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Sunlight has served as the primary energy source since the inception of life on Earth.
Despite the emergence of alternative energy sources like fossil and nuclear energy, solar
energy remains the most environmentally friendly and cost-effective option. Harnessing
this energy involves utilizing photovoltaic (PV) modules to generate electricity. Extensive
research is dedicated to PV modules, with a primary emphasis on electrical modeling,
which plays a crucial role in effectively controlling a PV system and determining its I-V
characteristics. PV modules encompass various electrical models, including the single-
diode model (SDM), double-diode model (DDM), and triple-diode model (TDM). The
difficulty lies in precisely determining the unknown parameters associated with each model.
This study sets out with a clear objective: to tackle the challenge of identifying the
elusive parameters within the SDM. The primary aim is to compare the effectiveness of
three metaheuristic algorithms namely, the Flower Pollination Algorithm (FPA), Teaching-
Learning-Based Optimization (TLBO), and Honey Badger Algorithm (HBA) in identifying
these unknown parameters. In practical terms, this study extends to the evaluation of these
algorithms on specific PV modules such as the Photowatt-PWP201 module, Tata Solar
Power TP240 module, and RTC France solar cell. The evaluation of results is based on
the root mean square error (RMSE) values. Notably, HBA stands out as it demonstrates
superior performance, achieving the lowest RMSE of 9.860218e-04 A for the RTC France
solar cell. Conversely, FPA records the highest RMSE, reaching 9.458277e-03 A for the
TP240 module.
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1. Introduction

In contemporary times, climate change has emerged as a global concern primarily attributed to the
emission of greenhouse gases, with carbon dioxide (CO2) identified as the predominant contributor [1,2].
The combustion of fossil fuels such as coal, oil, and natural gas in various sectors, including electricity
production, transportation, and industrial activities, is a significant source of CO2 emissions. The
global shift towards renewable energy sources, such as solar power, is gaining momentum as a crucial
step in mitigating CO2 emissions and combating climate change. A noteworthy example is Morocco,
where, as per statistics from the Ministry of Energy Transition and Sustainable Development, the
installed solar power capacity reached 830 MW in 2022 [3]. This capacity is further divided into
thermal and photovoltaic energy sources [4], reflecting a substantial commitment to sustainable energy
practices. This work primarily focuses on photovoltaic energy, with a specific emphasis on its electrical
modeling [5]. It plays a pivotal role in the installation of a PV system, encompassing energy prediction
and control. Moreover, it serves as the foundation for various research fields within PV energy, including

c© 2025 Lviv Polytechnic National University 1



2 Elhammoudy A., Elyaqouti M., Arjdal El. H., Ben Hmamou D., Lidaighbi S., et al.

PV thermal modeling [6] and maximum power point tracking (MPPT) [7]. Numerous electrical models
exist in literature, including the single-diode model (SDM), double-diode model (DDM), and PV
module model (MM). Notably, the SDM and MM emerge as the most extensively utilized models.
Figure 1 illustrates the corresponding equivalent circuits for these prominent models.

a b

Fig. 1. The electrical circuits: (a) of SDM and (b) of MM.

The distinction between SDM and MM lies in the inclusion of the number of cells connected in series
and parallel in the latter. The MM represents a comprehensive modeling approach for a PV module,
while SDM is specifically designed for a PV cell. Both models share five unidentified parameters:
the light-generated current Ipv, the reverse saturation current I0, the series resistance Rs, the shunt
resistance Rsh, and the diode ideality factor a. The characteristic equations for SDM and MM are
articulated in (1) and (2), respectively,

I = Ipv − I0

[
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akT − 1
]
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Rsh

, (1)

I = IpvNp − I0Np
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The main challenge revolves around precisely identifying the model’s unknown parameters. The
methods employed for parameter determination can be broadly classified into three categories: analyt-
ical, numerical, and metaheuristic approaches [8, 9]. Analytical methods are typically straightforward
and simple to implement [10]. They often involve several mathematical operations that do not require
iterative processes. However, its functionality relies heavily on the module’s data-sheet, limiting its
operation to standard test conditions (STCs). On the other side, numerical approaches involve creating
equations that can be resolved through numerical or iterative methodologies [11]. Some approaches
integrate both analytical and numerical methods to determine PV parameters [12, 13].

