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In medical image analysis, deep learning and convolutional neural networks (CNN) are
widely employed, particularly in tasks such as classification and segmentation. This study
specifically addresses their application in healthcare for detecting cardiomegaly, a condi-
tion characterized by an enlarged heart, often related to factors such as hypertension or
coronary artery diseases. The primary objective is to develop an algorithm to identify
cardiomegaly in chest X-ray images, constituting a binary classification problem (whether
the image exhibits cardiomegaly or not). Using the CXRS8 dataset from the National
Institute of Health Clinical Center, comprising 2 776 cardiomegaly images and 60361 no
finding images, the inputs are labeled images, and the outputs are the corresponding labels
(Cardiomegaly or No Finding). Employing Keras and TensorFlow Python libraries, we
aim to construct a CNN model that excels in binary classification, distinguishing between
cardiomegaly and no finding in chest X-ray images.

Keywords: deep learning; convolutional neural networks; cardiomegaly; binary classifi-
cation.
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1. Introduction

Cardiomegaly refers to a medical situation where the heart becomes enlarged. Often termed as an
“enlarged heart,” its origins can differ. Frequently, this condition emerges due to hypertension or
coronary artery diseases. When the heart enlarges, it may struggle to pump blood efficiently, leading
to the onset of congestive heart failure. The X-ray imagery provides insights into the state of the lungs
and heart [1], see Figure 1.

a b
Fig. 1. (a) X-ray images for patients without cardiomegaly, (b) X-ray images for patients with cardiomegaly.
X-ray tests are the initial procedure for identifying cardiomegaly in a patient [2|. After obtain-
ing the X-ray, a radiologist examines it to determine the presence of the condition [3]. If an X-
ray reveals an enlarged heart, additional tests are typically conducted to determine the cause. The
cardio-thoracic ratio, measured from X-rays, compares the heart transverse diameter to that of the
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thoracic cage. This measurement use the broadest part of the chest, extending to the lung pleura,
excluding the outer skin edges. Pathology is considered when the cardiothoracic ratio exceeds 50%,
provided the X-ray is taken accurately. A modern technique involves assessing heart health by com-
paring the heart area to the chest area, termed the two-dimensional cardiothoracic ratio, see Figure 2.
The cardiothoracic is defined as
MRD + MLD

1D ’
where M RD is greatest perpendicular diame-
ter from midline to right heart border, M LD
is greatest perpendicular diameter from midline
to left heart border, I'D is internal diameter of
chest at level of right hemidiaphragm.

Deep neural networks, particularly Convo-
lutional Neural Networks (CNN), have emerged
as the dominant machine learning architecture
in recent years [4]. Their widespread adoption
can be attributed to their unique ability to hi- Fig. 2. Cardiomegaly.
erarchically extract and process information from images [5]. This inherent capability allows CNN
to identify patterns and features at various levels of complexity [6]. As a result, they have been in-
strumental in the medical field, where accurate image classification is paramount [7]. From detecting
anomalies in X-rays to differentiating between healthy and malignant cells in histopathological slides,
CNN have revolutionized the way medical images are analyzed, aiding in more accurate and timely
diagnoses [8].

The objective of our work is to conduct a comprehensive comparison between three prominent
architectures, namely CNN, ResNet-50, and MobileNet. By contrasting their performances, we aim to
determine which model delivers the highest accuracy in our specific application.

The paper is organized as follows. The next section offers a concise review of recent advancements
in applying deep learning to medical image processing. In the third section, we delve into the materials
and methods, starting with a detailed presentation of the “Chest X-ray” dataset. The fourth section
showcases the results obtained from deploying this technique to detect Cardiomegaly disease from CXR
images.

Cardiothoracic ratio =

2. Literature survey

Prior studies have demonstrated significant success rates in exposure. For instance, 9], the authors
employed a CNN based on ImageNet to diagnose various diseases from CXR images, achieving an
accuracy of 89%. Another study, [10], introduced DualNet, an innovative architecture that processes
both the back and front of CXR images [11]|. Despite using a large dataset consisting of thousands of
simulated images, they achieved a 91% accuracy rate. In [12], the team attained a 92% accuracy rate
using established models such as ResNet-101.

