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Abstract. A fractional neural network with an adaptive learning rate has been proposed for 

modeling the dynamics of non-isothermal heat and mass transfer in capillary-porous materials, 

taking into account the memory effect and spatial nonlocality. The proposed approach employs a 

decoupled neural network architecture based on loss functions that reflect the physical characte-

ristics of the investigated process. A stepwise training method is utilized to reduce sensitivity to 

errors and disruptions. The network structure has been analyzed, its parameters optimized, and 

appropriate activation functions and regularization methods selected to achieve high accuracy and 

reliability in modeling results. 

Keywords: fractional derivatives, machine learning in physical processes, neural network 

modeling, adaptive learning rate, capillary-porous materials. 

Introduction 

At the current stage of scientific development, an important task is the creation of mathematical 

models to describe nonequilibrium physical processes, especially in fractal systems, which exhibit a 

complex spatiotemporal structure. These systems are characterized by phenomena such as memory, self-

organization, and spatial non-locality, requiring the use of fractal dimension geometry for their adequate 

modeling. This approach is widely applied in various fields of science and technology, including 

mechanics, physics, electrical engineering, medicine, economics, and sociology. The foundation of such 

models is fractional order integrodifferential equations, which account for historical effects that determine 

the behavior of systems in time and space. 

The fractional calculus of integration and differentiation allows for the modeling of memory 

systems, considering how previous states influence the system’s dynamics. The time fractional exponent 

determines the degree of the system’s ―memory‖: whether it retains all information about past states or 

loses it over time. Spatial fractional derivatives, in turn, reflect the self-similarity and heterogeneity of the 

internal structure of the modeled environment. This enables a more accurate description of processes in 

fractal media, where parts of the system exhibit the same structural properties as the system as a whole, 

and interactions can occur over large distances. This approach provides a deeper understanding of the 

nature of physical phenomena and allows for effective solutions to complex problems. 

One of the current directions for solving fractional integrodifferential equations is the application of 

neural network approaches, which demonstrate significant potential in modeling complex systems. 

Currently, architectures of neural networks are being developed that adapt to the specificities of fractional 

problems. Studying the structure of such networks and analyzing their performance is crucial for achieving 

high accuracy in results. Further research in this direction will not only improve computational accuracy 

but also optimize the speed of problem-solving, opening new perspectives for the practical application of 

fractional models in various fields. 
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In this work, we apply an adapted neural network method based on the fPINN (Fractional Physics-

Informed Neural Networks) architecture [1], [2] to solve a mathematical model of non-isothermal heat and 

moisture exchange, taking into account fractional derivatives, and investigate the structure of the neural 

network. This is important for enhancing the efficiency of modeling processes in environments with fractal 

structures. 

The object of this study is the physical processes considering the heterogeneity of environments and 

memory effects occurring in capillary-porous materials during heat and moisture exchange. 

The subject of the study is the model of a fractal neural network, its characteristics, and methods 

that ensure the accuracy of modeling these processes. 

The main goal of the work is to analyze the fractal neural network model for predicting the 

evolution of temperature and moisture fields. The investigation of the network structure, optimization of its 

parameters, selection of activation functions, and regularization methods are aimed at achieving high 

accuracy and reliability in the modeling results. 

The practical significance of the work lies in determining the optimal values of the key parameters 

of the neural network, which take into account the features of heat and moisture exchange in environments 

with fractal heterogeneity. These parameters include the number of layers, the number of neurons in each 

layer, the selection of activation functions, and regularization methods. The obtained parameter values can 

be used to construct efficient neural networks capable of ensuring high prediction accuracy for processes in 

capillary-porous materials. This allows for the optimization of modeling processes for their effective 

practical application in various fields and creates opportunities for further research in the direction of 

modeling complex multiphysical processes occurring in heterogeneous environments. 

Problem Statement 

Methods of fractional derivatives and integrals are gaining increasing popularity in modeling 

physical processes in fields such as mechanics, physics, electrical engineering, medicine, and economics, 

as they allow for the consideration of memory effects and the fractal structure of materials. Such processes 

include, in particular, transport processes in amorphous semiconductors, aerogels, and porous media [3–7]. 

While a significant number of scientific works are dedicated to the development of analytical methods for 

implementing such models [8–10], numerical approaches have become the most widespread [11–13]. 

However, given the complexity of implementation, instability of numerical methods, and the need for 

significant computational resources to solve such problems, neural network approaches are attracting 

increasing attention as an effective alternative in this area. 