Metaheuristic methods can be employed across a spectrum of problems to discover approximate
solutions that optimize a specified objective function [14]. Examples include the Genetic algorithm
(GA) [15], utilizing the inherent principle of survival of the fittest, the differential evolution (DE) [16],
the flower pollination algorithm (FPA) [17], the teaching-learning-based optimization (TLBO) [18],
and the honey badger algorithm (HBA) [19]. Many other metaheuristic algorithms draw inspiration
from natural phenomena, mirroring the behaviors of swarms and animals engaged in food searching.

The objective of this research is to assess the effectiveness of three metaheuristic algorithms FPA,
TLBO, and HBA in determining the parameters of photovoltaic models (SDM and MM). These algo-
rithms aim to optimize the Root Mean Square Error (RMSE) as the objective function, with the goal
of estimating PV parameters by minimizing the error between estimated and experimental currents,

f(X) = RMSE(X) =

√

√

√

√

1

N

N
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g(X)2, (3)
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X is the unknown parameters vector, N is the number of measured data, and g(X) is the difference
between the estimated and experimental current for the SDM and MM display in (4) and (5);

gSDM(X) = X1 −X2

[

e
q(V +X3I)

X5kT − 1

]

−
V +X3I

X4
− Iexp, (4)

gMM(X) = X1Np −X2Np

[
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The upcoming sections of this paper are arranged as follows: in the second section, we will introduce
the three metaheuristic algorithms, followed by a thorough evaluation and comparison of their precision
in estimating PV model parameters across three modules and cells. The concluding section provides a
summary of the results and outlines the conclusions derived from the study.

2. Metaheuristic algorithms

Metaheuristic algorithms are designed to work with a suite of heuristics or problem-solving strategies.
These high-level strategies are engineered to discover approximate solutions for intricate optimization
problems by navigating the solution space intelligently and in a guided manner. Many metaheuristic
algorithms draw inspiration from nature, human society, or artificial phenomena [20].

2.1. Flower pollination algorithm (FPA)

The fundamental concept underlying the flower pollination algorithm (FPA) involves emulating the
natural process of flower pollination to address intricate optimization problems [17]. This emulation is
guided by four rules that encapsulate the key characteristics of the pollination process:

— Global pollination processes involve biotic and cross-pollination, with pollinators executing Levy
flights while carrying pollen.

— Abiotic and self-pollination fall under the category of local pollination.
— Flower constancy is defined as the likelihood of reproduction, directly linked to the similarity

between two flowers.
— A switch parameter, represented as p ∈ [0, 1], regulates the occurrence of both local and global

pollination processes. The influence of local pollination, constituting a significant fraction p of the
overall pollination activity, is affected by factors like the wind.

Within the realm of global pollination, pollen can traverse extensive distances, aided by the sub-
stantial mobility of flying insects capable of covering considerable geographic ranges. This phenomenon
can be mathematically articulated by the following equation:

Xt+1
i = Xt

i + L(Xt
i − g∗). (6)

During iteration t, the representation of pollen for type i is Xt
i , and the optimal solution among

all solutions discovered in the present generation is symbolized as g∗. The intensity of pollination,
encapsulated by the parameter L, can be expressed using the Levy distribution,

L ∼
λΓ(λ) sin πλ

2

π

1

s1+λ
. (7)

In numerous optimization problems, the conventional gamma function Γ(λ) is utilized with a value of
λ = 1.5.

The second rule, pertaining to local pollination, can be mathematically represented as follows,

Xt+1
i = Xt

i + ε(Xt
i −Xt

k). (8)

Most flowers have the capacity for both local and global pollination. To facilitate this, a switch
probability denoted as p (Rule 4) is employed to transition between global and local pollination. In
the context of many optimization problems, a value of p = 0.8 often yields superior performance.
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Algorithm 1 Flower Pollination Algorithm (FPA)

Set initial parameters p ∈ [0, 1]
Generate initial population of flowers
Find the current best solution g∗
Start

while (stopping criterion not satisfied) do

for each flower do

if rand() < p then

Global pollination Eq. (6)
else

Select two random solutions Xt
j and Xt

k

Local pollination Eq. (8)
Keep the current best solution

End FPA

2.2. Teaching-Learning-Based Optimization (TLBO)

The TLBO algorithm is an optimization technique inspired by the dynamics of teaching and learning
observed in human society. It consists of two primary phases: the teaching phase and the learning
phase [18]. During the teaching phase, the algorithm pinpoints the optimal solution within the pop-
ulation and labels it as the teacher Xteacher. Subsequently, the other solutions in the population are
revised by assimilating the information imparted by the teacher, aiming to enhance their performance
as students,

