COMPUTER DESIGN SYSTEMS. THEORY AND PRACTICE
Vol. 6, No. 3, 2024

Artem Mikanov?, lThor Farmaha?, Krzysztof Kurzydlowski®

! Computer Design Systems Department, Lviv Polytechnic National University, 12, S. Bandery str., Lviv,
Ukraine, E-mail: artem.mikanov.kn.2021@Ipnu.ua, ORCID 0009-0007-0643-3367,

2 Computer Design Systems Department, Lviv Polytechnic National University, 12, S. Bandery str., Lviv,
Ukraine, E-mail: ihor.v.farmaha@Ipnu.ua, ORCID 0009-0007-3727-2586,

® Department of Material and Production Engineering, Faculty of Mechanical Engineering,

Bialystok University of Technology, 45¢,Wiejska str., Bialystok, Poland,E-mail:
krzysztof.kurzydlowski@pb.edu.pl ORCID 0000-0003-3875-4820

HIGH-PERFORMANCE COMPUTING METHOD FOR INVESTIGATING
HEAT CONDUCTION PROCESSES IN COMPOSITE MATERIALS

Received: November 12, 2024 / Revised: November 20, 2024 / Accepted: November 25, 2024
© Mikanov A., Farmaha I., Kurzydlowski K., 2024
https://doi.org/10.23939/cds2024.03.169

Abstract. This study explores an approach to modeling heat conduction in composite ma-
terials using high-performance computing methods. The solution of a complex mathematical
problem is decomposed into multiple independent processes through the MPI method to maximize
computational efficiency. The model structure accounts for the properties of the composite material
and its components. The finite element method (FEM) is applied to study the thermal properties.
Computational results demonstrate the high efficiency and accuracy of the proposed approach,
confirming its relevance for both scientific research and educational purposes.

Keywords: composite materials, thermal conductivity, finite element method, high-perfor-
mance computing, parallel computing, MPI, boundary conditions, temperature distribution analysis.

Introduction

Modern composite materials have found widespread applications due to their unique combination of
properties, which depend on the structure of the matrix and inclusions. Calculating the thermal
conductivity of such materials is a complex task that requires significant computational resources.
Traditional approaches often fail to provide the necessary efficiency, complicating the analysis of
multicomponent structures [5-7].

In this context, high-performance computing (HPC) opens up new opportunities [3]. Parallel
programming methods, such as MPI (Message Passing Interface), optimize computational processes and
significantly reduce execution time. Using the finite element method (FEM) makes it possible to account
for complex geometry and material heterogeneity and adapt the model to various conditions.

Problem Statement

The primary drawback of existing methods is their limited performance, which hinders the
scalability of tasks. This work proposes the use of MPI to solve thermal conductivity problems in
composite materials with proportional scaling of computational nodes and tasks. 1. Develop a universal
computational model that considers the specifics of composite materials. 2. Implement an efficient
calculation of thermal conductivity using FEM and MPI. 3. Analyze the accuracy of the approach for
different types of structures.

Main Material Presentation

A composite material consists of a matrix providing overall structure and mechanical properties and
inclusions affecting physical characteristics such as thermal conductivity.

169

mailto:artem.mikanov.kn.2021@lpnu.ua
mailto:andrii.i.holovatyi@lpnu.ua

Artem Mikanov, Thor Farmaha, Krzysztof Kurzydlowski

The modeling process uses a cubic structure composed of cells made from two materials with
different thermal conductivities. The main stages of modeling include:

+ Discretization of the domain into finite elements.

» Generation of the structure (random or gradient material distribution).

» Determination of element properties based on the material.

MPI is used to distribute tasks among computational nodes, enabling simultaneous calculation of
multiple experiments.

Selection of Tools and Technologies:

FENiCSx

FENnICSx is a library for solving partial differential equations using the finite element method (FEM)
with support for parallel computations [2]. It was chosen due to its ability to efficiently solve partial
differential equations on complex geometries, support for various mesh element types, and boundary
condition flexibility.

MPI

MPI (Message Passing Interface) is employed for parallel computations, ensuring efficient
communication between processes on different computational nodes. MPI allows distributing calculations
across multiple processes or computers, increasing the speed of complex computations [1].

M M L [M M

Communication network

Fig. 1. The principle of MPI

Justification for choice

The choice of FEniCSx for modeling thermal conductivity is motivated by its high solution
accuracy, support for parallel computations, and flexibility in task configuration. MPI ensures efficient
scaling of computations across large numbers of processors, essential for handling complex models with
numerous elements. These tools enable the performance and accuracy needed for solving thermal
conductivity problems in composite materials, which is critical for implementing high-performance
computations in scientific and engineering research.

