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Inverse problems of determining an unknown depending on time coefficient for a parabolic
equation with involution and anti-periodicity conditions. The solution of the investigated
problem with an unknown coefficient in the equation was constructed using the method
of separation of variables. The properties of the induced spectral problem for the second-
order differential equation with involution are studied. The dependence of the spectrum
and its multiplicity and the structure of the system of root functions and partial solutions
to the problem on the involutive part of this equation was studied. The conditions for
the existence and uniqueness of the solution to the inverse problem have been established.
To determine the required coefficient, Voltaire’s integral equation of the second kind was
found and solved.
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1. Introduction

Problems of determining the coefficients or the right-hand side of a differential equation simultaneously
with its solution are called inverse problems of mathematical physics. Such problems appear, for
example, in the simulation of hyperthermia, thrombosis and sclerosis of vessels, optical tomography.
Inverse heat conduction problems arise in various branches of applied heat engineering. In partic-
ular, the problem of modeling the thermo-diffusion process is described in the paper [1|. The authors
analyzed a problem that describes a mathematical model of the process of heat diffusion in a closed
metal rod, the insulation of which is slightly permeable. Therefore, the temperature at the point of
the rod on one side of the insulation affects the diffusion process in the rod on the other side of the
insulation. The authors proposed to consider the following heat conduction equation with involution

for modeling the process:
Ou(x,t) a82u(ac, t)

ot 0z2

O*u(—m,t)
g (1)

In the paper [2] for equation
ou(z,t)  Pu(x,t)  O*u(—=x,t)
ot o2 | o2
inverse problems of determining a pair of unknown functions {u(z,t), f(x)} with boundary conditions
u(—m,t) =u(m,t) =0,
ou(—m,t)  Ou(m,t)

= f(z), (r,t)eQ, Q={-n<z<m0<t<T} (2)

or ox 0
B du(—m,t)  Ou(mt)
’LL( T, t) u(ﬂ-7 t) - 07 ax 81’ - 07 (3)
B ou(—m,t)  Ou(m,t)
u(—m,t) +u(m,t) =0, B + o 0

are investigated.
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1222 Baranetskij Ya. O., Demkiv I. I.

In the paper [3] for equation (1), the inverse problem with nonlocal conditions, which are weak
perturbations of conditions (3):

u(—m,t)  Ou(m,t)
Ox Ox

au(m,t) =0, wu(—mt)—u(r,t)=0

was considered.
In [4] for equation (2) the inverse problem of finding {u(x,t), f(x)} with the initial condition

u(z,0) = p(z),
condition of redefinition
u(z, E) = ¢(x)
and Tonkin—type conditions
ou(—m,t) ou(m,t)
oz ta oz

=0, wu(-mt)—u(r,t)=0,

are studied.

The inverse problem of mathematical biology is considered in [5], namely, the problem of finding
a time-dependent source function for a population model with nonlocal boundary conditions of the
population density.

So,in 2 ={0<z<1,0<t<T} for equation

ou(z,t)  O*u(w,t)

1) THBD  rtyuta, 1)+ fa 1) @
the inverse problem of finding {u(x,t), r(¢)} with the initial condition
u(z,0) = gp(x),

condition of redefinition .
/ u(z, t)dt = E(t),
0
and perturbed antiperiodicity conditions
0u(0,t) . ou(1,t)
Oz Oz

=0, u(0,t)+bu(l,t) =0,

was considered.

In [6-8], inverse problems of determining {u(x,t),r(t)} with nonlocal boundary conditions used in
models of population age description were analyzed.

Mixed and boundary value problems for equations with partial derivatives, which contain involution,
were studied in [4,9-13]. For ordinary differential operators with involution boundary value problems
were studied in the papers [14-18].

