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Recently, Batiha B. et al. in Symmetry 15 (3), 688 (2023), propose the New Iterative
Method (NIM) for solving the generalized Burgers—-Huxley equation. In order to give an
extended version of this work, we rewrite NIM method in an elegant form in the first
step, and introduce a controlled parameter in the second step, called the Accelerated
Residual New Iterative Method (ARNIM). We apply the established framework to solve
the generalized Burgers—Huxley equation and then we give a convergence study according
to the values of the control parameter.
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1. Introduction

The majority of problems in various fields such as chemistry, biology, physics and engineering are
modeled by nonlinear partial differential equations (NPDEs). These equations are crucial for describing
phenomena such as heat transfer, fluid dynamics, etc.

However, solving nonlinear models for real-world problems proves to be a difficult task, both the-
oretically and numerically. The search for reliable solutions is complicated by the complexity and
non-linearity of the models. Several numerical methods are available in the literature to solve NPDEs,
but they all have their limitations and the development of new approaches to solve NPDEs will remain
an active area of research and development in various fields [1,2].

In this paper, we combine the Burgers equation, which studies the dynamics of viscous fluids, and
the FitzHugh—Nagumo model, which studies the behavior of excitable cells and called the Burgers—
Huxley equation. Solving this equation can be challenge due to its complexity and nonlinear nature, but
it’s has some properties such as symmetry, invariance under Galilean transformations and symmetry
in the case of time reversal, that allows us to better understand and predict the behavior of complex
systems [3,4].

Let us consider the generalized nonlinear Burgers—Huxley equation:

ut—i-au‘sux—um:ﬁu(l—u‘s)(u‘s—fy), 0<z<l, t>=0. (1)

where the coefficients «, 3,6 > 0 and v € (0,1) are given parameters. Equation (1) models the
interaction between reaction mechanisms, convection effects and diffusion transports; see [5]. The
exact solution of Eq. (1) subject to the initial condition

u(z,0) = [% + %tanh(a’yw)

and using nonlinear transformations [2], is given by

u(a,t) = [g+gtanh{m <x_{1’f5_ (”Z(}’ff;‘)"a)}t)}r”,

where 0 = §(p — «)/4(1 +§) and p = /a2 +45(1 +9).

)

]1/v
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Several approaches to solving the generalized Burgers—Huxley problem exist such as the finite
difference method or the finite element method [6, 7], but also semi-analytical methods such as the
Adomian decomposition method (ADM) [8,9]| and the variational iteration method [10]. In [11,12],
the authors introduced a new method called new iterative method (NIM) to solve linear and nonlinear
functional equations. This method is an effective tool for dealing with nonlinear equations such as
integral equations, algebraic equations, and ordinary or partial differential equations of fractional and
integer order. In [13|, the authors applied NIM method to solve the generalized Burgers-Huxley
equations and give some comparisons with ADM and VIM.

In order to give an extended version of [13], we decompose our paper as follow: in Section 2, we
recall and rewrite NIM method in an elegant form and give our new formulation. In Section 3, we
introduce a controlled parameter to our formulation called the Accelerated Residual New Iterative
Method (ARNIM). We apply the established framework to solve the generalized Burgers-Huxley equa-
tion and then we give a convergence study according to the values of the control parameter. Finally a
conclusion will be given in Section 4.

2. Our formulation

2.1. New iterative method recall

Initially introduced by Daftardar—Gejji et al. [11] and applied to solve the generalized Burgers—Huxley
equations in Batiha et al. [13]. We give the basic idea of this work: let us consider

u=f+ L(u) + N(u). (2)
In the equation above, f is a known function, and L and N are linear and nonlinear operators,
respectively. The NIM solution for equation (2) has the form

o)
U = E ;.
1=0

Since L is linear, then

L<§Ui> = ni;oL(ui). (3)

The nonlinear operator N in Eq. (2) is decomposed as

W(Sw) = N0+ S N () ¥ (Sw) ) = Y .,
i=0 i=1 =0 = i=0
where

Go = N(up),

Gy = N(UQ + ul) — N(u()),

G2 = N(ug + vy +ug) — N(ug + u1),

% i—1

Gi=N(Du) - N( ' w), i1,

7=0 7=0
Using equations (3)—(5) in Eq. (2), we get

o o o

SURIIS SINS ores

1=0 =0 1=0
The solution of Eq. (2) can be expressed as

o
u:Zui:u0+u1—|—uQ+...—|—un—|—...,
i=0
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where
up = f,
uy = L(up) + Go,
ug = L(uy) + Gy,

Up = L(un—l) +Gno1

2.2. New formulation of NIM
We introduce a new formulation of New Iterative Method described as follows.
Denote the (n + 1)-term approximate solution of (2) by Sy, i.e.

