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Geometric Quantum Mechanics is a formulation demonstrating how quantum theory may
be cast in the language of Hamiltonian phase-space dynamics. Within this framework,

the classical properties of spin %, spin 1 and spin 2 particles have been studied. The

2
correspondence between the Poisson bracket and commutator algebras for these systems

was shown by explicitly computing the value of the commutator of spin operators and
comparing it with the Poisson bracket of the corresponding classical observables. This
study was extended by comparing the Casimir operator and its classical counterpart. The
results showed that there exists a correspondence between classical and quantum Casimir
operators at least for the case of spin % This research clearly shows the limit of classical
notions to describe the purely quantum concept.
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1. Introduction

The connection between classical and quantum representation is one of the greatest problems in un-
derstanding microscopic systems. Although quantum mechanics and classical mechanics have several
points in common, they are quite different in several aspects. The most striking one is that classical
mechanics is based on geometry and most of the systems are non-linear, whereas quantum mechanics
is intrinsically formulated as algebraic and linear. The linearity seems to be a necessary condition
since none of the standard quantum mechanics postulates can be stated without referring to it. This
distinction is quite strange since in general, linear structure in physics arises as approximations to more
accurate non-linear ones, but in this case, the situation happens in opposite way. Thus, it is difficult
to make a smooth connection between classical mechanics and quantum mechanics.

This problem has motivated some physicists [1-15] to develop a formulation that does not involve the
quantization process as such but acknowledges quantum theory as provided. This research line which
is referred as Geometric Quantum Mechanics, demonstrates that quantum theory may be formulated
in the language of Hamiltonian phase-space dynamics. The deeper investigation shows that the Hilbert
space H is not the true space of states, since any two-state vectors ¥, ® € H such that ¥ = a® (a € C)
are physically equivalent (U « ®). Thus, the proper quantum space of pure states is the set of rays
through the origin in H, i.e. P(H) := H/ « which is known as the complex projective Hilbert space
or the quantum phase space for both finite and infinite dimensional H. Furthermore, the existence of
Hermitian inner product in H# endows P(#H) with the structure of Kéhler manifold (w, g, j) where w is
non-degenerate, closed symplectic two-form, g is Riemannian metric and j is the compatible complex
structure satisfying j2 = —1 [3]. Thus, similar to classical mechanics, the correct quantum state
space is also can be regarded as a symplectic manifold. In terms of self-adjoint operators on H, via
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its expectation value, one can obtain a real-valued function on #, which has well-defined projection
h to P(H) [4]. Note that, every phase space function induced a flow along its Hamiltonian vector
field X}, [5]. Hence, on the Hilbert space, the flow is certainly defined by the Schrodinger equation
of the quantum theory. In other words, Schréodinger evolution is exactly similar to the Hamiltonian
flow on quantum phase space P(H). Here, one can directly see that classical mechanics and quantum
mechanics have many similarities. However, the fact that the Riemannian metric in quantum phase
space is closely related to the notion of probability provides us with several main features, that are
missing in classical mechanics such as uncertainty principle and state vector reduction in quantum
measurement processes.

In this study, the examination of the correspondence between quantum and classical aspects of
geometric quantum mechanics has been focused, and the classical properties of the observables have
been studied as the literature was identified did not discussed at a deeper level. This study is important
to identify the limitation of the classical notion of geometric quantum mechanics to describe purely
quantum concepts such as the commutator of two spin operators and the Casimir operator.

The structure of the paper is the following: in Section 2 we make a quick review of the classical
observable formulation in geometric quantum mechanics. Then we study the correspondence between
commutators and Poisson brackets and compare the classical analog of the Casimir operator and the
standard one in Section 3. Finally, we discuss (Section 4) our results and we end with conclusions.

2. Classical observable of geometric quantum mechanics

Let us start with the geometric construction of quantum mechanics by considering H as n-complex
dimensional Hilbert space equipped with a Hermitian inner product

(x[): H x H — C,
where it can be explicitly decomposed into real and imaginary parts

(U|P) = GV, D) + i Q(T, D)

for all |¥), |®) € H. The real part G(V¥, ®) is Riemannian metric, where

GV, P) =G(P,¥)
and 2 is symplectic form that satisfies the following relation

QT, D) = —-Q(P, ).
Equivalently, if we consider H as m-dimensional real Hilbert space, then there exists a complex struc-
ture J on H that allows one to define multiplication by complex scalar. Technically, for £ = a+if € C
where o, 5 € R and ¢ € H, one can define
§q:=aq+ BJq.