For example, in [14], a method was proposed for solving ordinary differential equations and partial 

differential equations using artificial neural networks. Works [15, 16] introduced two main ideas that allow 

the integration of physical laws into neural networks while avoiding the need for spatial discretization. 

Today, these approaches are widely used for the numerical solution of partial differential equations (PDEs) 

using neural networks. However, at the time, their practical application was limited due to technological 

barriers, particularly the insufficient computational power of computers. 

The situation changed with the emergence of computational platforms with GPU acceleration and 

high-performance machine learning frameworks, which rekindled interest in these methods. Special 

attention has been given to data-driven training methods for partial differential equations. One of the most 

influential approaches that sparked a renewed interest in solving PDEs is the Physics-Informed Neural 

Networks (PINNs) methodology, proposed by the authors in 2019 [17]. This approach demonstrated great 

potential in various application scenarios [18, 19]. Specialized deep learning libraries, such as DeepXDE 

[20], were also developed to solve differential equations. 

The PINN architecture is based on a fully connected neural network. However, due to some 

drawbacks of the basic PINN architecture, many researchers have sought to extend its capabilities through 

various approaches. This led to the creation of variants such as conservative PINN (cPINN) and nonlocal 
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PINN (nPINN) [21, 22]. Moreover, some authors aimed to improve performance and achieve more 

accurate results in modeling tasks by combining PINN with other types of neural networks, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) [23, 24]. In 2022, a neural 

network method based on Fractional Physics-Informed Neural Networks (fPINNs) was proposed, enabling 

efficient modeling of physical processes in fractal media [25]. The authors of [26] developed a series 

expansion approach for more accurate and efficient solutions to linear partial differential equations of 

higher order. Work [27] introduced an enhanced fPINN variant combining neural networks with the 

spectral collocation method, reducing the required discrete points for fractional operators, improving 

computational efficiency and accuracy. Additionally, [28] proposed an improved Monte Carlo method for 

fractional and tempered fractional partial differential equations, utilizing Gaussian quadrature to minimize 

variance and errors, effectively solving high-dimensional problems. Overall, neural network approaches 

for fractional-order problems remain in an early stage, with limited research currently available. 

Main Material Presentation 

The mathematical model for describing the behavior of the dynamic heat and moisture exchange 

process in one-dimensional space can be represented using a system of fractional differential equations as 

follows: 
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where ,t x , 0, 0,T l ; t  – is the time axis, and x  – is the spatial axis; ,U t x is the 

moisture function, which is to be determined, ,T t x is the temperature function, which is to be 

determined; a  – is the temperature conductivity coefficient; ,T U  is the moisture conductivity 

coefficient; ,d T U  moisture conductivity coefficient; ,c T U  is the specific heat capacity; 

0 1 , 0  is the density; pU  – is the equilibrium moisture content, which is a function of 

temperature ct  and the relative moisture of the surrounding environment; 0U – is the initial moisture 

content; 
0T  – is the initial temperature;  are the moisture exchange coefficients; 

*
 – are the heat 

exchange coefficients;  is the fractional time derivative order 0 1 ;  are the fractional spatial 

derivative orders 1 2 ;  – is another fractional order parameter 0 1 . 
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The fractional derivative, as defined in the model (1)–(6), is specified in the Caputo interpretation 

and is given as follows [29]: 

0

1
, , 0 1,

1

t

t f x t t f t  (8) 

here  – denotes the gamma function, and  represents the fractional time derivative. 

The fractional-order parameters  (where 1 2 ) and  (where 0 1 ), which are 

derivatives with respect to spatial coordinates, are defined in the Grunwald–Letnikov interpretation and are 

expressed as follows [28]: 
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The Grunwald – Letnikov derivative captures not only the local variations of a function but also 

accounts for distant interrelations between points, enabling the modeling of the effect of self-similar 

heterogeneity. 

Methodology. Physics-Informed Neural Networks (PINNs) [17] incorporate physical laws in the 

form of partial differential equations into the loss function, enabling the model to learn hidden physical 

patterns. For partial differential equations, derivatives of any order with respect to spatial or temporal 

coordinates are computed using automatic differentiation, ensuring high computational accuracy. However, 

calculating fractional derivatives is more complex and requires alternative approaches. 

To address this, the fPINNs method [25] was developed, utilizing various numerical methods to 

approximate fractional derivative operators in the time and spatial domains. 