2. Basic designations and results

Let
W22(_17 1) = {y € L2(_17 1): y(m) € C[_lv 1]7y(2) € L2(_17 1)7m = 07 1}7
2
. N k)., (k 2 (o)
W wwz(-11) = kZ_O (W®5u®) e 19z = @ 9wz -
E be identical transformation in the space Ly(—1,1), I: La(—1,1) — La(—1,1), Iy(z) = y(—=) be
involution operator in Lo(—1,1), pj := $(E + (—1)71) are orthoprojectors of space La(—1,1) and
Ljo(—1,1) :={y € Lo(—-1,1): y =pjy}, j=0,1

Definition 1. The system of elements {e,, }*°_; C H is called closed (complete) in the space H if the
linear shell of this system is dense everywhere in H. That is, an arbitrary element of the space H can

be approximated by a linear combination of the elements of this system with any precision according
to the norm of the space H.
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Definition 2. The system of elements {e,, }>°_, C H is called total in H, if only the zero element 0
of the space H is orthogonal to all elements of this system.

Definition 3. The system of elements {gs}32,; C H is called biorthogonal in H to the system of
elements {e, }>°_| C H, if (gs;em)H = Osm, S, m € N.
Definition 4. The system of elements {e, }2°_, C H is called the Riesz basis of the space H, if there

exists a bounded operator A: H — H with its inverse such that the system {Aey, }ov_; is orthonormal
basis in H.

Definition 5. Let the operator A: H — H has an eigenvalue \ € C. Arbitrary solution of the
equations (A — AE)?v = 0, (A — AE)v # 0 will be called the root function of this operator, which
corresponds to the eigenvalue A € C [19).

Let us consider the heat conduction equation with involution in the region Dp = {—1<z<1,0<t<T}:

ou(x,t) _ 0?u(x,t) o +7$)<82u(x,t) B 82u(—a:,t)>

ot O Ox? w2
+ a2<8u§;t> + au(a—;,t)) —r(tu(z,t) + f(z,t), (x,t) € Dp, (5)

with boundary conditions

Bru(—1,t) + Bau(l,t) = 0,
du(=1,t)  Ou(L,t) 0<t<T, p,pe€R, Bi# P2, (6)

Oz or 0,

initial condition
and redefinition condition

1
/ zu(x,t)de = E(t). (8)

-1

Definition 6. A pair of functions {r(t),u(z,t)} from the set C[—1,1] + (C*'(Dy) N C*(Dr)) will
be called a classical solution of the inverse problem (5)—(8).
Let L: Lo(—1,1) — La(—1,1) be an operator of the problem
—"(z) + a1 (1 +y2) (V' (z) =" (—2)) + a2 (V(z) + V(=) = f(z), a1, €R, —-1<z<1, (9)

{611/ = B (—=1) + Bav(1) =0,

lov = V/(—l) + V/(l) —0, B # Bo. (10)

D(L) = {v € W3(=1,1): fv = fov = 0},
Theorem 1. A. For any (1, 52 € R, if 81 # B2 then the operator L has the system of root functions
Vi, = {V&m(x) €Ly(—1,1): v m(z)=(1+hz)sin (m — %) X, V), m = COS (m — %) Tz, m=1,.. ,}, (11)

which is the Riesz basis of the space La(—1,1), h = %
In this case, there is a biorthogonal system

W= {w&m(az) €Ly(—1,1): wyp(z) =sin (m — 3) 7z, wom = (1 — ha)cos (m — 1) mz,m = 1,.. }

(12)

A.dl. Let v = ag = % Then the operator L has the set of eigenvalues o U o1, where o :=

{)\k eER A\ = 7T2(k‘ — %)2,k‘ =1,... }, o ={Mr €eR A =(1—-201)\, A\ €0,k =1,...} and the
system of eigenfunctions Vj,.

A.2. Let ay =0, v # % Then the operator L has the set of double eigenvalues o and the
system of eigenfunctions Vj,.

A.3. Let a; =0, v = BitB2 - Then the operator L has the set of double eigenvalues cand the

i . B1—PB2
system of eigenfunctions Vj,.
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1224 Baranetskij Ya. O., Demkiv I. I.