Besides, it is obvious that this vector space necessarily has an even dimension; the fact that J? :=
~1,, and det(J?) = (det J)?> = (—=1)" imply m = 2n. Thus, a real, 2n-dimensional Hilbert space
together with a complex structure J corresponds to a complex n-dimensional Hilbert space. In this
context, we can relate G, Q and J as

G(¥, @) = Q¥, J(?) = —Q(J(¥), D),
which define the Kéahler structure on H. Furthermore, since H is equipped with symplectic structure,
it is clear, that we can regard H as a symplectic manifold.

Now, let A be a smooth function on H corresponding to any self-adjoint operator A:

A— AeC®H)
written as R R
A(W = <\IJ‘A\P> = G(\:[JvA\IJ)7 (1)
which is called an evaluation function. We can define the expectation value function <fl> associated

with A as follows .
iy (v]AY)
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and for the case of ¥ is normalized, the equation becomes
A(Y) = (A)w.

Here, we regard A(¥) as classical observable corresponds to self-adjoint operator A.

Moreover, we can also define the classical observables a and b on projective Hilbert space P(H).
Let a: A — R and b: B — R be two functions on P(H) of the operators A and B respectively, then
one can define

aoll =(A)=A, boll=(B)=0B,
where II: H — P(H).

3. Poisson bracket and classical Casimir operator

Here the classical aspect of spin %, spin 1 and spin % particles in geometric quantum mechanics has
been studied. The research starts with examining the correspondence between the Poisson bracket and
commutator followed by a comparison between the Casimir operator and its classical counterpart for
these systems.
3.1. Spin % particle
Let the Hilbert space H =2 C? and (ey, e2) represents the orthonormal basis in C? satisfying
(eilej) = by,

for 4,5 = 1,2. Then the state of spin % particle in H is expressed as

(W) = Zi|e1) + Zzlea),
where Z1,Z5 € C. Consider S, S, and S, be classical observables define by (1) as follows

. oo
Sa (V) = (V|5 |¥) = S (2122 + Z123),

S,(W) = (|5, |v) = ”%2122 _22),

S.00) = (W]S.0) = L[ - |Z:P),
where the self-adjoint operators S'x, S’y and S, are Pauli matrices

. h(0 1 s h (0 —i ~ h(1 0
S“"f_§<1 0)’ Sy_i(z‘ 0>’ SZ_§<0 —1)'

The Poisson bracket for classical observables S, and S, is defined as
(S,,8,} = 2 0S5, 08y B 0S; 08y~ 0S; 08,y B 0S5, 08y
VY i \0210Z, 02,0727 0Z20Zy 0Zy0Zy

Thus, we get

iR ZyP P 2| N ih?|Z,|? N ih?|Z1]?
4 4 4 4

<% [12:)? - |Z2|2]> = 2h8..
In this way, one also obtains
{Sz,S.} = 2hS,,
{Sy, 5.} = 2hS,.
The Poisson bracket related to commutator has been showed as follows

2 . .
{8y,5.} < =[Sy, S:],

{S0.8:} « =[5, 52,

s|[\3s|[\3s

{82, Sy} & =[50, 5y)-
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Now, the classical analog of the Casimir operator has been computed and compared with its quantum
counterpart. Classically the Casimir operator is defined as

§? =53+ 5; + 52,

where
2

h _ _ _ _
52 = Z(2122 + 2122)( 21 2y + 77\ Z) = (Z1 Z3 + 2|21} 2 + 2723)
2 h2 ~ ~ hz 2 272
Sy = —Z(leQ — 21 7o) (2129 — 71 Z) = — (ZIZ2 — 2|21 2 + 2%23)
2

5 5 = 5 h
82 = (2 Zy - 11 2) (21 2o~ T 2) = — (120" = 2120 P| 2of° + | 22]*) -

z _Z(
and one obtains )
h _ _ _
Sy+S;+87= Z(leZ% + 2|21\ Zo* + 2225 — 7272 + 2|21 | Z)?
— 2273\ Z1|* — 2|21 | Z2? + | Za|")
h2
=7 (121" + 21211 Z2)* + | Z2|*)
K2 2
= 5 (2 +12:P)°.