In this work, time-fractional and space-fractional differential operators are approximated using the 

corresponding numerical schemes (10) and (11), which are subsequently integrated into the loss functions 

of the fractional neural network [2]. 
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The structure of this network is illustrated in Fig. 1. As shown in the figure, the architecture consists 

of two independent fully connected feedforward neural networks operating in parallel. In each individual 

network, every neuron in the current layer is connected to all neurons in the next layer, with the output 

values of one layer serving as the input data for the next. 

The network model implements a transformation from the input layer , 

which is shared by both networks, to the output layer , which combines the outputs of the two 

networks: 
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Fig. 1. Structure of a neural network  

Here, 
ly  represents a layer located between the input and output layers, 1,2,..., 1l L ; 

1 1 1 2 2 2: ( , ), : ( , )l l l lW b W b  are the parameters of the respective networks, depending on the weight 

coefficients i

lW  and biases 
i

lb , 1,2i ; 
i

la  – is the activation function that performs component-wise 

processing;
UN  and 

TN  are the outputs of the respective individual neural networks. 

According to the described approach, the functions ,U t x  and ,T t x , to be determined, are 

modeled using a fully connected neural network (12). The outputs of the network, 
UN  and 

TN , serve as 

approximations of the sought functions for moisture content and temperature: 

.
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In this model, the loss functions for the networks 
UN  and 

TN  are formulated as mean squared error 

(MSE), incorporating the residual losses of the equations ,
r rU TL L , the boundary condition losses ,

b bU TL L , 

the initial condition losses ,
i iU TL L , and the losses between the training data ,

d dU TL L  and the network 

predictions 
UN  and 

TN . The loss functions are expressed as follows: 
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here, the expressions , , , , ,
r r i i b bU T U T U TL L L L L L  are defined based on equations (1)–(7), considering 

the numerical discretization schemes (10) and (11), and are presented by formulas (15)–(19), while 

, , , , , , ,
d d r r b i b iT U U T U U T T  represents the weighting parameters. 
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The training process is organized so that the loss functions of the networks 
UN  and 

TN are 

minimized through sequential optimization aimed at finding the optimal parameters 
1 2, . The training is 

conducted in stages: first, the parameters of network 
UN  are optimized while keeping the parameters of 

network 
TN  fixed, and then vice versa – the parameters of network 

TN  are optimized with the parameters 

of 
UN  fixed. This cycle is repeated until the predefined number of iterations is completed or the desired 

level of accuracy is achieved [2]. 

The network parameters, denoted as 
1 2, , are updated at each step using the gradient descent 

method according to the following formulas: 
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where  is the learning rate, and 1 1 1 1 2 2 2 2, , , , , , ,
d r i b d r i bU U U U T T T TL L L L L L L L  represents 

the gradients of the loss functions with respect to the equations (1), (2), boundary condition losses (4)–(7), 

initial condition losses (3), and the loss between the training data ,
d dU TL L and the network predictions for 

UN  and 
TN . 

In standard physics-informed neural networks, the coefficients of different terms in the loss function 

are typically set to 1 or have fixed values. However, the gradient imbalance between these terms can cause 

the network to focus on specific aspects, such as boundary or initial conditions, training data, or governing 

equations, which increases the risk of getting stuck in local minima. 

To reduce the gradient imbalance between different terms in the loss function (12), adaptive weight 

parameters , , , , , , ,
d d r r b i b iT U U T U U T T are introduced for each term in the loss function. These 

parameters are defined as follows: 
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where is the average gradient value for the corresponding term in the loss function (12). 

These coefficients help balance the importance of different parts of the loss function during training, 

contributing to a more stable optimization process. 

It is worth noting that more efficient learning is achieved when  is set 

1 1 1
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This approach allows the network to adjust the learning rate based on the magnitude of the 

gradients. By applying this strategy, a reduction in the loss values for the training data and boundary 

conditions is observed, which improves the model's convergence compared to using a fixed learning rate. 

Numerical Examples and Results  

In this section, a study is conducted that demonstrates how the proposed fractal neural method can 

be applied to numerically solve the mathematical model of heat and mass transfer processes (1)–(7) with 

fractional derivatives in time and space. To evaluate the method's performance, indicators such as the the 

relative L2-norm, defined as, were used. 

2
*

2
*

1

.
dN

L i

rel

i
i

y y

y
, (24) 

where *

i
y  represents the training data and L

y denotes the approximate (calculated) value. 

