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1. Introduction

Many publications of foreign scientists, in particular [1-8], are devoted to the problems of estimating
matrices and vectors based on observational data. We investigate some problems of estimating matrices
and vectors under conditions of uncertainty in works [9-13]. For observations with random errors that
have unknown second moments, we obtain explicit expressions for guaranteed linear estimates and
guaranteed errors of matrix parameter estimates. As a rule, in these works we assume that matrix
equations, the solutions of which are observed with errors, have a unique solution when the right-hand
sides of such equations are known. This article examines the problems of estimating the solutions of
operator equations, which do not have a unique solution, and the measurement errors are unknown
deterministic values. Linear guaranteed estimates of the solutions of such equations and their errors
are found, as well as posterior guaranteed estimates and their errors under certain restrictions on the
deterministic errors of the data.

2. Problem statement

Let Hy, , denote the space of rectangular matrices of dimension p x g with a scalar product: (X1, Xs) =
Sp X1 X7, X1, Xy € H, ,. Let A be a linear operator that acts from the space H,, , of matrices to the
space Hyp, n, .

Consider the equation:

AX =B, (1)
where X € H,, ,, B € Hp,, p,. It is known that this equation has a solution if the matrix B ker A*,
where ker A* 2 {B;: A*B; = 0} (here A* is the operator conjugate to the operator A, and the matrix
B € Hm17n1)'

We assume that the kernel of the operator A is not empty (the condition {X: AX =0} # @ is
fulfilled) and the dimension 7,7 > 1. Therefore, an arbitrary solution of equation (1) can be written
in the form:

X =Xg+ D, (2)

where X is some solution of equation (1) and D is an arbitrary matrix from the kernel of the operator A.
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Estimates of solutions for ambiguously solvable linear matrix equations 11

Let ¥;, i € 1,7 denote the basis matrices of the set ker A. Then we can write the matrix D by
formula (2) in the form:

T
D =Y fU; £ pf, (3)
i=1
where f;, i € 1,7 are some real numbers, f = (f1, fo,. .. ,fT)T. It is clear that if the matrix X, basis

U,, i € 1,r and vector f are known, then formulas (2), (3) determine the solution of equation (1).
Note also that we can choose the matrix Xy as the minimum norm matrix that satisfies the equation
AXp = B. We find such a matrix from the system of equations:
AX =B,
{ (X,0;) =0, iel,r.

Further, we assume that the solution X is unknown, which means that the real numbers f;, 7 € 1,7
are unknown. To determine the estimates of the numbers f;, i € 1,7 we set the matrices Y}, k € 1, N:

Y, =C X+ Vi, k€1, N, (4)
where Yy, € Hyp)qk), k € 1, N; Cg, k € 1, N are known linear operators that act from the space

Hi, pn to the spaces Hyp) q(k), k € 1,N; Vi, k € 1, N are unknown matrices from the spaces Hy1),q(k)
kEel,N.

We present the known restrictions on the matrix V;, Vs, ..., Vy in the form (V3,Va,...,Vy) € G,
where G C Hi\;l Hy),q(r)- Therefore, the purpose of this work is to find estimates of the vector Lf,
where L is a linear operator that acts from the space R" to the space R®, s < r.

3. Guaranteed estimates of the vector and their errors

First, we give the definition of guaranteed linear and guaranteed linear posterior estimates of the vector
Lf and their errors.

Definition 1. Vector Ef is called a linear estimate of vector Lf, if it has the form:
N

Lf= > Ui+,
k=1
where Uy, k € 1, N are operators that act from the spaces Hyx) qk), k € 1, N to the space R?, the
vector ¢ belongs to the space R®.

Definition 2. Vector Ef is called a guaranteed linear estimate of vector f:f , if it has the form:
N

Lf =Y U +¢ (5)
k=1
where (Uk,E), k € 1, N are found from the condition:

(ﬁk,f), kel N e Arg](q[}iriag(U, c),
where U = (U1, Us,...,Uy) and the error of estimation of the vector Lf is given by the formula:

N
Lf=> UpYi—d. (6)

k=1
Definition 3. The value o, (ﬁ , E) is called the guaranteed error of the linear guaranteed estimate.