Sn:Zui, n € N. (6)
=0
In view of the recurrence relation (6), we get the following algorithm for computing S,,’s:
So = fa (7)
Sp =50+ F(Sp-1), n=1,2,...,
where F'(v) = L(v) + N(v) and li_>m Sp = u, being the required solution.

Indeed, Sy = f = ug, and S1 = ug + ug = ug + L(ug) + N(ug) = So + F(So).
Then, So = ug +uqg +us = f—l—L(uO)+A0+L(ul)+A1 = f+L(UQ+U1)+A0+A1 = So—l—F(Sl).
The iterative scheme (7) therefore leads to

S=f1F(S), ®)

with § = lim S,. We formulate the following contraction context theorem.
n—oo

Theorem 1. Let F be an operator from a Hilbert space H onto H and u is exact solution of (2).
Assume 3p < 1 such that ||uj1]| < pl|will, Vi € N, {5,152, converges to S which is obtained by (8).

Proof. We have
So = uo,
S1 = + uy,
So = ug + uy + ug,
Sn=1ug+ur+...+u,.
Then
1941 = Sull = tn1 < pttn < pPun—y < ... < plug = p"||Sy — Soll.

For every n, m € N, n > m,

HSn - SmH — HSn - Sn—l + Sn—l - Sn—2 +...+ Sm—l—l - Sm”
< HSn - Sn—1H + ”Sn—l - Sn—2” +..t ”Sm-i-l - SMH
m
S a8 Sl < 711 ol
Then {5, }7°, is a Cauchy sequence in the Hilbert space H and it implies that S = lim S, is a solution
n—oo

of (8). [

Mathematical Modeling and Computing, Vol. 12, No. 1, pp. 67-74 (2025)



70 Rhofir K., Radid A., Laaraj M.

3. Accelerated residual new iterative method

3.1. Basic idea
Without loss a generality, we take the nonlinear partial differential equation given by
u— F(u) = f (with some initial and boundary conditions) 9)
and define the Accelerated Residual New Iterative Method (ARNIM) by the iterative scheme as follows
{ So = So,
S =51~ (B0 + F(Bn1) —But), n=12,...,

where w is a control parameter.
Remark 1. If we take w = —1 then S,, = S, Vn > 0.

3.2. Convergence analysis of ARNIM

To study the convergence of the ARNIM method, we place ourselves in a Hubert space H, equipped
with the norm denoted || - || and a scalar product noted (,). In order to solve the problem (9), we
define the operator T, by 7 (u) = F(u) — u and propose the following theorem.

Theorem 2. Assume that:
Hi: (T (u) = T (), u —v) > K(u,v)||lu —v|? K(u,v) >0, Vu,v € H.
H2: For any M > 0, 3C(M) > 0, such that for u,v € H, with ||u| < M, |jv|| < M, we have
(T (u) =T (), w) < C(M)||u—v||||w] for every w € H.

Then the ARNIM method is convergent for a suitable w, and converges towards the solution of the
problem (9).

Proof. Let S be the solution to the problem (9) and define E, 1 = Sp+1 — S. Then,
HEn-HHZ = <En+17En+l>
= <§n+1 -5, §n+1 —-85) = H§n+1 - SH2
= H?n—w(g(ﬁ-F(?n) —gn) ~S+w(Sy+F(S)—S8)|?
= (gn—w(Eo—i—F(gn) —?n) .S —w(So+ F(S)—9))
<N Ball? = 20(T (Sn) = T(S), Bn) +w?| T (Sn) = T(S)II.
< % Let us make the recurrence hypothesis
Mo
5

Let My be such that ||.S]|

[Enll = IS — S|l <
leading, in particular
”Sn” < Mo.
With the previous hypotheses H1 and H2, we will obtain
IT(Sn) = T(S)I? < C(Mo)[[T(Sn) = TSI Enll,
it therefore results
[T(Sn) = T(S)|| < C(Mo)|| Enll,
and consequently
1Bt 2 < (1~ 20K (S0, 8) + COM0)?) || Bal? = | Eal