Xi,new = Xi + rand(Xteacher − TFXmean), (9)

Xmean =
1

P

P
∑

i=1

Xi. (10)

Considering a population of size P , where each member is represented as Xi, and denoting the
updated version of learner Xi as Xi,new. The average solution within the population is denoted by
Xmean. The teaching factor TF , determining the magnitude of change in the mean level, is introduced.
Specifically, TF is computed by rounding up the sum of 1 and a randomly generated number within
the range of 0 to 1, expressed as TF = round(1 + rand(0, 1)).

Algorithm 2 Teaching-Learning-Based Optimization (TLBO)

Generate initial population
Start

while (stopping criterion not satisfied) do

Calculate the Xmean Eq. (10)
Select the best solution Xteacher

Teacher phase

for each learner do

Generate Xi,new Eq. (9)
if f(Xi,new) < f(Xi) then

Xi = Xi,new

Learner phase

for each learner do

Select a random learner Xj (j 6= i)
Generate Xi,new Eq. (11)
if f(Xi,new) < f(Xi) then

Xi = Xi,new

Keep the current best solution
End TLBO
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In the learning phase, learners engage in skill enhancement by randomly selecting peers for group
discussions and formal communication. The learning process for each individual can be articulated as
follows:

L =

{

Xi + rand(Xi −Xj) if f(Xi) < f(Xj),

Xi + rand(Xj −Xi) otherwise,
(11)

where f(Xi) and f(Xj) represent the objective function values of Xi and Xj , respectively.

2.3. Honey Badger Algorithm (HBA)

HBA takes inspiration from the foraging behavior of the honey badger, a creature renowned for its
aggression and tenacity [19]. Emulating the honey badger’s approach, the algorithm incorporates
elements such as utilizing its keen sense of smell to locate food sources, adept digging for underground
resources, and the ability to follow the honey-guide bird to discover beehives. The primary goal of the
algorithm is to mirror the honey badger’s efficiency in locating food sources, applying this concept to
optimization problems for finding the optimal solution. The HBA comprises two distinct phases: the
digging phase and the honey phase. During the digging phase, the HBA emulates the search behavior
of a honey badger,

Xnew = Xprey + FβIiXprey + Fr1αdi
[

cos(2πr2)(1− cos(2πr3))
]

, (12)

Ii = r4
(Xi −Xi+1)

2

4πd2i
, (13)

α = C exp
−t

tmax
, (14)

where C is a constant (C = 2) and tmax is the maximum iteration.

Algorithm 3 Honey Badger Algorithm (HBA)

Generate initial population
Evaluate the fitness fi for each Xi

Save best position Xprey and assign fitness to fprey
Start

while (stopping criterion not satisfied) do

Update the decreasing factor α Eq. (14)
for each honey badger position do

Calculate the intensity Ii Eq. (13)
if r < 0.5 then

Update the position Xnew Eq. (12)
else

Update the position Xnew Eq. (15)
Evaluate new position and assign to fnew
if fnew 6 fi then

Set Xi = Xnew and fi = fnew
if fnew 6 fprey then

Set Xprey = Xnew and fprey = fnew
Keep the current best solution

End HBA

Within the framework of honey badger foraging behavior, the following variables are established:
Xprey signifies the prey’s position, denoting the optimal location for food acquisition. The honey bad-
ger’s prowess in gathering food is denoted by β > 1. The distance between the prey and the ith honey
badger is expressed as di = Xprey −Xi. The prey’s intensity, denoted by Ii, is influenced by both the
prey’s concentration and the distance between it and the ith honey badger. The parameter α governs
the density factor, ensuring a smooth and time-varying transition from exploration to exploitation.
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Values for r1, r2, r3, and r4 are random numbers generated within the range of 0 to 1. The flag F

controls the search direction and can assume either the value of 1 or −1.
The mathematical representation of the scenario in which a honey badger follows a honey-guide

bird to find a beehive during the honey phase can be expressed by the following equation,

Xnew = Xprey + Fr5αdi, (15)

r5 denote a random variable uniformly distributed over the unit interval [0, 1].