Since |Z1]? + | Z3|* = 1 due to the normalization condition, then the above equation becomes

h2
S*P=82+8,+82= I
In comparison with the standard Casimir operator [17], its relationship can be expressed as
3h2
5?2 =38% =
4

3.2. Spin 1 particle

The corresponding self-adjoint operators for this case are defined as

X . 0 10 X 5 0 — 0 R . 10 0
Se=—7=1101); Sy=—4=1|¢ 0 —i]; S,=—4([0 0 0 [,
V2 0 10 V2 0 ¢« 0 V2 0 0 —1
and the orthonormal basis in Hilbert space H =2 C3 is represented by (e, e, e3) satisfies
(eilej) = dij,

for 4,5 = 1,2,3. Then, the state of spin 1 is expressed as
|¥) = Zile1) + Zalez) + Zsles),
where 71, Z, Z3 € C. Let us consider S;, S, and S, be classical observables defined by

50(0) = (WS, 1¥) = T (212 + 22+ Tals+ i)
o (2122 — Z1Zo + ZoZs — ZoZ3)
V2
S:(0) = (¥[8:|) = n (|41 ~ 1Z5]%) -
The Poisson bracket for classical observables S, and Sy is stated as follows
(80,8} = 2 <85x 8S_y B &?x oS, 05 &S_'y B 85_50 oSy, 05, &?y B &?x 85y>
1 \021021 041021 04207y 0Zy0Zy 043073 0Z30Z3
Therefore, one obtains
{Se, Sy} = —12| Zo|? — B2\ Zo|* + B2 (|21 — Z1Z5 + Z1Z5 — | Z5)?)
— B (—|Z\° — Z1Z5 + Z1 25 + | Z3|?) + h?| Zo|*2 + K*| Zs|* = 2AS..

Sy(¥) = (T[S, |¥) =
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Using the same approach, one also gets
{8z,5.} = 2hS,,
{Sy,S.} = 2hS,.
Therefore, the Poisson bracket related to commutator has been showed by the following expressions
2 . .
{8y, 8.} < ;[Sy,SZ],

(80,8} € =18, 8]

9 . .
{8z, Sy} < g[sxasy]'

Besides, the classical analog of the Casimir operator S? for this case has been calculated and compared
it with the standard one. Firstly, S2, S; and S? are computed

52 = 712 (zfzg |21 P Zal? + 20 25) 2o + 212373 + | 21|P| Zo|? + 23 23)
212523 + Z1 Z3| Zo|* + Z1 23| Zo|? + 21 Z3 23 + Z523)
| Z2%| 25| + 212323 + Z1 25| Zs|* + | 20|?| Z5)* + Z323)
— 2P| 2o + 21 25| 2o — 212325 — | 20 ?| 2o + 27 Z3)

212573 + Z1 Z3| Zo|* + Z1 23| Zo|* — Z1 2325 + Z523)

|
w|%w|mw|%w|%w|
A A —~ A

(=122 257 — 212525 + Z1Z5| Zo|* — | 20| Z3* + 23 23)
S2 =1 (|2 — 2121 | Z5)* + | 23] "),
and then we demonstrate that
S*P=8i+8+52
=12 (|Z1|" + 2|21 2| Zo|? + 2| Z2)?| Z5)? — 2|21 *| Zs|* + 221 2373 + 221 2323 + | Z3)*) .