Let
Ftx) = (fort) vop(@) + fralt) vie(@)),
k=1
n(z) = Z (10,6 vo,e () + 11k v1 k().
k=1

Theorem 2. A.1l. Let v =g = % and the following assumptions hold:

Bl n € CA=1,1], Bin(=1) + Bon(1) = 0, 1/ (=1) +7/(1) = 0, [1) wn(x)de = E(0);

B2. E(t) € CY-1,1];

B3. f(z,t) € C(Dr)NC(Dr), fuf(~1,t)+Baf(1,8) = 0, LD L O — o 1y £z, 8) da # 0
B4. =2k —D7h, k=1,....

Then, there is an unique solution of the problem (5)—(7):

[e.9]

t
ulz,t) = <<771,k e Mt +/0 r(7) fup(r) e el dT) V1 (2)

k=1

¥ (no,k s [ 1(7) fos(r) 0 dT) uo,k@:)), (13)

0
and the pair of functions {r(t),u(x,t)} is the unique solution of the inverse problem (5)—(8);
A.2. Let o =0, v # BL=P2 and the Assumptions B1-B4 hold.

Ba+p
Then, there is an uniqué solution of the problem (5)—(7):

00 t
ule,t) = ((no,k et [ o) foalr) e N dT) vo(®)
k=1

0

t T
e / ( / r(p)fl,km)e—w—ﬂdp) D) g7y (2)
0 0

t
+ <771,k e Mt + /0 7’(7’) fl’k(T) e_Ak(T_t) dT) I/l’k(l')>, (14)

and the pair of functions {r(t),u(x,t)} is the unique solution of the inverse problem (5)—(8);
A.3. Let oy =0, v= g;;gi, and the Assumptions B1-B3 hold. Then, there is an unique solution
of the problem (5)—(7):

u(z,t) = i <<770,k e Mt 4 /tr(T) fo(r) e =) dT> Vo k()

k=1 0

+ (Ul,k e M 4 /tT(T) Frp(r) e Ml d7'> Vl,k(iﬂ)), (15)

0
and the pair of functions {r(t),u(x,t)} is the unique solution of the inverse problem (5)—(8).

3. Proof of the Theorem 1

3.1. Let us consider the eigenvalue problem for equation
—(x)=Av(z), 2eC, —-1<x<1, (16)

with boundary conditions (10).
Determine the fundamental system of solutions for the equation (16)

{”o<:c,@> = 0% 4 7O,

Reo <0, \=o°
V1($79):egx_e_gx7 ¢S ¢

and substitute the general solution
V(ZE,Q) :COVO(x7Q)+Cl Vl(l'v@)v 00701 €R7
of the equation (16) in boundary conditions (10).
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There is obtained the system of linear algebraic equations with a matrix of coefficients

Q(o) = (wlég) w2(9)>

ws3(0)

to determine the parameters Cy, C1, where wa(p) = —2(81 —B2)(e?—e2), wi(p) = 2(f1+P2)(e¢+e?),
ws(0) = 20(e™? +e2).

To determine the eigenvalues of problem (16), (10) the characteristic equation is used det Q(p) =
40(B1 + P2)(e7@ + e2)2, with the roots 0, 7(k — %), k=+1,42,....

Therefore, problem (15), (10) has eigenvalues )\, = 2 (k‘ — %)2, k = 1,..., and corresponding
eigenfunctions vy () := cosw(kz — %)x, k=1,....

The associated functions of the problem are defined by relations

vig = (1+ha)sinm (k— 1)z, k=1,.

B1—PB2
+8
Therefore, the operator of problem (16), (10) has a spectrum ¢ and the system of fUIllctIOIlS \%

being the root functions in the sense of ratios [20]:

Substituting these expressions into the boundary conditions (10), one can obtain h =

{—ug',k<x> = M v, (@), _

=11 1 (2) = M vi k(@) + pr vo k() Y

where up = (2k — )wh, k=1,....