The numerical experiments were conducted on a platform with an Intel(R) Core(TM) i7-8750H 

processor, 16 GB of RAM, and the Windows 10 operating system. The model implementation, consisting 

of two separate fully connected neural networks, was carried out using TensorFlow and Keras libraries 

with automatic differentiation support. The Adam optimization algorithm was used to minimize the loss 

function, and parameter initialization was performed using the Xavier method. The learning rate was set to

41 10 , with 8 hidden layers, 40 neurons in each layer, and 4000 iterations. 

The input layer of the model processes the spatial and temporal coordinates, which serve as input 

parameters, while the output layer of each neural network generates a single result used for approximating 

the moisture or temperature functions.The experiments were conducted using a capillary-porous material  – 

wood with a density of 450  kg/m³. The model was set up with the following initial parameters: sample 

temperature 0 20T C , ambient temperature 80ct C , initial moisture content 0 0.5U  (kg/kg), relative 

air moisture 65% , and drying agent velocity 2v  (m/s). Values 0.9, 1.9, 0.95  for 

fractional parameters were used. 
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To evaluate the effectiveness of the proposed method, results were compared with other approaches. 

Each experiment was repeated 10 times, and the final evaluation was based on the average of the obtained 

errors. A description of the models used in the study is provided below: 

– fPINN (fixed). This model uses discretization of fractional derivatives to bypass the limitations of 

automatic differentiation. The loss function consists of four components with fixed weights for each of 

them. Fractional derivatives are discretized using schemes (10) and (11), and the tanh activation function is 

used. 

– fPINN (adaptive). This model implements a dynamic weight distribution between the components 

of the loss function based on gradient statistics, which reduces the imbalance between the different 

components. All layers of the network use the swish activation function. Other parameters remain the same 

as in the fPINN (fixed) model. 

Graphical representations of the simulation results for temperature and moisture dynamics using the 

fractal neural network method are presented in Fig. 2. 

 
a                                                                                                        b 

Fig. 2. The results obtained using the network model:  

(a) variations in temperature fields; (b) variations in moisture content  

In the course of the study, the fPINN (fixed) model was evaluated by dividing the data into three 

sets: training, validation, and test sets. The model was trained on the training set, with parameter 

optimization performed using the loss function (12). The validation set was used for hyperparameter tuning 

and overfitting control. After training was completed, the model was evaluated on the test set, which 

allowed for a final assessment of its generalization ability. The analysis of the loss functions, presented in 

Fig. 3, helped determine the optimal number of epochs (≈ 4000), which contributed to avoiding overfitting. 

 

Fig. 3. Evolution of the loss functions for the training,  

validation, and test datasets 
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A study was also conducted to investigate the impact of regularization methods on the model. L1 

and L2 regularization [29] were sequentially introduced into the training process. The results of the 

experiment are presented in Fig. 4 and 5. 

 

a                                                                                                        b 

Fig. 4. The effect of the L1 regularization method on the model: a – the effect of L1 regularization on the loss 

function 
UNL  and its components in the fPINNs model with fixed weights; b – the effect of L1 regularization on the 

loss function 
TNL  and its components in the fPINNs model with fixed weights  

 

a                                                                                                        b 

Fig. 5. The impact of the L2 regularization method on the model: a – the effect of L2 regularization on the loss 

function 
UNL  and its components in the fPINNs model with fixed weights; b – the effect of L2 regularization on the 

loss function 
TNL  and its components in the fPINNs model with fixed weights  

The application of L1 regularization leads to an increase in the L2 relative norm, as L1 

regularization adds a penalty to the loss function for the absolute values of the network’s weight 

coefficients. This can result in some increase in the variation of the coefficient magnitudes compared to L2 

regularization. At the same time, L1 regularization has the property of creating sparse models, which 

allows ignoring less important features. 

In contrast, L2 regularization stabilizes the training process by reducing the magnitude of the 

network’s weight coefficients, helping to prevent overfitting and making the model more robust to noise in 

the data. Due to the penalty in the loss function for large coefficients, L2 regularization helps reduce model 

complexity and improves its generalization ability by decreasing the variability in model parameters. 

L2 regularization demonstrates more stable loss reduction over time, while L1 regularization may exhibit a 

more erratic behavior during the initial iterations. L1 regularization promotes the ―zeroing out‖ of model weights, 

which can explain the greater fluctuations during the early iterations. L2 regularization ensures faster convergence 

of the loss, particularly for the residual error, as evidenced by the smoother decrease in the graph. 
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When comparing the impact of L1 and L2 regularization on model accuracy, it is particularly 

important to consider stability and error levels. The graphs presented in Fig. 6, which analyze the relative 

L2-norm of errors for the variables ,U t x  and ,T t x , provide a clearer understanding of this 

difference. 