Unlike spin % case, rather than a constant, the classical analog of the Casimir operator for spin 1
has functional dependence. In this context, there is an inability to relate it with the standard Casimir
operator with a value equal to 2h. To understand this, recall that the classical Casimir operator is

defined as
S?P=82+80+52
= (U] So|W)? + (|5, [¥)° + (V]5.[P)?,
and the standard Casimir operator is
(82) = (S5) +(85) +(82)
= (W[S2W) + (U|ST|P) + (W[S2|W).
Now in the point of view of matrix algebra, let us define functions f and g as follows
f: A— B = (V|A|¥),
g:C —D=C?
where in this case A, C and D are 3 x 3 matrices and B is 1 X 1 matrix (a numbAer). R
Here, the classical and quantum Casimir operator can be stated as Y (go f)(S;) and > (f 0 g)(S;),

respectively where ¢ = x,y, z. Thus, since in general the composition of functions is non-commutative
i.e. fog# go f, it is clear that the classical and standard Casimir operators lead to different results.
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3.3. Spin % particle

Let us define the self-adjoint operators for this case as

0 V3 0 0 0 —iv3 0 0 30 0 0

g _hfv3 0 2 0 g _M[v3 0o -2 0 g o1 2 0
7210 2 0 V3 VT 210 2 0 —iv/3|> " 2100 -1 0|’

0 0 V3 0 0 0 W3 0 00 0 -3

and the orthonormal basis in Hilbert space H =2 C* is represented by (e1, ez, €3, e4) satisfies
(eilej) = dij,
for ¢,5 = 1,2,3,4. Then, the state of spin % is expressed as
W) = Zile1) + Zale2) + Z3les) + Zalea),
where Z1, Z3, Z3, Z4 € C. Consider S;, Sy and S, be classical observables defined as

) o W3 . L
S (V) = (V|S,|V) = W Z2Z3 + Z2Z3) + T\/_(Z122 + Z1 2o+ ZsZy + Z3Zy),
ih3
2

Sy(\lf) = (‘If|gy|\1’> = Zh(ZQZg — ZQZg) + (2122 — leg + 2324 — 2324),

5.(0) = (018.0) = 221 |1 ZiP) + L1 - 12:P)
The Poisson bracket for classical observables S, and Sy is stated as follows
(S,.8,} = 2 (85} &S:y _ &?x oSy . 0S5, 8%’ _ as_z 85y>
Y 1 \0Z10Zy 072,0Z1 0Zy8Zy 0OZy0Zsy
2 (05,08, 08,08, 05,05, 05,08,
(azg 0Zs 0Z30Z3y  07,0Zy 0Z4 az4> '

i
Therefore, one obtains
{Ss, Sy} = 303 Z1|? — 31%| Za|? + 3h2| Z3|* — 3h%| Z4|? + AR?|Zo|* — 4h?| Z3)? = 21S.,.
Using the same approach, one also gets
{Sz,5.} = 2hS,,
{Sy, 5.} = 2hS,.

Therefore, showing that the Poisson bracket is related to the commutator by the following expressions

2 A A
{Sy, 5.} < ;[Sy’SZL
(8.,8.) © 218, 8.1

9 ..
{Se, Sy} < ;[Sxasy]'

Besides, the classical analog of Casimir operator S? has been calculated for this case and compared it
with the standard one. Firstly, we compute S2, S; and S?

2 352 72 r72 3h2 2 2 2 ~ 2 2 7 7 2 352 ~ ~
52 = T2122 + T|Zl| |Zo|? + W2V/32,Z3| 25| + h3N/32, 2322 + 721222324
3n% 7 3n? 272 2 2 2 > 2 3w, >
+ 721222324 + TZl ZQ +h \/3212322 +h \/ngZ3|ZQ| + 721222324
3R _ _ _ _
+ 5212223 %+ W2 7372 + 202 Zo|? | Z3|? + h2N/3 2924722 + W2\/3 22 24| Z3)?

- - - 302 _, - 3h2 302
+ W Z5 Z5 + WP322 24| Zs|* + WPN3Z2 24 Z5 + TZg?Zf + 7|Z?>|2|Z4|2 + TZ;%ZE,
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3h _ _ 3h2 _
S? = Z1 73+ —yzl\ 2 Zy2 — h2V/3Z1 23] Zo|* + h2N/3Z, 2373 — D22 237
352 > > 3h? 2 72 2 =9 2 > 2 3n? > >
+ —212223Z4 — TZI ZQ +h \/5212322 —h \/ngZ3|ZQ| + 721Z2Z3Z4
h2 _ . _
- 3—21222324 — W2 Z373 4 202| Zo|*| Z3 > — WAV/3 222473 + W3 22 74| Z3|?
_ _ _,  3h? 3n2
— W2Z272 4+ h3N3Z924|Z3* — hPN/3Z2 7,73 — 2324 + —ng,\ = —2324,
9h? 9h? 3h2 3h2 9h?
82 = 14l = 12PN + T 4P 2 - S| 2 P2l - |2 24