A group from Taishan Medical University carried out research, see [13], where they developed an
automated method to determine a patient position or body part from digital radiography images using
a CNN algorithm. While they relied solely on frequency curve classification and gray matching to
achieve their results, they needed over 7000 images to attain a prediction accuracy of 90%.

3. Material and methods

3.1. Chest X-Ray 8 dataset

The dataset “cardiomegaly-disease-prediction-using-cnn” is processed and taken form the original
dataset (CXRS, National Institutes of Health — Clinical Center) of 5552 frontal CXR pictures from
distinct people, see Figure 3. We have 4438 training images belonging to 2 classes (True and False
Class, Size 128 x 128 and shape (128,128,1)) and 1114 testing images belonging to 2 classes (True and
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False Class, Size 128 x 128 and shape (128,128,1)). This dataset is publicly available for research and
for evaluating various computer-aided detection methods. We use the framework of CNN, ResNet-50,
and MobileNet for model construction and evaluation, with the aim of discerning which one yields
superior accuracy.

Fig.3. Sample images of the Dataset X-Ray 8.

3.2. Convolutional neural network (CNN)

As presented in Figure 4, the CNN architecure is initialized using a sequential model.

Convolution Neural Network (CNN)

/
Input ot S/ Output
Pooling Pooling Pooling =
_,'//
n NS SoftMax
Convolution Convolution  Convolution e \\\ / ?Etr"‘gi‘(';"
Kernel RelU ReLU RelU Ratter\ ¢
Feature Maps

| | I'l _—
Feature Extraction Classification E’i‘s’zf’bbl']'t'isé':

Fig.4. CNN Architecture.

The first layer is a 2D convolutional layer with 32 filters, a kernel size of 3 x 3, and employs
the ‘ReLU’ (Rectified Linear Unit) activation function, designed to process input images of shape
128 x 128 x 1. Following this layer, a max-pooling layer is applied to down-sample the feature maps.
The next segment of the network consists of another 2D convolutional layer, this time with 16 filters
and a 3 x 3 kernel size, again utilizing the ReLLU activation function. This is followed by another
max-pooling layer to further reduce the spatial dimensions. Continuing, the network adds yet another
convolutional layer with 12 filters and a 3 x 3 kernel size, paired with the ReLLU activation function,
succeeded by its respective max-pooling layer.

After processing through the convolutional and pooling layers, the data is flattened to a single
dimension, preparing it for the fully connected layers. The network then includes a dense layer with
144 neurons, using the ReLU activation function for non-linearity. This is succeeded by another dense
layer comprising 78 neurons, again leveraging the ReLU activation.

The final layer in the architecture is a dense layer with 2 neurons, intended for binary classification.
This layer employs the softmax activation function to output probabilities for the two potential classes.
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The cost function used in our work is the ‘binary-cross entropy’ function defined, for N examples, as

N
L= =23 lyilog(d) + (1~ i) log(1 — )], )
i=1

where y; is the true label (0 or 1) for the example i, and ¢; is the predicted probability of the label
being 1, for example %, calculated using weights and biases.

It is the error function that we aim to minimize using gradient descent in binary classification
tasks. When training a model with gradient descent (or its variants like the Adam optimizer used in
our CNN model), the goal is to find the model parameters (weights and biases) that minimize this
error function on the training data. Backpropagation is used to calculate the gradient of the error
function with respect to the model parameters, and gradient descent utilizes these gradients to update
the parameters in the direction that reduces the error function [14].

The cost function of binary cross-entropy measures the gap between two probability distributions.
The actual distribution (the labels) and the distribution predicted by the model (the predicted proba-
bilities). When using gradient descent, the goal is to minimize this loss by adjusting the model weights.
At each step, the gradient of the loss function with respect to each weight is calculated. The explicit
calculation of gradients for cost functions such as binary cross entropy in a CNN model is performed
by the backpropagation process.

3.3. ResNet-50 architecture

In this section, the ResNet-50 architecture is used. It is a popular Convolutional Neural Network (CNN)
architecture primarily used for image classification [15]. The main goal of ResNet is to address the
vanishing gradient problem in deep networks by introducing residual connections (or skip connections)
[16]. These connections allow the gradient to bypass layers directly, thereby facilitating the training
of very deep networks. Since ResNet offers higher accuracy on image classification tasks, particularly
on datasets such as ImageNet [17], then it used the ‘safe duplicate gray channel’ function which takes
a grayscale image (with a single channel dimension, (128,128,1)) and duplicates it to obtain an image
with three identical channels, i.e. a false color image (128,128,3), where the three channels (R,G,B)
have the same values as the original grayscale channel, see Figure 5.