04(U, c) £ supsup
e

Definition 4. The vector ¢ € R® is called a guaranteed posterior estimate if it is from the condition:

¢ € Arginfaa(p), galp) 2 sup [l — i, (7)
® p1E€Gy

where G, is the posterior set of vectors Lf with known data (4) and has the form:
G, ={Lf: feG},
GV = {f: (i — Cipf,...,Yn — Cnpf) € G},

where Yy, = Y}, — CyyXo, k € 1, N.

(®)
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12 Nakonechnyi O. G., Zinko P. M., Zinko T. P.

Definition 5. The value o, (9/5) is called the guaranteed posterior error of the estimate .

Further on we assume that the set G has the form:
G={(Vi,-. o, VN) Vil <y k€L, N}, (9)
where HVkH = (Sp VkaT) 1/2, and 7y, k € 1, N are known positive numbers.
Theorem 1. There is an equality:
0,(U,¢) = { oi)(U o), i % #o
(1)

where function o4’ (U, ¢) is determined by the formula:

o 010) = o {3 it + 0 + oo 01 . o)
here
N N
l/J(Xo):ZUkaXQ, WN:{(Ul,...,UN)Z ZP*C;U,::L*}. (11)
k=1 k=1

Proof. It is clear that:

N
04(U, c) = max max |(L*l, f) — <l,ZUkYk> —(l,¢)
k=

G |l=1
[ 1

N N N
= mGaX ﬁllli}i (L*l,f) — <l,ZUkapf> — <l,ZUkaX0> Z Uil, Vk l,c)
N
:mGaXﬁ{ha}i <<L* Zp > Z(U,’;l,V@— <l, c+ZUkaX0>)‘
- k

=1

)
e Eom) oo ()

k=1 k=1 k=1
are valid.
Now, taking into account the condition (Ul, LU N) € Wy and the equality
N N N N
max |y (URL Vi) + <c+ > UL Cy Xo,l> = > Uz + <c+ > UL Cy X0,1> :

k=1 k=1 k=1 k=1
we conclude that Theorem 1 is valid. ]
Corollary 1. If operators Ui, ..., Uy are found from the condition:

F(ﬁl,...,UN) = min F(Ul,...,UN),
Ut,...Un

where the function F(Ul, . ,UN) is given by the formula F(Ul, ..., UN ) L2 m Z HUngyk_z, then

IIlII

the guaranteed estimate of the vector is calculated by the formula:

_— N
Lf = Z [jk Y. + ¢,
k=1
where

N
¢=-Y UpCiXo.
k=1

Mathematical Modeling and Computing, Vol. 12, No. 1, pp. 10-21 (2025)



Estimates of solutions for ambiguously solvable linear matrix equations 13

Corollary 2. If the set Wy is not empty, then the following equality holds:

U?&R,CJQ(U’ c) = (@1"13%1;%@@(@1, .. .,@N),
where
2(61,..,0n) £ max > | @i+ o0 (12)
k=1
A N +
0 = L<p*§jc;; G p> ;CL keTN, (13)

N
@é{(@l,...,@N):Z@kap: } (14)

Proof. Let us write down the set of solutions of the equation Z]kvzl p* Cr U = L* or its equivalent
equation Zszl Ui Crp = L in the next form: Uy = Sp*C;, k € 1,N. Then for S we obtain the
equation:

N
S> piCiCrp=1L. (15)
k=1
The minimal solution of the equation (15) according to the norm is:

N +
So = L<p*20;; C’kp>
k=1

(here (p)* means the pseudo inverse operator to p).

Therefore, an arbitrary solution Uy, k € 1, N can be represented in the form: U, = U, ,go) + O,
where U Igo) = p* C}; So. Now, substituting the obtained expressions Uy, k € 1, N into the guaranteed
error, we obtain the necessary equality. ]

Note also that the following inequalities holds:

N N
: U, < H U(O) *l < /\1/2 U(O) U(O)*
HI}}?%( c) W“ﬁiﬁ}; Craiuipr kZ_l wax (U U )

(Amax(Z1) is the maximum eigenvalue of operator Z7).