As seen in the first graph, L1 regularization has both strengths and weaknesses. When applied, the 

error 
rel

 for the variable ,U t x  remains stable at a relatively low level – around 0.05–0.075. The 

variable ,T t x  exhibits sharp fluctuations, sometimes reaching quite high values (up to 0.225), indicating 

instability in the model. Only at the end of the iterations does this process stabilize, but at a relatively high 

level ( 0.125rel
). This behavior can be attributed to the nature of L1 regularization, which, through its 

tendency to ―sparsify‖ the weights, may cause erratic optimization. 

 

a                                                                                                        b 

Fig. 6. Comparison of the relative L2 norm of errors for L1 and L2 regularizations:  

a – L1 regularization; b – L2 regularization 

On the other hand, L2 regularization has a more favorable effect on the model. As shown in graph b, 

the error for the moisture content variable decreases rapidly to a low level ( ) within the 

first 1000 iterations and remains stable throughout the rest of the training. For the variable ,T t x , a 

smooth decrease in the error  is observed, reaching a level of 0.075–0.1 without any spikes or insta-

bility. This indicates that L2 regularization better controls the optimization process and weight distribution. 

The study involved analyzing the impact of different types of activation functions. Fig. 7 illustrates 

the dynamics of the loss functions during the training of a neural network with various activation 

functions: ReLU, Tanh, Swish, and Sigmoid [30].  

 

Fig. 7.  Impact of various types of activation functions 
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The model with the ReLU activation function exhibits unstable behavior, with the loss function 

values fluctuating even after many epochs of training. This may indicate difficulties with gradient stability. 

The Tanh activation function shows a more stable decrease in the loss functions. The training progresses 

smoothly, with the values of 
UNL  and 

TNL decreasing to low levels, indicating balanced and stable 

performance for both variables of the system. The Tanh activation function is popular in neural networks 

for solving partial differential equations, and its effectiveness has been confirmed by numerous 

experiments. However, this study establishes that the Swish activation function delivers the best results. 

The loss functions 
UNL  and 

TNL  decrease rapidly and reach minimal values compared to the other 

activation functions. After approximately 200 epochs of training, the losses stabilize at a very low level, 

indicating effective optimization for the variables ,U t x  and ,T t x . The Sigmoid activation function is 

the least effective for this model, as it demonstrates a slow reduction in the loss. 

The adaptive assignment of weights to the components of the loss function, based on gradient 

statistics, helps to reduce imbalances between different components, thereby facilitating more efficient 

neural network training. This approach ensures that the network pays equal attention to all loss function 

components during backpropagation, preventing the dominance of any single component. We integrated 

this concept of adaptive learning rate adjustment into the architecture of the fractal network. The results are 

presented in Fig. 8, 9 and 10. 

 

 

a                                                                                                        b 

Fig . 8. Effect of adaptive weights on loss function convergence in fPINN fixed model:  

a  – without adaptive weights; b – with adaptive weights 

 

a                                                                                                        b 

Fig. 9. Effect of adaptive weights on loss function convergence in fPINN fixed model:  

a – without adaptive weights; b – with adaptive weights 
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The presented graphs (Fig. 8, 9) illustrate the changes in the total loss function and its components 

during model training. 

In graph a of Fig. 8, 9 (without adaptive weights), the total loss function (
UNL  and 

TNL ) decreases 

gradually; however, the process is accompanied by significant oscillations, particularly during the initial 

stages of training. This indicates that the model struggles to effectively balance the various constraints of 

the problem, which slows down convergence. 

In contrast, in graph b of Fig. 8, 9  (with adaptive weights), the loss function decreases more 

steadily. The reduction in losses occurs faster, and the amplitude of oscillations significantly decreases, 

even in the early stages of training. This suggests that adaptive weights enable the model to better focus on 

critical aspects of the problem at each epoch. 

The loss components also exhibit notable differences between the two approaches. Without adaptive 

weights (graph a), the components decrease unevenly – some converge slowly, while others remain nearly 

unchanged throughout training. This highlights the model’s inability to account for the diversity of 

problem conditions effectively. However, with adaptive weights (graph b), the loss components exhibit 

consistent reductions. Adaptive weights allow the model to automatically adjust the importance of each 

component based on its contribution to the total loss. As a result, balance across all constraints is achieved, 

significantly improving the training process. 