Remark 1. Note, that in the case o = —pf; the boundary conditions (10) coincide with the an-
tiperiodic conditions, ux = 0, k = 1,..., and the system of functions (11) is an orthonormal basis in

Lo(—1,1): Vo = {7sp(z) € La(—1,1): Top(z) = cosm(k — 3)a, 1 p(2) = sinw(k — )z, k=1,... }.
If Bo = —f31, then the boundary conditions (10) are singular and det (o) = 0.
The operator of the associated problem to (16), (10)
—w"(x) = w(xr), AeC, —-1<x<]1,

w(=1)+w(1) =0,

Bow'(—1) + 1w’ (1) = 0,
has the system (12) of root functions that is bi orthogonal in the sense of equalities

(VT’,kH ws7m)L2(—1,1) = 57‘,3 57‘,m7 r,s =01, km=1,....

Lemma 1. For arbitrary numbers 31, 82 € R, 81 # — B2 the system of functions V}, is the Riesz basis
in the space La(—1,1).
Proof. The boundary conditions (10) are regular by Birkhoff. Therefore, systems of functions V;,, W},
are complete and minimal in space La(—1,1).

From the definition of these systems for an arbitrary function ¢ € Lo(—1,1) we obtain Bessel
inequalities [21]:

co 1

S (e ve) L2 1y < Mollellz, 11y

h=17=0 My =2(1+ h?).
ZZ (107wsm L2( L1 X MOHSDHLQ( 1,1)

m=1 s=0
Therefore, applying theorem N. K. Bari (see [21]), we obtain the statement of Lemma 1.
Thus, the statement A.1 of Theorem 1 is proved.
3.2. Let O(V}, 0) be the set of operators L: Lao(—1,1) — Lo(—1,1), which have the point spectrum
o and the system of root functions V}, in the sense of ratios

Lygi(z) = Mo r(z), k=1...,
Ly i (x) = Mevi () + o (), k=1,...,

for some real numbers ui, k=1,....

(17)
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1226 Baranetskij Ya. O., Demkiv I. I.

Let us consider the operator L: Lo(—1,1) — La(—1,1), generated by equation
Lv:=—V"(z) + ao(V'(z) + V' (—2)) = Av(z) =0, AeC, aeR, —-l<z<l, (18)
and boundary conditions (10).
By substituting functions (11) into equation (18), we obtain the relations (17), where
g = (e — h)2km, k=1,....
Therefore, L € O(Vp, o). Thus, the statement A.2 of Theorem 1 is proved.
If equality ao = h holds, then pg = 0. In this case the elements of system V}, are eigenfunctions of
operator L. Therefore, A.3 of Theorem 1 is proved.
Let 01 :={A\x € R,k =1,...} and O(V},,0,01) be the set of operators L: La(—1,1) = La(—1,1),
with the point spectrum o U o1 and system of eigenfunctions Vj,:
LV07]€($) = )\kV07k(x), €0, k=1,...,
LVLk(x) = )\17;{V1,k(az), )\Lk € o1q.
Let us consider the operator L of problem (9)—(10). By substituting functions (11) into equation (9),
we obtain

{Lyovk(x) = A Yo,k (), k=1

Lv, i (x) = M vigp(w) — 200 Mg (1 +y@) 7 5(2) + por vo,k(2),
pr = (h —a9)(2km — 1), k=1,...,
Lul,k(x) = )\Lk I/l’k(x) + Uk V07k(x), )\l,k = (1 — 2a1))\k, k= 1, e

Therefore, L ¢ O(Vj,0).
fy=as=h= g;;gf, then pup =0, k=1,....
Therefore,

{LVM(:E) = A\ v (), =1 (19)

Ly g(z) = Mg vik(2),
Thus, V} is the system of eigenfunctions of operator L for which the equalities (19) hold, where
o] = {Al,k ER ANk = (1 =20\, k=1,...}.
Then, L € O(Vy,0,01). Therefore, taking into account Lemma 1, we obtain the following state-
ment.