0

0
201 20

60 60

801 80

5?. ‘!"

60 80 100

100 1

100

120 120

0 20 40 60 80 100 120

Fig.5. Safe duplicate gray channel.

It is necessary to use this function to adapt the grayscale images so that they can be used with
ResNet (or any other CNN model pretrained on RGB images). The model sets up a neural network
model using TensorFlow with the architecture of ResNet-50, which is pre-trained on the ImageNet
dataset. This model is tailored for input images of shape 128 x 128 x 3. After utilizing the feature
extraction capabilities of the ResNet-50 base, additional custom classification layers are appended: a
flattening layer followed by three dense layers with ‘relu’ activations, ending with a softmax activation
for binary classification. The model is compiled using the Adam optimizer with a learning rate of
0.0001, and is set up to train for binary classification. Finally, the structure of the entire model is
displayed.
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Remark 1. The challenge of vanishing gradients is a prevalent issue encountered in the training
of deep neural networks. This phenomenon occurs when the gradients used to update the network
weights diminish significantly as they propagate from the output layer to the hidden layers. The
consequence of this diminution is a deceleration or even a stagnation in the learning process, given
that the weights of the deeper layers undergo only marginal updates. This stagnation impedes the
deep layers from effectively learning valuable information and hampers their substantial contribution
to the overall network performance. The vanishing gradient problem is particularly pronounced in deep
architectures, affecting the network ability to capture and leverage intricate patterns within the data.
Strategies such as careful weight initialization, activation function choices, and the use of normalization
techniques like batch normalization are often employed to mitigate the impact of vanishing gradients
and facilitate more effective training of deep neural networks. Addressing this challenge is crucial
for unlocking the full potential of deep learning models and ensuring their capacity to learn intricate
representations from complex data.

3.4. MobileNet architecture

We have also used this pre-trained MobileNet model, it uses depth-wise separable convolutions, which
break down a standard convolution into a depth-wise convolution (filtering each input channel sepa-
rately) followed by a point-wise convolution (combining the input channels), see [18|. This significantly
reduces the number of required multiplications. It takes as input an image of size (128,128, 3) because
just like other popular architectures, MobileNet is often available with weights pre-trained on the
ImageNet dataset, which facilitates transfer learning for new tasks [19].

The code establishes a neural network model utilizing TensorFlow MobileNet architecture, pre-
trained on the ImageNet dataset. MobileNet is adapted for input images of shape 128 x 128 x 3 and is
configured without its final layer, leveraging average pooling. After the base MobileNet model, custom
layers are appended, including two dense layers with ‘relu’ activations. The final output layer uses a
softmax activation, designed for binary classification. The entire architecture is then consolidated into
a single model, which is compiled using the Adam optimizer with a learning rate of 0.0001 for binary
classification. Lastly, the structure of the model is displayed for review.

4. Results and discussion

This section summarizes the results of the suggested models, which were implemented with Python
software.
4.1. CNN model

After compiling the CNN model code using Python, we achieved an accuracy of 0.7325 and a loss value
of 0.5294. Notice that the precision is not high (73.25%), but it is acceptable, see Figure 6.

Model Loss Model accuracy
— loss 0.7504 — accuracy
0.675 —— val_loss — val_accuracy
0.725 1

0.650 1
0.625 1 0.700 1
0.600 1 0.675 1
0.575 1 0.650
0.550 1 0.625 A
0.525 1 0.600-
0.500 1

T T T T T T 0.575 T T T T T T

0 10 20 30 40 50 0 10 20 30 40 50

Fig.6. Model LOSS and accuracy.
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To test the performance of our CNN model, we use the confusion matrix. It is a useful tool for
assessing the performance of a classification algorithm. It displays the number of true positives, false
positives, true negatives, and false negatives that your model has produced, allowing to gain a clearer
understanding of where the model is making mistakes, see Figure 7.