The graphs further show that training with adaptive weights is significantly more stable. Without 

adaptation, the loss functions exhibit persistent oscillations, even at later stages of training, indicating 

challenges for the model in achieving optimal solutions. Conversely, with adaptive weights, oscillations 

are markedly reduced, particularly after the first few hundred epochs, facilitating faster and more stable 

convergence. 

The use of the Swish activation function combined with adaptive weights for the components of the 

loss function demonstrates a significant improvement in the model’s training quality. As observed from the 

graph, the overall loss functions decrease steadily and rapidly, reaching values close to zero with minimal 

oscillations throughout the training process. The components of the loss function decrease synchronously, 

ensuring a balanced contribution of each to the model’s training. This indicates that the use of Swish 

facilitates effective interaction between components, optimizing convergence. Such an approach can 

enable faster and more stable convergence compared to using adaptive weights alone, making it a 

promising strategy for application in fractal neural networks. 

The analysis results demonstrate that the use of adaptive weights provides substantial advantages 

over the approach without their application. 

 
a                                                                                                        b 

Fig. 10.  Impact of adaptive weights on loss functions in fPINN adaptive model: 

a – impact on loss
UNL ; b –  impact on loss

TNL  
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A study was also conducted on the impact of the neural network architecture, specifically the 

number of hidden layers and neurons in each layer, on the model’s accuracy, which is evaluated using the 

relative L2 norm . The results of this study are presented in Fig. 11. 

 

Graph a in Fig. 11 shows that with the increase in the number of hidden layers, there is initially a 

gradual decrease in the error, which reaches a minimum at 8–10 layers. However, beyond this point, there 

is a sharp increase in error, indicating the inefficiency of the network with further increases in depth. This 

suggests that the optimal number of hidden layers for this task is around 8, and adding extra layers does not 

improve but rather worsens the results. 

Graph b in Fig. 11 demonstrates that with the increase in the number of neurons in the layers, the 

relative L2 norm  decreases up to a certain point (approximately 100 neurons per layer), after which the 

accuracy sharply deteriorates. This phenomenon indicates the difficulty in optimizing the model with an 

excessive number of parameters. The optimal number of neurons in the layers for this model is around 100, 

which ensures the best accuracy. However, the training time for the model with 100 neurons significantly 

exceeds that of the model with 40 neurons in each layer. The gain in accuracy is marginal, which allows 

the best model parameters to be determined as 40 neurons and 8 hidden layers. 

Conclusions 

The research successfully applied a fractional neural network with an adaptive learning rate for 

modeling the dynamics of non-isothermal heat and mass transfer in capillary-porous materials. This 

approach accounted for memory effects and spatial nonlocality, which are crucial for accurately replicating 

physical processes in such environments. 

A staged approach was used to optimize the model, reducing sensitivity to errors and failures, 

ensuring the stability of the training process and high accuracy of the results. Additionally, the neural 

network architecture was fine-tuned, and optimal activation functions and regularization methods were 

chosen, improving the modeling quality and ensuring the reliability of the obtained results. 

Thus, the developed approach not only demonstrated its effectiveness but also opens new 

perspectives for further research and improvement of numerical modeling methods in the fields of heat and 

mass transfer, as well as in other areas of scientific investigation. 

Thanks to the optimization of network parameters and the correct choice of activation functions and 

regularization, the model demonstrated high accuracy and stability. This confirmed the effectiveness of 

 

a                                                                                                        b 

Fig. 11.  Impact of network width and depth on model performance:  

a – impact of network depth; b – impact of network width 
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using fractional neural networks for complex physical models of heat and mass transfer in capillary-porous 

materials and opens new possibilities for further research and applications in materials science and 

engineering. 
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Анотація. Запропоновано фракційну нейронну мережу із адаптивним темпом навчання для 

моделювання динаміки неізотермічного тепло- та масоперенесення в капілярно-пористих матеріалах з 

урахуванням ефекту пам’яті та просторової нелокальності. Використано архітектуру нейронної мережі 

з роз’єднаною структурою, яка ґрунтується на функціях втрат, що враховують фізичні особливості 

досліджуваного процесу. Для навчання мережі використано поетапний підхід, що дало змогу зменшити 

чутливість до помилок та збоїв. Досліджено структуру мережі, оптимізовано її параметри, а також 

вибрано відповідні активаційні функції та методи регуляризації з метою досягнення високої точності 

та достовірності результатів моделювання. 

Ключові слова: дробові похідні, машинне навчання у фізичних процесах, моделювання 

нейронними мережами, адаптивний темп навчання, капілярно-пористі матеріали. 
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