Lemma 1. Let the parameter N = 1 and the equality Lf = (I, f) hold, where [ is an arbitrary vector
from the space R". Then, if the guaranteed linear estimate of the scalar product (I, f) has the form

(l/,!\f) = (l, f), where f is the linear estimate of the vector f according to data (4), then the equality

Lf=1L f holds. At the same time, the guaranteed error o4 of such an estimate is as follows:

oy = ﬁiﬁ”ﬁ%x‘(l’f) — (l,f)(-

Proof. From the assumptions of Lemma 1 we get

r[IJlliEn}%X HLf - U7 — cH > Iﬁli)i (1]11112 n}%xHL*l’f) — <U1,Y1> — cl|

= ma ma (Lh) = (L )| = ma | Lf — Lf]

it follows that the lower limit is reached at Uy Y1 +¢é = Lf, which completes the proof of the lemma. m
Theorem 2. At the value of the parameter N = 1, the condition is fulfilled

min o (Ul, c) = A%ﬁx(@)’h,

Ui,c

for the estimation error, where Q = L(p* C§ Cy p)™ L*.
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14 Nakonechnyi O. G., Zinko P. M., Zinko T. P.

Proof. Note that the following ratios:
I?%Xw,f) — (U, Y1) — ¢| = [|Ullm + |+ (U1, C1 Xo)| > ||U1||m

are valid. 12
Since UllléiVIIl/l U] = {Umln <U1,U1>} , where W, & {Ul; p*CiU; = l}, then Ulllgvlll/l HU1H =

Hﬁl , Ul =Cy1p (p* CrCy p) I. Hence we get the equality HU1H = ((p* Cy Clp)+l,l)1/2 and for the

error the representation holds:

o4 —%mcn?zg(HLf Lf” —maXHLf Lf”

where f = (p* Cy ¢y p)+,o CiYi—¢, ¢c= (,0 Cy Cy p) p* CT Xo.
As a result, the error is written in this form:
g = Ml (L(p* C; Cy p) "L 1. n
Theorem 3. When N > 1, the inequality
inf oy (U, ¢) > A2 (Q1)

max
U,c

+
holds, where the operator Q)1 = L<kz1 7,;2,0* CrCy ,0) L

Proof. Note that the set G contains the set G, which is defined as follows:

N
Gl £ {(Vl, ,VN)Z ny,;Q<Vk,Vk> S 1}.
k=1
. N
Taking into account the equality Lf = > U Y) + ¢, we get the following ratios:
k=1
- N
n;’%x HLf — LfH max HLf LfH mlnl}naXHLf — fH = Uré%l/l maﬁmaluxk:l <U,jl,Vk>.
Since the equalities:
N N 1/2 N 1/2
I%%XZ<U;‘Z,V;€> = (Z(ng,U,jmg) = <Z (V2 Uy U,jl,l))
k=1 k=1 k=1
are fulfilled, we can write:
N
max max » (Uil Vi) = A}Il/fo(Ul,...,UN),
U=t G =

N
where the operator P(Ul, . ,UN) is given by the formula: P(Ul, e ,UN) => ’y,% U, Uy
k=1
Thus, the following ratios take place:

min max |Lf — Lf|| = Juin A2 (P(UL, ..., UN)) = N2 (P(Th,...,U)).
Similarly, with the proof of Theorem 2, it is possible to obtain the optimal values of Uk, kel,N:
N
Up=%2CppS1, S = (Zﬂ* Cy Cm,;2p>+l,
k=1
and write the operator P(Ul, e UN) in the form: P(Ul, ey UN) = L<k§:1 p* Cy Cy, yk_l ,0>+L*.

Theorem 3 is proved. ]
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Estimates of solutions for ambiguously solvable linear matrix equations 15

Corollary 3. If the set G is given in the form:

N
G:{(Vl,...,VN)' Z<Vk,vk>’yk_2<1}, (16)

k=1
then the guaranteed linear estimate of the vector Lf has the form: L f L f , where

szMkYHé, ¢= —ZMkckXo, Mj, =7§2<Zp*02%§2p> P Ci
k=1 k=1 =

and the equality —
: B _\1/2
minmax || Lf — L[ = Aslac(@1)

holds for the error.