Implementation of the Computational Process

Solve Resulis
saved

Solve Results
saved

Solve Results
saved

Fig. 2. Schematic representation of the algorithm

Cluster

Boundary
conditions

Processi

Generate configuration

Boundary
conditions

Task distribution

Prpcess2

Generate configuration

Boundary
conditions

Discretization

-

.
gl

Process3

Generate configuration

170

High-Performance Computing Method for Investigating Heat Conduction Processes...

Discretization
At this stage, a finite element mesh is constructed. The discretization of the domain is performed
using the create_unit_cube function from the fenicsx library [2]:

mesh = create unit cube (MPI.COMM SELF, nx, ny, nz,
cell type=CellType.hexahedron)

This function takes the dimensions of the domain for discretization, corresponding to the number of
finite elements in three dimensions. It also requires the specification of the element shape, which in this
case is chosen as cubic elements.

Task Distribution Among Processes

In this step, predefined experiments are distributed for execution across different processors in the
cluster. Maximum computational efficiency on arbitrarily organized processors is achieved by following
the “1 process — 1 processor” rule. It is assumed that the number of experiments is divisible by the number
of processors to avoid idle time. Uniform task distribution is implemented as follows:
mesh = create unit cube (MPI.COMM SELF, nx, ny, nz,
cell type=CellType.hexahedron experiments per rank = num experiments //
slze

remainder = num_ experiments % size

start idx = rank * experiments per rank + min(rank, remainder)

end idx = start idx + experiments per rank + (1 if rank < remainder
else 0)

my experiments = list(range(start idx, end idx))

Due to the use of MPI, the value of the rank variable will differ for each process, assigning a unique
set of experiment indices to each process [1].

Structure Generation

For generating the configuration, it is assumed that each generated finite element can be assigned a
different thermal conductivity value. This value determines the material classification of the element for
subsequent analysis.

cells 1, cells 2 = [1, []
for cell index in range (c2v.num nodes) :
if np.random.rand() < ratio: # Material 1 with probability
of "ratio"
cells 1.append(cell index)
else: # Material 2 in other cases
cells 2.append(cell index)

cells 1 = np.array(cells 1, dtype=np.int32)
cells 2 = np.array(cells 2, dtype=np.int32)

Filling thermal conductivity function
kappa.x.array[cells 1] = kappal
kappa.x.array[cells 2] = kappa2l, cells 2 = [], []
for cell index in range (c2v.num nodes) :
if np.random.rand() < ratio: # Material 1 with
probability of "ratio"
cells 1.append(cell index)
else: # Material 2 in other
cases
cells 2.append(cell index)

cells 1 = np.array(cells 1, dtype=np.int32)
cells 2 = np.array(cells 2, dtype=np.int32)

171

Artem Mikanov, Ihor Farmaha, Krzysztof Kurzydlowski

Filling thermal conductivity function
kappa.x.array[cells 1] = kappal
kappa.x.array[cells 2] kappa?

Equation Formulation
The first step in problem formulation is defining boundary conditions. This implementation supports
Dirichlet, Neumann, and Robin boundary conditions [4]. The cube’s faces are used as boundary regions,
with predefined markers assigned to them:
boundary conditions = [
BoundaryCondition ("Dirichlet", marker=1, value=tl, V=V, u=u, v=v),
BoundaryCondition ("Dirichlet", marker=2, wvalue=t2, V=V, u=u, v=v),
BoundaryCondition ("Neumann", marker=3, value=gl, V=V, u=u, v=v),
BoundaryCondition ("Neumann", marker=6, value=g2, V=V, u=u, v=Vv),
BoundaryCondition ("Robin", marker=6, value=(r, s), V=V, u=u, v=v),

The weak form of the thermal conductivity problem is constructed:
F = kappa * inner (grad(u), grad(v)) * dx - inner(f, v) * dx
This formulation is based on the heat conduction equation in weak form:
—kVu- Vv, dQ = [0fv,dQ 1)
The previously defined boundary conditions are applied to the variational form:

Separately collect Dirichlet boundary conditions
bcs = [bc.bc for bc in boundary conditions if bc.type == "Dirichlet"]

Apply other boundary conditions to the variational form
for bc in boundary conditions:
if bc.type != "Dirichlet":
bc.apply (F)

Dirichlet boundary conditions are separated and applied during the mathematical solution process, as
FENICSx provides built-in tools for handling them. The mathematical formulation of Dirichlet conditions is:

u = const on 9N 2
For Neumann and Robin boundary conditions, the variational form is adjusted accordingly:

elif bc type == "Neumann":

self.bc = value * v * ds (marker)
elif bc type == "Robin":
self.bc = value[0] * inner(u - value[l], v) * ds (marker)

Neumann Boundary Conditions (based on Fourier’s law):

—kVu-n* =qon 90 (3)
Robin Boundary Conditions:
—kKVu-n”* = h(u— Teo) on 90 (4)
The resulting problem elements are represented in the form:
A-u=1L 5)

Where A is the assembled stiffness matrix and L is the load vector, incorporating all boundary
conditions.