3. Results and discussions

The three algorithms are employed to extract the PV parameters from three distinct PV modules
and cells. In this research field, the RTC France solar cell and the Photowatt PWP201 module are
extensively employed in PV characterisation, their experimental data collected at temperatures of T =
33◦C and T = 45◦C, respectively [21]. Another module is the Tata Solar Power TP240 module, which
consists of 60 poly-crystalline PV cells connected in series, and its data is obtained under standard test
conditions (STCs) [22]. Table 1 provides a comprehensive overview of the parameter ranges for the
three panels. Consistently, the population size P is fixed at 100, and the maximum iteration limit tmax

is standardized at 10000 iterations for all three algorithms to ensure a fair comparison and equitable
decision-making.

Table 1. The parameters range for the different modules and cell.

RTC France PWP201 TP240

Lb Ub Lb Ub Lb Ub

Ipv(A) 0 1 0 2 0 9
I0(A) 0 1e-6 0 50e-60 0 1e-6
Rs(Ω) 0 0.5 0 2 0 0.6
Rsh(Ω) 0 100 0 2000 0 100

a 1 2 1 2 1 2

Table 2 offers a thorough summary of the extracted parameters and RMSE values for each PV
system. Remarkably, the HBA exhibits the lowest RMSE among all three tested panels, as highlighted
in the table. Moreover, three algorithms consistently deliver smaller RMSE values, indicative of their
efficacy. The validation of these RMSE results is visually depicted in Figures 2–4, illustrating the I-V
curves of the experimental dataset juxtaposed with the estimated values for three panels. Notably,
the estimated current from all three algorithms closely mirrors the experimental data, affirming their
accuracy in extracting the PV parameters.

Table 2. Values of the five parameters and the RMSE for the different algorithms.

Module/cell Algorithm Ipv (A) I0 (A) Rs (Ω) Rsh (Ω) a RMSE(A)

RTC France FPA 0.760774 3.214607e-07 3.640172e-02 53.675235 1.480693 9.861049e-04
TLBO 0.760780 3.232425e-07 3.637263e-02 53.644478 1.481254 9.860364e-04
HBA 0.760775 3.230205e-07 3.637709e-02 53.718438 1.481183 9.860218e-04

PWP201 FPA 1.028604 4.917640e-06 1.164628 1589.273 50 2.608133e-03
TLBO 1.030363 3.498403e-06 1.201378 1003.682 48.660815 2.429985e-03
HBA 1.030026 3.621041e-06 1.198060 1066.449 48.791193 2.429595e-03

TP240 FPA 8.683310 1.165333e-08 3.718959e-03 6.573485 1.159582 9.458277e-03
TLBO 8.684124 9.260328e-09 3.796484e-03 6.483112 1.146746 9.150916e-03
HBA 8.687114 8.129722e-09 3.812287e-03 5.840245 1.139565 8.753808e-03

In the remainder of this study, we will assess three algorithms using the absolute error (AE),
defined as the absolute difference between the estimated and experimental currents. Table 3 provides
a statistical analysis of AE, including the minimum (Min), maximum (Max), and average (Mean) values
for three algorithms and three tested panels. The results show that HBA produces the lowest mean
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Fig. 2. I-V characteristics of both
the experimental and the estimated

data for RTC France cell.

Fig. 3. I-V characteristics of both
the experimental and the estimated

data for PWP201 module.

Fig. 4. I-V characteristics of both
the experimental and the estimated

data for TP240 module.

absolute error for PWP201 and TP240 modules. For the RTC France cell, FPA yields the minimum
mean absolute error, closely rivaling HBA’s performance. To offer a comprehensive view of AE results,
we illustrate the fluctuation of AE concerning voltage in Figures 5–7, confirming previous findings and
revealing a consistent pattern across all three algorithms. This uniformity is particularly evident in
Figure 5 for the RTC France cell.

Table 3. Statistical result of absolute error (AE) for the different algorithms.

AE (A)

RTC France PWP201 TP240

Min Max Mean Min Max Mean Min Max Mean

FPA 8.6971e-05 2.5077e-03 8.2609e-04 6.5102e-05 5.5255e-03 2.1272e-03 1.6108e-03 2.2546e-02 7.0405e-03

TLBO 9.1150e-05 2.5143e-03 8.2846e-04 7.8253e-05 4.6363e-03 1.9740e-03 1.0845e-03 2.2543e-02 6.7003e-03

HBA 8.7178e-05 2.5122e-03 8.2765e-04 6.7921e-05 4.7896e-03 1.9696e-03 1.5887e-04 1.9641e-02 6.2603e-03

Fig. 5. The curves of the absolute
error for RTC France cell.