Confusion Matrix

True labels

0 1
Predicted labels

Fig. 7. Confusion Matrix.

Let us break down the information presented in this matrix:

— The vertical axis (y-axis) represents the true labels of the data, while the horizontal axis (x-axis)
represents the predicted labels from the model.

— The two classes in this binary classification task are labeled as “0” and “1”.

— Here is what each cell in the matrix indicates:

1.

Top-left (398): this is the True Positive (TP) count. It means 398 instances were correctly
predicted as class “0” by the model.

Top-right (159): this is the False Negative (FN) count. It means 159 instances were incorrectly
predicted as class “1” by the model when they actually belong to class “0”.

Bottom-left (139): this is the False Positive (FP) count. It means 139 instances were incorrectly
predicted as class “0” by the model when they actually belong to class “1”.

Bottom-right (418): this is the True Negative (TN) count. It means 418 instances were correctly
predicted as class “1” by the model.

To further clarify in the context of the disease:

1.

4.

Top-left (398) — True Positives (TP): This means that 398 instances were correctly identified
by the model as not having the disease (0 signifies absence of disease).

Top-right (159) — False Negatives (FN): This means that 159 instances were incorrectly identified
by the model as having the disease when they do not have the disease.

Bottom-left (139) — False Positives (FP): This means that 139 instances were incorrectly iden-
tified by the model as not having the disease when they actually have the disease.
Bottom-right (418) — True Negatives (TN): This means that 418 instances were correctly iden-
tified by the model as having the disease (1 signifies presence of disease).

In this medical context:

1.
2.
3.

True Positives (TP) are cases where the model accurately predicts the absence of the disease.
True Negatives (TN) are cases where the model accurately predicts the presence of the disease.
False Positives (FP) are cases where the model mistakenly predicts the absence of the disease
when the person is ill.
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4. False Negatives (FN) are cases where the model mistakenly predicts the presence of the disease
when the person is not ill.

From this matrix, we can derive several performance metrics like accuracy, precision, recall, and F1-
score:

TP + TN

A = 2
U = TP T TN + FP + FN' @)
TP
Precision(class “0”) = TP £ TP’ 3)
TP
Recall(class “0”) = TP PN’ (4)
F1.Score — 2 X Precision x Recall. 5)

Precision + Recall
The F1-Score is a harmonic mean of Precision and Recall. It is a single metric that combines both
precision and recall into a single value.

4.2. ResNet-50 model
For this model, we obtained an accuracy of 0.8016.

35/35 [=====================] - 39s 1s/step - loss: 1.3665 - accuracy: 0.8016
Test accuracy: 80.16%

Fig. 8. Test accuracy.

Typically, ResNet tends to deliver superior performance, meaning higher accuracy, on image clas-
sification tasks compared to MobileNet. This is especially evident when dealing with datasets like
ImageNet [20]. The architecture of ResNet, with its deep layers and residual connections, enables it to
capture intricate patterns in the data. While MobileNet is designed for efficiency and speed, especially
on devices with limited computational resources, ResNet focuses on achieving state-of-the-art accuracy,
even if it requires more computational power and memory. This makes ResNet a preferred choice when
accuracy is a top priority and computational resources are abundant.

4.3. MobileNet model

This pre-trained model is designed to be compact with fewer parameters than models such as ResNet,
while maintaining acceptable performance. After training this model we obtain an accuracy of 0.7935.

35/35 [=====================] - 8s 222ms/step - loss: 0.8608 - accuracy: 0.7935
Test accuracy: 79.35%

Fig. 9. Test accuracy.

Although generally less accurate than ResNet for standard image classification tasks, MobileNet is
faster in terms of inference time, especially on devices with limited resources.

MobileNet stands out as an appealing choice for developers and researchers in need of a lightweight
and fast CNN architecture, yet without sacrificing too much on performance. Designed for efficiency,
MobileNet is optimized for mobile and other low-resource devices, making it especially suitable for ap-
plications where computational resources or bandwidth are constrained. Its streamlined architecture
achieves a good trade-off between computational demand and accuracy, allowing for real-time process-
ing or deployment in edge devices, while still maintaining competitive accuracy on various tasks. Its
flexibility in adapting to different resource constraints makes it a versatile tool for a wide range of
machine learning applications.