Corollary 4. Let L be a unit operator and the matrix (Z]kvzl p* Cr Cy, 71;2;)) is not degenerate.
Then, if the set G has the form:

N
G = {vl V) Y (Vi Vi) < }
k=1

then the guaranteed error is as follows:

7(0.0) =3l (Yo Cicini®o)

k=1

=

4. Guaranteed posterior vector estimates and their errors

Theorem 4. Let the set G given by formula (9). Then the set
={f: (Vi=Cipf,....¥Yn—Cnpf) G} ={f: (I1=Cipf|| <m.---,
can be presented in the form: N
1) _ ~(k
i = (Yol
k=1

={f: (Re(f — fu) f— fx) <22 — J(fr)}, keI N,
Ry = p’ Okckp, fi= (0" CiiChp) 0" Ci Vi, Jil(f) = |V = Cip f”

Proof. For each k € 1, N, we find the optimal value of fk € Arg ml(n Ji(f). For this, we equate the
feGy

—Cnpf|| <)}

where

gradient of the function Ji(f) to zero:
1 * YKV * Yk
gerad Ji(f) = —p" Cp Y+ p" Cp Cpp f = 0.

From the last equality, we find the optimal value of fk: fk = (p* CrCy p) +p* Cy Y.
From Taylor’s formula it follows that

.1 . . .
Je(f) = Je(f) + §(Jl/f/(fk) (f = Jr). = Ir)-
Now, taking into account the equality 2Rk = ( fk) we obtain the expression for G’ék):

={f:|Ve = Cun f| <n}- n

Theorem 5. The set Gél) is a convex closed set and if the matrix p* Z]kvzl 7];2 CrCrp £ Sy is not

(1)

degenerate, then the set Gy’ is also bounded.

(1)

Proof. The convexity and closure of the set Gy
boundedness. It is clear that the set Gél) is contained in the set G; :

is obvious. Therefore, we try to prove only its

N
Gy ={f:en(f) <N}, on(H) 2D %2V —Cen sl

k=1
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16 Nakonechnyi O. G., Zinko P. M., Zinko T. P.

Let f € Arg m}n O (f). Then the vector f is found from the equation:

N N
<Z%§2P* Cy Ckﬂ)f => 0" Ci Vi
k=1 k=1

Since, by assumption det Sy # 0, there is a unique solution to this equation, and the set G;’ can
be written in the following form:

={f: (Sn(f =) f—f) <N -@n(f)}.

Considering that the matrlx S is also positive definite, we conclude that G; is a bounded set. m
Let us introduce the concepts of upper and lower guaranteed the posterior sets and estimates.

Definition 6. Let inclusions G- C G C G be fulfilled. Then the posterior sets:
a7 ={f: ("= Cipfo... Yo = Cnpf) € G|

are called the lower and upper posterior sets and the corresponding guaranteed posteriori estimates
and guaranteed posteriori errors are lower and upper estimates and errors, respectively.

For the case when G is given by formula (9), let us put:

G~ {vl ZHVkH? i< }

N
6+ ={ i W) LTI < v
k=1

Note that if the parameter N = 1, then G~ = G™.

Theorem 6. Let condition det Sy # 0 be fulfilled. Then the lower and the upper guaranteed poste-
rior estimates coincide with each other and inequalities:

oy <minoy(f) <oy,

holds, where

N
oy(f) 2 max|lf = il f=S3'Y 0 CiYe, 1-0n(f) >0,
k=1
= M2 (L= @n ()2 = A2 sw) (1 - an (£)
+ _ )\1/2 (5;71) (N— (I)N(f))l/2

max

Proof. Since the matrix Sy is nondegenerate, the sets G and G; are bounded, and they are also
convex and closed. Hence the guaranteed posterior estimates exist and, as we will see below, that the
lower and upper estimates are unique.