Fig. 6. The curves of the absolute
error for PWP201 module.

Fig. 7. The curves of the absolute
error for TP240 module.

4. Conclusion

This study evaluated the efficacy of three widely used metaheuristic algorithms in ascertaining param-
eters for both the single-diode model (SDM) and the PV module model (MM). The study’s results
indicate that all three algorithms demonstrate effective and accurate estimation of PV parameters,
with nearly identical performance, as reflected in the low values of RMSE and AE. Nonetheless, the
Honey Badger Algorithm (HBA) exhibits superiority, yielding the best RMSE at 9.860218e-04 A for the
RTC. France solar cell, while the Flower Pollination Algorithm (FPA) produces the highest RMSE at
9.458277e-03 A for the TP240 module. Concerning time complexity, both HBA and FPA demonstrate
similar computational times, each requiring approximately 8 minutes. In contrast, Teaching-Learning-
Based Optimization (TLBO) takes around 13 minutes to ascertain the PV parameters. Future research
directions will focus on enhancing the algorithms’ performance in solving PV model parameters, with
the goal of reducing complexity time and minimizing errors.
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Оцiнка фотоелектричних параметрiв за допомогою трьох
метаевристичних алгоритмiв: порiвняльне дослiдження

Ельхаммудi А.1, Елякутi М.1, Арждал Ел. Х.1, Бен Хмаму Д.1, Лiдайбi С.1,
Саадауi Д.1, Чуллi I.1, Абазiн I.1, Єсеф М .2, Бенслiман М.3

1Лабораторiя матерiалiв, сигналiв, систем та фiзичного моделювання,

Факультет природничих наук, Унiверситет Iбн Зохр, Агадiр, Марокко
2Лабораторiя LIMAS, Факультет наук Дхар Ель Мараз,

Унiверситет Сiдi Мохамеда Бен Абдаллаха, Фес 30000, Марокко
3Вища школа технологiй, Унiверситет Сiдi Мохамеда Бен Абделлаха,

Фес 30000, Марокко

Сонячне свiтло служило основним джерелом енергiї з моменту зародження життя
на Землi. Незважаючи на появу альтернативних джерел енергiї, таких як викопна
та ядерна енергiя, сонячна енергiя залишається найбiльш екологiчно чистим i еко-
номiчно ефективним варiантом. Використання цiєї енергiї передбачає використання
фотоелектричних (PV) модулiв для виробництва електроенергiї. Грунтовнi дослiд-
ження присвяченi фотоелектричним модулям з основним акцентом на електричному
моделюваннi, яке вiдiграє вирiшальну роль в ефективному керуваннi фотоелектрич-
ною системою та визначеннi її вольт-амперних характеристик. Фотоелектричнi модулi
охоплюють рiзнi електричнi моделi, включаючи однодiодну модель (SDM), подвiйну
дiодну модель (DDM) i потрiйну дiодну модель (TDM). Складнiсть полягає в точному
визначеннi невiдомих параметрiв, якi пов’язанi з кожною моделлю. Це дослiдження
має чiтку мету: вирiшити проблему визначення невловимих параметрiв у межах SDM.
Основною метою є порiвняння ефективностi трьох метаевристичних алгоритмiв, а са-
ме: алгоритму запилення квiтiв (FPA), оптимiзацiї на основi викладання й навчан-
ня (TLBO) та алгоритму медоноса (HBA) у визначеннi цих невiдомих параметрiв.
На практицi це дослiдження поширюється на оцiнку цих алгоритмiв на конкретних
фотоелектричних модулях, таких як модуль Photowatt-PWP201, модуль Tata Solar
Power TP240 i сонячна батарея RTC France. Оцiнка результатiв базується на зна-
ченнях середньоквадратичної помилки (RMSE). Примiтно, що HBA видiляється тим,
що демонструє чудову продуктивнiсть, досягаючи найнижчого RMSE 9.860218e-04 A
для сонячної батареї RTC France. I навпаки, FPA фiксує найвищий RMSE, досягаючи
9.458277e-03 A для модуля TP240.

Ключовi слова: сонячна енергiя; моделювання фотоелектричних систем; оцiнка

параметрiв; метаевристичнi алгоритми.
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