9h2 3h2 Ry Ry Ry
\Z4!4 !Z2\ | Zy " + 4 !Z3\2\Z4!2+7121!2\22!2—712212\24!2

Pt — B e - ¥ e+ gz - iz +
4 2 4 2 3 4 1 3 4 3 4 4 2 3 4 3]
and then we demonstrate that
9h2 K2 K2 92 9h2
S? =82+ 82+ 82 = 7121\4 + Z\Zﬁ + Z’Z3‘4 + —\24\4 + 7\2112\22\2

Th? Oh2 Oh2 Ry
+ —|Zz|2|Z3|2 + 7|Z?>|2|Z4|2 - 7|Z1|2|Z4|2 - —|Z1| 2| Z5)?

3h2
12| 21242 4 202N/32, Z3 22 + 3h2Z) Zo Z3 Zy + 21hPN/3 71 Z3 73
- 3h 7y ZoZ3 2y + 20N3 29 2422 + 202N/3 22 2,473

Acorrding to the computation of classical Casimir operator for spin 5, spin 1 and spin 5, the
operator could be generalized for the case of C™ as follows.
Conjecture. The classical Casimir operator for Hilbert space H = C" is defined as

n
52 =524 S; + 52 = Z HjHyZ;Z; 2,2,
i7j7k7l
where HjHy = E(ei|§a|ej><ek|§a|el>, a=x,y,zand 1,5, k,1=1,2,3,...,n.

4. Discussion and conclusion

In this study, we show that, although the correspondence between the Poisson bracket and commu-
tator is consistent for all spin systems, the correlation between the Casimir operator and its classical
counterpart is not well defined. Unlike spin % case, whose Casimir is a constant, the classical Casimir
operator for higher spins is expressed in terms of functions. In this context, it fails to be identical to
the standard Casimir operator with a value equal to constant. Thus, this result clearly demonstrates
the limitation of the classical notion to describe the purely quantum concept. It is consistent with
Gleason’s theorem [16] statement that the classical representation is not entirely available to describe
quantum mechanical systems.
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Teomerpuuna kBaHTOBa MexaHiKa — I (POPMYJIIOBaHHS, K€ JIEMOHCTPYE, siK KBAHTOBY
TEOpifo MOXKHA TOJIATH MOBOIO TaMiJbLTOHOBOI JAMHAMIKH (ha30BOr0O MPOCTOPY. ¥ MexKax
IHOTO JIOC/TiIPKEHHsI OY/I BUBYEH] KJIACHIHI BJACTUBOCTI YACTUHOK 3i CITIHOM %, cmiaoM 1 i
CITIHOM % BinmosigmicTs Mixk jy2kKoio ITyaccona Ta KoMyTaTOpHUME aJredpamMu Jjsl X
cucTeM OYJI0 TOKA3AHO MIJITXOM sIBHOTO OOUUC/ICHHS 3HAYEHHS KOMYTaTOPa OIePATOPIB CIIi-
HY Ta HOPIBHAHHS HOT0 3 JIy:KKO0I0 Ilyaccona BiIMOBITHMX KIACHYIHUX CIIOCTEPEXKYBAHUX.
Ile mocmimkentst Oy/I0 PO3MIUPEHO NIIAXOM IMOPIBHAHHS onepaTopa Kasumupa Ta #ioro
KJIACUYHOTO aHaJjiora. Pe3yabraTu moKas3aJu, Mo iCHy€e BiIIOBIIHICTD MiK KJIACHIHUMU Ta,
KBAHTOBUMHU ortepaTopaMu KaszuMmupa npuHaiiMHi Jj1 BUIAJIKY CIIHY % e mocaimxenns

9iTKO MOKA3y€ MEXKY KJIACUIHUX MOHATH JJIs OMUCY CYTO KBAHTOBOI KOHIIEIITI].

Kntouosi cnoBa: dudeperyiasvha 2eoMempis; 2€0MeMPUIHA KEAHMOBA MELANIKG; KAG-
CUYHT COCMEPEHCYBANS.
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