Solution of the System of Equations

The system of equations, formulated as A-u=L [4], is solved using FEniICSx’s LinearProblem class.
The solver utilizes PETSc options for customizable numerical methods. The implementation is as follows:
def solve problem(a, L, bcs):

problgm = LinearProblem(a, L, bcs=bcs, petsc options={"ksp type":
"cg", "pc_type": "lu"})

return problem.solve () self.bc = value

172

High-Performance Computing Method for Investigating Heat Conduction Processes...

The function returns the solution vector u, representing the temperature distribution in the
computational domain.

Solution of the System of Equations

The simulation outputs are saved in .xmdf format, which is widely used for 3D structures. The file
includes the finite element mesh and computed nodal values (e. g., temperature):

With XDMFFile (MPI. COMM SELF,

f" {save path} /simulation_results_{experiment_id} .xmdf", "w") as file:
file.write mesh (mesh)
file.write function (uh)

The metadata of the experiment (including its ID, mesh size, fill factor, material thermal conduc-
tivities, as well as boundary conditions and their application regions) is stored in .json format. Addi-
tionally, throughout all stages, the computation time for each experiment is measured (including the time
for material region determination, problem setup, solution, and data saving) and recorded in a .csv file.

The program also provides the ability to visualize the computation results as graphical images of
material regions and temperature distribution. The result of each experiment is stored along with the other
files.

Fig. 3. Composite material configurations with different filling percentages

173

Artem Mikanov, Thor Farmaha, Krzysztof Kurzydlowski

100.

Fig. 4. Temperature distribution for material ratios (3 %, 12.5 %, 37.5 %, 75 %)

Conclusions

During the parallel execution of a set of tasks by dedicated processes, each of them measured the
time spent on executing its tasks. The overall complexity of the problem was calculated as the sum of the
time spent on executing all assigned tasks (conducted experiments). Additionally, a joint time
measurement was taken for the entire program execution, from the moment the tasks were distributed to
the process pool until the results of all distributed tasks were ready. The efficiency of the parallelization of
the computational process was determined as:

Ep = T1 (6)
p-Tp

Here, T1 is the time taken to execute the task on a single processor (which corresponds to the overall
complexity of the task), p is the number of processes used, and Tp is the time taken to execute the task
using multiprocessing with communication through MPI.

According to the data obtained in the resulting file, the parallelization efficiency for solving this
problem was 95.9 % when computing 256 experiments for cubic structure models with dimensions of
20x20%20 on a cluster with a total processing power of 16 processor cores.

Furthermore, we observed that the computational time in Finite Element Analysis (FEA) increases
non-linearly with the number of finite elements. For example:

e For a 20x20x20 mesh (8,000 elements), the average solve time was 2.4 seconds.

e For a 35x35x35 mesh (42,875 elements), the average solve time increased to 100 seconds.

This corresponds to a 5.36-fold increase in the number of elements, but a 41.67-fold increase in
computation time. This disparity highlights the cubic or higher dependence of computation time on the
number of elements, particularly when using direct solvers. Such scaling emphasizes the importance of

174

High-Performance Computing Method for Investigating Heat Conduction Processes...

task distribution strategies, especially when employing heterogeneous computing systems with processors

of varying capabilities. In these cases, non-uniform task allocation ensures efficient utilization of all
computational resources.

References

[1] Electronic resource: Open MPI documentation. [Access mode]: https://www.open-mpi.org/doc/

[2] Electronic resource: Fenics documentation. [Access mode]: https://fenicsproject.org/documentation/

[3] Smith, J. High-Performance Computing in Materials Science. Journal of Computational Materials, 2020.

[4] Finite Element Method in Heat Transfer Analysis. Engineering Computation, 2019.

[5] Jaworski N., Lobyr M., Matviykiv O., Farmaga I., Marikutsa U. Synthesis of effective thermal
characteristics of anodic alumina by the microlevel cellular composite materials model // Microtechnology and
thermal problems in electronics, MICROTHERM 2017: official proceedings of international conference, June 27-29
2017, Lodz, Poland. 2017, 26-28.