Lemma 2. For any numbers a1, as, 81, B2 € R, where 2aq1 # 1, 1 # —fa, the system of eigenfunc-
tions Vj, of operator L is Riesz basis of the space La(—1,1).

Consequently, the statement A.1 of Theorem 1 holds.
Note, that for the case ag = v = 0 the spectral properties of operator L are investigated in [16,20).

4. Existence and uniqueness of solution to the problem (5)—(8)

4.1. Let the conditions v = ag = RN and Assumptions B1-B3 are true. Partial solutions of
problem (5)—(7) are determined by relations

{Uo,k($v t) = Tox(t) vor(z),
uy (2, t) = Ty g (t) vik(2),

To determine functions 7). x(t), we obtain problems that are solved sequentially

PR

{T(;,k(t) = Mo Tox(t) + 7(t) fors  Tox(0) = o, _—
T (1) = A e Toi(t) +7(t) fre(t),  Tir(0) =1k, e
Therefore,
1
Tip(t) = mg e ! +/ r(1) fui(r) e M) dr,
P k=1,....
Tok(t) = moxe ™ + / r(7) for(r) e E=7) dr,
0
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t
uy p(z,t) = <771,k e~ Mkt +/ r(7) frp(r) e M=) dT>V1,k(l’)7
0
t
ug p(z,t) = <?70,k e Mt +/ r(7) fou(r) e M ET) dT> vo,k(),
0

From the continuity of n(z) and the boundedness of functions (11) we obtain
Inr k| < My, max |r(t)| = My, max |f, x(t)| = Ma, max|vy g(z)| =14+ h=M3, r=0,1,k=1,....
Taking into account these correlations, we have the estimates
luo e (, )| < (Jnos| + max |r(t)] - max | f,x(t)])e™ € < Mye ™€ My = My + My Mo; (20)
Jur o (, 8)] < max fvy g ()| (|71,%] + max |r(2)] - max | fL g (t)])e 00 < Mye™ 14, My = MyMy. (21)
Therefore given Mg = (1 + M3)M, the functional series

oo 1
Z Zus,k(x7t) (22)

k=1 s=0
is majorized with an absolutely convergent numerical series

o0
Mg Z (6_)‘1"“6 + 6_)‘]“8).
k=1
Therefore, according to the Weierstrass sign, the series (22) are uniformly convergent and continuous
for t > e functions. Thus, the sum of the series (22) determines the continuous function wu(z,t),
satisfying the initial condition (7).
We differentiate element-by-element the series (22) by variable t:

k=1,....

oo

t
Z << — Mgk e R e (t) fre(t) + /0 r (1) fip(r) e M=) d7'> v k()

k=1
t
- ( — Mo nog e r(t) for(t) + /0 r(7) fo(r) e M=) dT> VO,k(x)> :

Let us consider

t
%ﬁﬂ%) < My (My | f(8)] + (|Ang] MoMa + MiTMy)e 15, (23)
‘W' < My [for(t)] + (A MoMs + M TMp)e ™, 24

t>2e>0, k=1,....
Taking into account the inequalities (23), (24), we get

Z e k el ' (Ms + 1)My Y Mo(JA gl €4 + A e ) 4 MIT (700 4 e77)
k= k=1
+ My(Ms + 1) (Ifor(®)] + | f1(8)])-
k=1

Using Assumption B3 and the Abel’s theorem of convergence of functional series, uniform conver-
gence and continuity of the sum of series is obtained > 57 (|fox(t)| + |f1,£(t)]) in the domain Dy,

Therefore is M7 > 0 an inequality that is correct
[ee)

>~ (For® + fix(®)]) < M.
k=1
Therefore, the sum of the series

ii@uskznt

k=1 s=0
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is continuous function in Dt and coincides with %.

