

β2+β1
. In this case the elements of system Vh are the eigenvalues of operator

L, for which the following equalities hold
{

Lν0,k(x) = λk ν0,k(x),

Lν1,k(x) = λk ν1,k(x),
k = 1, . . . .

The proof of statement A.3 of Theorem 2 is similar to the proof of A.1 of this theorem.
We note that inverse problem is investigated in [22] for β1 = 1, β2 = b, γ = 0, α1 = −ε, α2 = 0. In

addition, if 1− 2α1 6 0, then more research is needed.

5. Conclusion

The solutions of the inverse problem for a parabolic equation with involution and anti-periodicity
conditions are constructed. The method of variables separation was used for the research. The cor-
responding eigenvalue problem for a differential equation with involution is studied. The eigenvalue
spectrum properties are analyzed. The conditions to guarantee the existence and uniqueness of the
inverse problem solution are found. The unknown coefficient is calculated using the Volterra integral
equation of the second kind.
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Оберненi задачi визначення невiдомого залежного
вiд часу коефiцiєнта для параболiчного рiвняння

з умовами iнволюцiї та антиперiодичностi

Баранецький Я. О., Демкiв I. I.

Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, 79013, Львiв, Україна

Оберненi задачi визначення невiдомого залежно вiд часу коефiцiєнта для параболiч-
ного рiвняння з умовами iнволюцiї та антиперiодичностi. Методом роздiлення змiнних
побудовано розв’язок дослiджуваної задачi з невiдомим коефiцiєнтом у рiвняннi. До-
слiджено властивостi iндукованої спектральної задачi для диференцiального рiвнян-
ня другого порядку з iнволюцiєю. Дослiджено залежнiсть спектра та його кратностi,
а також структуру системи кореневих функцiй i часткових розв’язкiв задачi вiд iнво-
лютивної частини цього рiвняння. Встановлено умови iснування та єдиностi розв’язку
оберненої задачi. Для визначення шуканого коефiцiєнта знайдено i розв’язано iнте-
гральне рiвняння Вольтера другого роду.

Ключовi слова: обернена задача; рiвняння теплопровiдностi; метод роздiлення

змiнних; нелокальнi умови; iнволюцiя; базис Рiса.
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