[6] Thermal Analysis Methods for Design of Composite Materials with Complex Structure / N. Jaworski,
I. Farmaga, O. Matviykiv, M. Lobur, P. Spiewak, L. Ciupinski, K. Kurzydlowski // ECS Transactions. 2014, Vol. 59,
No. 1, pp. 513-523.

[7] Research of composite materials optimal design task based on numerical simulation / N. Jaworski,
I. Farmaga, M. Lobur, P. Spiewak // Proc. of the 8-th Int. Scientific and Technical Conference “Computer Sciences
and Information Technologies (CSIT'2013)”. Lviv (Ukraine), 2013, pp. 46-48.

ApTtem Mikanos’, Irop (I)apMaraz, Kmnmrodg Ky;lmz[.ﬂonclci3

! Kadenpa crcrem aBTOMaTH30BaHOTO MPOEKTYBaHHs, HarionaneHuit yHiBepcuteT “JIpBiBChKa MOMITEXHIKA”, BYIL.
C. baunepw, 12, JIeBiB, Ykpaina, E-mail: artem.mikanov.kn.2021@Ipnu.ua, ORCID 0009-0007-0643-3367,

? Kadezpa cuCTeM aBTOMATH30BAaHOTO MPOEKTyBaHHs, Hamionansauii yrisepcuter “JIbBiBCHKA MOMITEXHIKA”, BYIL.
C. baunepu, 12, JIssiB, Ykpaina, E-mail: ihor.v.farmaha@Ipnu.ua, ORCID 0009-0007-3727-2586,

¥ Kadyenpa MaTepianbHO-TeXHiqHOro 3a0e3medeHns, BinocTonpKuil TexHOMOr uHMiT yHiBEpCHTET, By Beiicka, 45¢,
Binocrok, IMonkiua, E-mai: krzysztof.kurzydlowski@pb.edu.pl ORCID 0000-0003-3875-4820

BUCOKOE®EKTUBHUI OBYUCJIIOBAJIBHUNA METO/I JTJOCJIKEHHS ITPOIECIB
TEIIJIOITPOBOJHOCTI B KOMITIO3UTHUX MATEPIAJIAX

Otpumano: Jlucronan 12, 2024 / epermsuyto: Jlucromnan 20, 2024 / Mpwuiiasro: Jlucroman 25, 2024
© Mixanos A., @apmaca 1., Kyscuonoscxi K., 2024

AHoTanist. Y cTaTTi JOCHIIPKEHO MiAXiJ 0 MOAETIOBAHHS TEIJIONPOBITHOCTI B KOMIIO3UTHHAX MaTepia-
Jax 3a JOIIOMOTOK0 BHCOKOIPOAYKTHBHHX OOYMCIIOBAIBHUX METOMIB. PO3B’s3aHHS CKJIagHOI MaTeMaTHYHOI
3aja4yl PO3ALICHO HA KiIbKa HE3ANEKHHX MpOLECiB 3a gornomMoror Meroay MPI, mob makcumizyBatu
00YMCITIOBANBEHY eeKTHBHICTh. CTPYKTypa MOJENi BPaxOBY€ BIACTHBOCTI KOMIIO3MIIIHHOTO MaTepiany Ta
HOro KOMITOHEHTIB. [y JOCIHi/KEHHS TEIUIOBUX BJIACTMBOCTEH 3aCTOCOBAHO METOJ CKIHUEHHHMX E€JIEMEHTIB
(MCE). Pe3ynpratn 009HCIIEHh JEMOHCTPYIOTh BUCOKY €(DeKTHBHICTH i TOUHICTH 3alIPOTIOHOBAHOTO MiAXOIY,
MATBEPKYIOUN HOTO aKTYalIbHICTh K JJIs1 HAYKOBHX JOCIIKEHb, TaK 1 JJIs1 HABYAIBHUX LTEH.

Kuaro4oBi cjioBa: KOMITO3UTHI Martepiaiii, TEIUIONPOBIIHICTh, METONl CKIHUCHHHX CIIEMCHTIB, BHCO-
KONPOAYKTHBHI OOYHCIeHHs, NapanenbHi oOumcnenHs, MPI, rpaHn4ni ymMOBH, aHami3 pPO3MOIIITY TeMIIe-
paTypu.

175

https://www.open-mpi.org/doc/
https://fenicsproject.org/documentation/
mailto:artem.mikanov.kn.2021@lpnu.ua
mailto:andrii.i.holovatyi@lpnu.ua