We differentiate the series (22) element by element twice by the variable x:

Pus p(2,1) _ - st [ —A1k(t=T)
ZZ o =D (=M mpe™ [ r(n) frp(r) e MHED dr ) vy ()
0

k=1 s=0 k=1
t
Y (m it [ 1) fos(ry e dT) m(z)) .
0

Taking into account the formulas (20), (21) we get
82u1,k(x, t) 82u0,k(x, t)
0z x?
The resulting series is majorized given some ¢ > € > 0 by series

o0

Mg Z (|/\1,k| e_Al’ke + A 6_)‘1“6).
k=1

<A Mye ™™ k=1,....

< Aug| My e ke, ‘

. . . . . . .. . 02 t
Therefore, sum of this series is continuous function in Dp and coincides with %

2
Similarly, the smoothness of the function % is investigated. Further, by the embedding

theorems we obtain the continuity of functions %, Bu(a—x 24 in Dr.
Therefore, the sum of the series (22) is a classical solution of the problem (5)—(7).

Let us consider the equation to define the function r(¢):

1 (1) t
/0 x%dz —E(t) = Z ( )\1) <7’(t)f1,k(t) — Ak <7]1’k6_)\1,kt _|_/0 T(T)ka(T)e_)\l,k(t—T)dT>);

k=1
— (—1)* —Ap gt ‘ “App(t—7)
8r(t) Z " J1k(t) )+ 82)\1 k nge “E [ () fig(T)e” bk dr );
k=1 0
> -1 k B t B B
8r(t) Z ( )\k) fie@®) =E'@)+ (1 —-2m) Z8(—1)k <n17ke ALkt / 7 (7) frp(r)e Mkl T)d7'>;
k=1 k=1 0
w(t) = B0+ 81— 2) Z:" LD e (1 209) YR fo m)fu(r)e =T dr
SZk 1 flk() Zkzl )\k fl,k()
So, to determine the functlon r(t) the Volterra integral equation of the second kind is obtained:
+/ K(t,r)r(r)dr, (25)
0
where
F(t) o E/(t) + 8(1 - 2&1) ZZO:I (_1)k771,k e_Al’kt (26)
= = — ,
Zkzl 8%]‘11,19(75)
1 _ 2 oo _ k —Al’k(t—ﬂ')
K(t,T):( al)Zk 1( ) flk( )6 , (27)

zxk Fi(®)

The denominator of fractions (26), (27) is not equal to zero, because the Assumption B3 is obtained
/ z flat dx—sz f1k<>¢o.

According to Assumptions B1-B3, the function F ( ) and the kernel K (¢, 7) are continuous functions
on [0,77 and [0, 1] x [0,T] respectively.

Therefore, equation (25) has an unique solution. This solution is a continuous function r(¢) on
[0, 7], which forms an unique solution {r(¢),u(z,t)} of inverse problem (5)—(8) together with the given
Fourier series (13) as a solution u(x,t) of the direct problem (5)—(7).
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Then, the statement A.1 of Theorem 2 is proved.
4.2. Let oy = 0. Then A\ = A, k=1,....

In the case of v # w the elements of system V}, are the root functions of the operator L for

2451
which equalities (17) hold.
Let us consider the proof of statement A.2 of Theorem 2.
The partial solutions of problem (5)—(7) are determined by relations (19). To find the functions

T (t) we obtain the following problems

To () = =M Tok(t) — 7(t) for(t),  Tox(0) = nok, =1
T) () = =M Tu k() — premok +7(t) for(t),  T1x(0) =11k, Y
that are solved sequentially.
Therefore,
¢
To’k(t) = 770,k 6_)\kt + / T(T) f07k(T) e_Ak(t_T) dT,
Ot k — ].7 ey
Tl’k(t) = nl,k 6_)‘kt + / T(T) f17k(7’) e_Ak(t_T) dT,
0
¢
toalent) = (et [ 1(0) for(r)e D ar ) o),
9 k=1,....

uk(z,t) = <771,k e M 4 /Ot (7) frp(r) e 0T dT) vik(2),
Taking into account the Assumptions B1-B3 of the theorem and the formulas (20), (21), we obtain
the estimates
Jur g (2, 1) < max o1 k| (|70 k] + | f1e(E)] - max [r(2)]) e < Mg e,
Juo (@, )] < (10| + [ for(t)] - max|r(t)]) e < Mye <.