5. Conclusion

Chest radiography is essential for large-scale screening and early detection of lung and heart issues like
cardiomegaly, an enlarged heart condition. Automated techniques can be applied in CXR-based tools.
With the advancement of deep neural network models, especially CNNs, they have become prominent in
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image processing. This study explores the potential of using transfer learning to detect cardiomegaly
from X-ray images. In this study, we propose a pre-trained supervised neural network model for
detecting Cardiomegaly from X-Ray images. The dataset was utilized to evaluate the application of
Python on X-ray images. ResNet, when compared to MobileNet, consistently demonstrated higher
accuracy in our evaluations. This suggests that the architecture of ResNet, with its unique residual
connections, might be better suited for certain image classification tasks. While both models have
their own advantages and are designed with different goals in mind, in terms of sheer precision, ResNet
seems to outperform MobileNet in our experiments. This observation could be particularly valuable
for those looking to prioritize accuracy over computational efficiency in specific use cases.
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Acta

MNopisHanHa pesaknx apxitektyp CNN ans sBuasnenHs kappiomeranii

Ha 3HIMKaxX rpyaHoi KAiTku B X-NpomMeHsx

Perparyi X.!, 3iani M.!, Myccainx H.?

L Ta6opamopia LMSA, xagedpa mamemamuru, daxysvmem npupoonuvur nayx,
Vwisepcumem Myzammeda V y Pabami, Mapoxxo
2LMCSA, Ywisepcumem Xacana II Kacabranxu, n.c. 146, Moxammedia, Mapoxko

B anauisi MenquaHEX 306paskeHb rnbOKe HABIaHHS Ta 3ropTKOBI HefiporHi Mepexi (CNN)
IIIIPOKO BUKOPUCTOBYIOTHCsI, 30KpEMa B TAKUX 3aBIAHHSX, K KJacuikallisi Ta CerMeH-
Tarid. ¥ MbOMY JOCJiIPKEHHI KOHKPETHO PO3TJIATAETHCS 1X 3aCTOCYBAHHS B TaJIy3i 0XOPO-
HU 3I0POB’sl I BUSIBJICHHS KapJIOMEraJIil — CTaHy, [0 XapaKTePU3YEThCs 30LIbIIICHHIM
Ceplig, JacTO IMOB’SI3aHOT0 3 TAKUMHU (PAKTOPAMHU, K TIilepTOHist ab0 3aXBOPIOBAHHS KO-
poHapHux aprepiii. OCHOBHOIO METOI € PO3pOOKa ajrOpUTMY, 3JATHOTO 11eHTUdIKyBaTH
Kap/ioMeraJsiio Ha PEHTTEeHIBCHKUX 3HIMKAX PY/IHOI KJITKU, MO CTAHOBUTH IpobJiemy Oi-
Hapuol kiacudikanil (He3a1eKHO Bijl TOro, 4u € Ha 300parKeHHI KapJioMeraJis 9u Hi).
Bukopucrosyroun nabip nannx CXR8 Kuainiunoro nearpy Harioraabraoro incturyTy 0xo-
POHU 3/I0POB’s, sAKMit MicTUTD 2 776 300pakenb Kap/aiomerastii Ta 60 361 306paxkenns 6e3 11
BUSIBJICHHSI, BXi/IHI JIaHi € 300parkeHHsIMN 3 MiTKaMu, a BUXI/IHI JaHi € BiMOBIJHUMI MiT-
kamu (KapJioMerasnist abo BifacyTHiCTD i1 BusiBiieHHs1). Bukopucrosyoun 6i6miorekn Keras
ta TensorFlow Python, Bukonana cripoba nobyaysaru momens CNN, ska BigmiHHO 11i71X0-
JUTh T OiHapHOT Kitacudikaril, po3pi3Hd0Yn KapaioMeraJito Ta i1 BiCyTHICTb 3HIMKAaxX
IPpyAHOL KJITKA B X-IIPOMEHSX.

Knto4voBi cnoBa: zauboke nasuanha; 320pMK06 netiponni mepesict; xapdiomezanis; 0i-
HAPHE KAGCUPTKAUTHA,.

Mathematical Modeling and Computing, Vol.12, No. 1, pp.22-30 (2025)