Let us demonstrate the validity of the lower estimate for the error. Since the inequality:

mflnfmeax Hf f1H m}nn(l}@x“f—le

holds, the formula G = {f (SN(f — f),f — f) <1- <I>(f)} implies the equality:
max||f = fi]| = max || f = (fr + )]}
Gy flEGy

Yy

where G, £ {f1 (Sthfl) 1- (I)(f)}

From the ratio max Hf fi— fH = max [O‘a( )+ (l,f—f)], where 04(l) £ max (l,fl), we obtain
fheG lltll= f1eGy

the inequality max H - f1H max oa(l). Now we can allow that the lower limit is reached under the
Gy

ll]l=1
condition f1 = f
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Estimates of solutions for ambiguously solvable linear matrix equations 17

Note also that the following equalities:

_ —1; (N2 1/2 —1/2 B A
max max (1, /1) = max (Sy'1,0) (1 = 2(f)) " = A" (Sn) (1 - (/)

are fulfilled.

Similarly, the validity of the upper bound estimate is proven. ]

Corollary 5. At the value of the parameter N = 1 the equality
minoy(f) = Air” () (1= ()
holds.

5. Estimating the scalar product of vectors

Further, we find estimates of the scalar product of vectors (I, f) with data (4). Let the matrices Vj,
k € 1, N belong to the set G of the form (9).

Theorem 7. The guaranteed linear estimate of the scalar product of vectors (I, f) has the form:

- N
(I,f) = Z<UkaYk> +¢
k=1
where
N
=—> (U,Cr Xo), (UnkeT,N)eArg min  ®(Uy,...,Un),
1 (Ui,...,UN)EWN
N
®y(U1,...,Uy) 2 Z U], Wi = {(Ul, L UN) D iU = Z}.
k=1 k=1
At the same time, the error satisfies the condition
N
minmax |({, f) — <Uk,Yk>—c :@1([71,...,(71\7).
Uc [,.G Pt
Proof. The proof is similar to the proof of Theorem 1 and Corollary 1. ]

Corollary 6. The inequality:

N
@1([717 e 7UN) < Z HUIEO) |
k=1

is fulfilled, where U,go) = B Ck (p*(ZJkV:1 CrCy 5k)p)+l, and B, k € 1,N are arbitrary positive
numbers.

The validity of this result follows from the fact that the equality Z]kvzl prCr U, lgo) ={ holds.
Next, we give the expressions for the posterior estimates and errors of the scalar product of the
vectors (I, f).

Theorem 8. The guaranteed posteriori estimate of the scalar product of vectors (I, ) has the form:

(07) = 5 (@D + 1)), a7)
where (I, )4+ = 121}1@1<11N ((1, fk) +o,(1)), (L, f)- = max ((1, fk) —o(1)), and the guaranteed a posteriori
error of the estimation of (l/,}') is as follows:

1
o= (14— (0D)-), (18)

1), k € 1,N are the same as in Theorems 4, 6).

—~

(here, vectors fk, k € 1, N and functions oy,
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18 Nakonechnyi O. G., Zinko P. M., Zinko T. P.

Proof. From the ratios

Gék), G = {Vi: |Vill <},

N
]I}éai(l f) = lgng?gx)(l )
min

I, f)= l
feGy( f) = 1g}ca<xzv fgg%( )
taking into account the expressions
max (l f) (l7fk) +0k(l)7 kel,N,
fEG(k)

min (I, f) = (I, fx) — ox(l), k€L N,
feayp

the validity of equalities (17), (18) follows. n
Example 1. Let the given sequence of real numbers y1, ..., yn, where y; = Sp C,fX +up, k€1, N,
the matrix X € Ha o is the solution of the system of equations:

(A, X) =10b;, i€13, (19)
where A;, i € 1,3 are known linearly independent matrices of dimension (2 x 2), b;, i € 1,3 are known
real numbers.

Let us also assume that Cy, k € 1, N are known (2 x 2) matrices; the scalars vy, k € 1, N are

unknown data errors such that |vg| < g, 76 >0, k € 1, N.
It is necessary to find a guaranteed estimate of the matrix X.