Therefore, the functional series (22) is majorized by an absolutely convergent numerical series

0o
2M6 Z E_Ake
k=1

for t > e > 0. This is why based on the Weierstrass test, series (22) is uniformly convergent and
continuous functions for ¢ > €.
Thus, the sum of the series (22) defines a continuous function that satisfies the initial condition (7).
By direct substitution, we make sure that

t
%Sf’t) = (r(t) Jo () = A (Uo,k e M 4 / 7) for(r) e ) d7>> Vo, (),

0

Ouy p(x,t _ t (et

%:<T(ﬂfl,k(t>—)\k<nl,ke At 1 /7’ ) frp(r) e M )dT>>V1,k(9€),
0

fork=1,....
Taking into account the formulas (23), (24) we get

%ﬁx,t) < max vy g (@) (M | fe(t)] + e (Mo + My Ma) e )
< (Mo + MyMa) Mz ™ + MiMs | f1u(t)],
%ff’t) < (Mo + | for(t)] - Mi)e ™ < Mye ™=, k=1,....
Let us differentiate element by element series (22), by two times with regard to argument x
kzl 2) o “3’;2’“’ D _ ; ((= Mk Tor(t) + ik Top(®)) vor(@) — M Top(t) v (2).
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Taking into account the formulas (20), (21) we get

0Pug i (z,t
06];(2 )' < M Ak €™ o [pag] Mg e85 < 2Nk + [pag]) Mz =,
0%uq i (x,t
‘#k&%e—m, k=1,....
oz
For some t > € > 0, Mg>0weget
co 1 u k z, t o0
s, —>\ S
o2 ‘ Mg Z A+ VA k
k=1 s=0 k=1

2
Therefore, its sums is continuous function in the domain Dp and coincides with 3“7(9“)_ Similarly,

the smoothness of the function %ﬁ—) is obtained. By embedding theorems, we obtain continuity of
functions %, % in Dp. Thus, defined by series (14) function u(z,t) is a classical solution of

the problem (5)—(7),
U Sulx o _1y\k t
/0 T 9 E)tjt) dv = E'(t) = 82 ( )\i) (r(t) fre(t) — A, <7717k e A +/0 r(7) f1,6(7T) e~ AR(=7) d7'>>;

k=1
s C 0 fat = B0 83 (m,k Mt [ ) ) )
=1 ¥ k=1 0
> (—1)F gt ! Ne(t=7) 7).
8r(t) ) i Frlt )+ 28 mue 4 [ r(r) fir(r)e dr );
k=1 0
r(t) = E'(t) + 8302 (—=1)Fny g e M Ek L(=DF for( f1 k(7) e M=) g7
= = .
2 ket o Jru(t) Zk 1 )\k fl k( )
So, to determine the function 7(¢) the Volterra integral equation of the second kind is obtained:
¢
+ / K(t,7)r(r)dr, (28)
0

where

iy = 2O Tin LU e
S 85 fur(t)
K(tor) = b (D ra(r) e
> he % fr(t)

The denominator of fractions (28), (29) is not equal to zero, because the Assumption B3 is obtained

[ ws dw—sz D i) 0.

(29)

According to Assumptions B1-B3, the function F ( ) and the kernel K (¢, 7) are continuous functions
on [0,7] and [0, 1] x [0,T] respectively.

Therefore, equation (25) has an unique solution. This solution is a continuous function r(t) on
[0, T], which forms an unique solution {r(t),u(x,t)} of inverse problem (5)—(8) together with the given
Fourier series (13) as a solution u(x,t) of the direct problem (5)—(7).

According to Assumptions B1-B3, the function F'(t) and the kernel K (¢, 7) are continuous functions
on [0,77 and [0, 1] x [0,T] respectively.

Therefore, equation (22) has an unique solution. This solution is a continuous function r(¢) on
[0, T, which forms an unique solution {r(t),u(x,t)} of inverse problem (5)—(8) together with solution
u(x,t) of the direct problem (5)—(7).
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The statement A.2 of Theorem 2 is proved.
4.3. Let ao = h = % In this case the elements of system V}, are the eigenvalues of operator

L, for which the following equalities hold

{Luo,k(x) = A\ Vo, (),

k=1,....
Ly i (x) = M va (),

The proof of statement A.3 of Theorem 2 is similar to the proof of A.1 of this theorem.
We note that inverse problem is investigated in [22] for f; =1, B2 = b, v =0, a1 = —&, ae = 0. In
addition, if 1 — 27 < 0, then more research is needed.

5. Conclusion

The solutions of the inverse problem for a parabolic equation with involution and anti-periodicity
conditions are constructed. The method of variables separation was used for the research. The cor-
responding eigenvalue problem for a differential equation with involution is studied. The eigenvalue
spectrum properties are analyzed. The conditions to guarantee the existence and uniqueness of the
inverse problem solution are found. The unknown coefficient is calculated using the Volterra integral
equation of the second kind.
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ObepHeHi 3aaa4i BU3Ha4€HHA HEBIAOMOrO 3aJ1eXKHOro
Bi4 Jacy koediuieHTa ans napabonivyHOro piBHAAHHSA
3 ymMmOBaMu iHBOMIOLiT Ta aHTUNEPIOANYHOCTI

Bapanenpkuit 9. O., Hemxis 1. L.

Havionasvruti ynisepcumem “JIvsiscora nosimexnixa’,
eyn. C. Bandepu, 12, 79013, Jlveis, Yrpaina

OOGepHeHi 3a/1a4i BU3HAYEHHST HEBIJIOMOIO 3aJ1€2KHO Bifl gacy koedirienTa mrs napabdorid-
HOTO PiBHSHHS 3 YMOBaMHM iHBOJIIOI] Ta aHTUTIepioaunaHOCTi. MeTo10M po3/tiienHst 3MiHHIX
MOOYI0BAHO PO3B 30K JMOCIIKYBaHOI 3a/1a4i 3 HeBioMuM KoedirienToM y piBusui. lo-
CJII/T?KEHO BJIACTUBOCTI iHIyKOBAHOI CIEKTPAJILHOI 338t st qudepeHIliaIbHOr0 PiBHIH-
He JPYTOrO MOPSAKY 3 IHBOJIONIE0. JloCTimKeHo 3aIeKHICTh CIEKTPa Ta MOro KpaTHOCT,
a TaKOXK CTPYKTYPY CHCTEMU KOPEHEBUX (DYHKIIIHA i TaCTKOBUX pO3B’sI3KiB 3aa4i Bi iHBO-
JIIOTUBHOI 9aCTUHU I[HOTO PiBHAHHS. BCTAHOBIEHO YMOBHU iCHYBAHHS Ta, €IMHOCTI PO3B’I3KY
obepuenol 3asaqi. /g Bu3HAUEHHS MIYKAHOTO KoedilienTa 3HaiileHo i po3B’g3aHo iHTe-
rpasibHe piBHAHHS BosibTepa npyroro pomy.

Knw4osi cnoBa: obeprena 3a0a4a; PIiBHAHHA MENAONPOSIOHOCTMI; MeMod PO3diAeHMA
BMIHHUL; HEAOKAALHE YMOBU, 1HBoa0uLa; basuc Pica.

Mathematical Modeling and Computing, Vol.11, No. 4, pp.1221-1232 (2024)