Corollary 7. The guaranteed posteriori estimate of the matrix X has the form:
X = Xo+ \I’f,
where X is the minimal solution of the system of equations (19) according to the norm; the matrix ¥
from the space Hay o is such that: <\I’,Ai> =0,i€ 13, ||¥]|=1; f= %(f+ +f2), 00 = %(f.,. - fo).
At the same time:
Jlgégx |X = X = [[¥]lo,

Y f+ min ij'f"ﬂc’ if <Ok7ql> > 07 gk =Yk — <Ok7X0>

Where Gy - [f—7 f+] f— - 1<k<N (Ckvqj>

1<k<N Ckv

Proof. Since the posterior set for the value f has the form:
N

Gy = {f+ Iy — (Ci Xo)| < s k€ TN} = () [f73 7] = | max fis m

1<kSN 1<k<N
k=1

then under the condition (C,¥) > 0, k € 1, N the representations
_ —1,.
fo =(Cr®) " (G — )
—1/-

are valid. ]

Note that if (Ck, U) <0, k € 1, N, then we have:
fe = {(Ck, \I’>_1(?3k + k),
= <Ck,‘1f>_1(l7k - ), kel,N.

Further, we find the error of the guaranteed linear estimate of the scalar f. It follows from Theo-
rem 7 that the error of the guaranteed linear estimate has the form:

n A

N
o(@) = |ax|w,
k=1
where w1,...,ay are found as a solution of the optimization problem:

Mathematical Modeling and Computing, Vol. 12, No. 1, pp. 10-21 (2025)



Estimates of solutions for ambiguously solvable linear matrix equations 19

N N

N
min Z lug|ve = Z ||y, Wy = {(ul,---7UN)3 Zuk<ck7‘1’> = 1}-
k=1

(u1,...,un)EWN Pt Pt

Let us put X =Xo+ f\I’, where f = Eszl UrYr- Then we can write the equality
= ¥l (a).

maxHX—X
.G

Now we turn to the specific calculations of estimates and their errors. To do this, we specify a
triple of mutually perpendicular matrices A;, i € 1, 3:

11 -3 1 0 -2

test matrix X, = ((2) _11) and we calculate the numbers b;, i € 1,3 according to the formula (A4;, X,) =

bi, i € 1,3: by = 2, by = —6, b3 = —3, and the matrix ¥ = (_0% i) with unit norm, which

2 V2

is perpendicular to the matrices A4;, i € 1,3. We find the matrices Cy, k € 1,4, that satisfy the
inequalities (Cy, ¥) >0, k € 1,4:

0 1 0 —1 10 11
o=y s 5) e (W) a-()

We calculate the norm-minimum solution Xg of the system of equations (19): Xo = (_35 _f5)-

In accordance with Corollary 7, the results of calculations of the guaranteed a posteriori estimates
of the scalar f, the matrix X and of the a posteriori guaranteed errors o, of these estimates for four
options of specifying the deterministic data errors vy, k € 1,4 are shown in Table 1.

Table 1. Guaranteed posterior estimates and their errors.

Option 1 Option 2
k=1|k=2|k=3|k=4|k=1|k=2|k=3|k=4
v | -0.2 0.28 0.3 -0.24 0.1 0.1 -0.2 -0.2
yr | -1.2 | -3.72 1.3 1.76 -0.9 -3.9 0.8 1.8
Vi 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2
gk | -0.7 | -0.72 | -0.7 | -0.74 | -04 -0.9 -1.2 -0.7

f- -0.707107 -0.777817
I+ -0.622254 -0.707107
f -0.664681 -0.742462
Oq 0.04243 0.03536
X (03 —01,97) (0.325 _1l025)
Option 3 Option 4
k= k=2 k=31 k= k= k=2 k=3 k=

vk | 0.05 0.05 -0.1 -0.1 0.02 0.02 | -0.03 | -0.03
yr | -0.95 | -3.95 0.9 1.9 -0.98 | -3.98 | 0.97 1.97
Y 0.1 0.1 0.1 0.1 0.03 0.03 0.03 0.03
yr | -0.45 | -0.95 | -1.1 -0.6 | -0.48 | -0.98 | -1.03 | -0.53

f- -0.742462 -0.714178
I+ -0.707107 -0.707107
f -0.724784 -0.710642
Ou 0.017678 0.003535
X (0.02125 71.%)125) ( _0.8025 —1.0025 )

To find a guaranteed linear estimate of the scalar f and its error, we solve the optimization problem:

find A

4
mleri_zlz |ug e = Z |k |y

umkeld k=1
under the condition Zizl uk<C’k, \I'> =1.
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The solution to this problem was obtained using the generalized gradient descent method:

@ = (0.4;0.25355339; 0.25355339; 0) T .

The results of calculations of the guaranteed linear estimates of the scalar f based on the data of
Uk, k € 1,4 from Table 1, its errors 0(71) and the guaranteed linear estimates of the matrix X are
shown in Table 2.

Table 2. Guaranteed linear estimates of the scalar f, its errors, and the X matrix.

Option 1 Option 2 Option 3 Option 4
f -0.64005 -0.69246 -0.69978 -0.70164
o() 0.2721 0.1814 0.0907 0.0272
X ( —0.8474 —0.5526) (—o%10 —0.1990) (—0.0052 —0.b048 ) (—0.0039 —0.961 )

Analysing the results presented in Tables 1 and 2, we conclude that when the deterministic data
errors vy, k € 1,4 are reduced (by absolute value), the estimates of the matrix X becomes closer to
the test matrix X, and the error of the posterior guaranteed estimate o, does not exceed the error of
the guaranteed linear estimate a(ﬂ) of the scalar f.

6. Conclusions

In the article the new methods are developed for estimating the solutions of linear operator equations in
the presence of additional data with unknown deterministic errors belonging to specific sets of a special
form. It is assumed that linear operator equations have non-unique solutions and the measurement
errors are unknown deterministic values. Explicit expressions are derived for both the general case and
certain specific cases of relevant operators to determine linear guaranteed estimates and their errors,
as well as a posteriori guaranteed estimates and corresponding errors under specified conditions on
deterministic measurement errors. The theoretical results are illustrated with a test example involving
linear operators acting on the space of second-order square matrices with a non-zero kernel.
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OuiHkn po3B’sA3KiB NiHIAHUX HEOAHO3HAYHUX
pPO3B’A3HUX MAaTPUYHUX PIBHSAHb

Hakoneunwnii O. I'., 3iabko I1. M., 3iasko T. II.

Kuiscokut nayionarvrul ynisepcumem iment Tapaca Illesuenxa,
6yn. Boaodumupcora, 60, 01033, Kuis, Yxpaina

VY cTaTTi po3riIsaIacThC MPodIeMa OIHIOBAHHS PO3B’SI3KiB OIEPATOPHUX PIBHSIHD 38 YMOB
HeBuzHadeHoCTi. OTPUMAHO BUPA3M JIJIsi TAPDAHTOBAHUX MMOXUOOK PO3B’SI3KiB HEBU3HATEHUX
JIHINHUX PIBHAHB y IIPOCTOPAX MPAMOKYTHUX MATPHUIb 33 HAsIBHOCTI JIOJATKOBUX JIAHUX
i3 JeTepMiHOBAHMME MOXMOKAMM, IO HAJIEXKATDH JI0 CIIEIIAJIbHAX MHOXKHUH. ¥ YACTKOBOMY
BUIAJIKY OTPUMAHO BHI (hOPMYJIN JjIs TapaHTOBAHUX OIIHOK JIHIHIX BEKTOPIB Ta rapaH-
TOBAHUX MOXUOOK OI[IHOK BEKTOPIB, & TaKOXK JIJIsI TapaHTOBAHUX AIIOCTEPIOPHUX OIIHOK Ta,
rapaHTOBaHUX MOXUOOK arocTepiopHux BuMmipioBanb. HaBeseni pe3ysibTaTi OIIHIOBAHHS
LIIOCTPYIOTHCS TECTOBUM IPHUKJIAJIOM Y BUIAJIKY OIEPATOPIB, fAKi JIIOTH Y IPOCTOPI MaT-
paIb po3Mipy 2 X 2 3 HEHYJILOBUM SIPOM.

Knwo4osi cnosa: onepamopte pieHAHHA; 0eMEPMIHOSANT NOTUOKU OGHUL; OUIHKU MAM-
PUUD 8 YMOBAT HEBUSHAYEHOCTNE; AMHITHG OUTHKG 6EKMOPA; 2aPAHIMOBAHA OUIHKA 6EKMOPA;
2aPAHMOBAHE NOTUOKE OUTHKY 6EKMOPE.
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