If we choose w such that p < 1 the recurrence hypothesis will be verified. It follows that F,+; — 0,
when n — oo which completes the justification. ]
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4. Application to solve the generalized Burgers—Huxley

In order to solve the generalized Burgers—Huxley, let us take the Hilbert space
H = L*((a,b) x [0, TY),
we define
y: (a,b) x [0,T] — R with / y?(z,8) ds dr < +oo,
(a,b)x[0,T]
the scalar product

<y72>H :/ y(Z’,S) Z(.Z',S) dsdz,
(a,b)x[0,T]
and the associated norm

lyll3 = / y(z, s) ds da,
(a,b)x[0,T]

Now write Eq. (1) in the operator form

s0y 0%y
T(y) =—ay’ 5+ 55 + Byl = ")y’ =),
Theorem 3 (Sufficient condition of convergence). Under the assumptions in Theorem 2, the
ARNIM method applied to the generalized Burgers—Huxley Eq. (1) converges towards a solution.

Proof. To study the convergence of the method, we prove that the assumptions of Theorem 2 are
verified.

First, we will verify hypothesis H1 for the operator T (y).

We have

(o) = —a |0y 502 [Py 0=
T = T(z) = a[y Oz oz T 022 T 02

_1_5(1 +7)(y5+1 _ Z(H—l) ( 26+1 26+1) _ 57(@/ _ Z)

_ a 0 51 st %y Oz <« §—i+1,i—1
——ma—x(y -z )+[8—_82}+ﬁ1+7 -z Zy
f+1
—Bly—2) Y _y" T = By(y — 2), (10)
i=1

where 6 = 26. Therefore,

T0) - T =2 = 57 (o =y =)+ (= 2=

641
5(1+7< _Zzya 41,1 _Z>

0+1
+B< y—z2)) yf e 1,y—z>—ﬁ’v<y—z,y—2>- (11)

=1

Using the properties of the differential operator 92/0z? and the definition of the scalar product
in H, there exists a constant d; > 0 such that

82
(st =) = il ol (12)

By the definition of the scalar product and the properties of the differential operator 9/0x and the
Schwartz inequality in H, we have

<§$(y5+1 _ z5+1),y _ Z> < H%(yéﬂ _ Z5+1)

\ ly— |
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<8y’ =2y - 2|

0+1 ‘ '
=0 ||(y—2) D vy - 2
i=1
< 82(6+1) MO|ly — 2| (13)
Here [|y|| < M and ||z]| < M. Hence
0
(=g =y = ) = a6+ 1) My — ol (1)
Again, by the Schwartz inequality we have
e e S
<(y —2)Y YTy - Z> < H(y —2)Y Ty — 2]
i=1 =1
<(6+1) My — 2| (15)
Thus
0+1 ' ‘
(~=2 Py =) 2 G4 )My P (16)
i=1
Similarly,
0+1 ' '
< —ly=2) ) Ty - > > —(0+1)Mly — 2| (17)
i=1

Substituting (12)—(17) into (11) gives
(T(y) = T(2)y = 2) > |81 = aM° + (1 +7)(8 +1)M° = B0+ )M? = B3| [y — 2]
— Ky, (K >0)

Where we require

K =6, — 6aM? + B(1+4)(6 +1)M° — B(0 + 1)M? — gy > 0,

that implies
81 > dpaM® — B(1+4)(6 + 1)M° + B0 + 1)M? + 7.
Thus, hypothesis H1 holds.
We now verify hypothesis H2 for the operator T (u).
Using the Schwartz inequality, we have

T0) - TEw) = 55 (2™ = &)+ (2w
0+1
#o (=2 Ly )

0+1 ‘ ‘
8-y ) = aly )
=1

< aMlly = zllljw] + sy — 2wl + B +7)( + 1My — 2] |jw]
+ 80+ )M°|ly = 2wl + Bvlly — 2l w]
= [+ By + {a+ 86+ 1)} M + B0+ 1)° lly — =/l

= C(M)lly — z[l[[wl],
where
C(M) =63+ By +{a+ B+ 1)} M° + 36 +1)M?,
and therefore H2 is fulfilled. This completes the proof. [ ]
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5. Conclusion

In three sections of this paper, we have taken up Bahita’s work on the application of the NIM method to
solve the generalized Burgers—Huxley equation. And we gave another formulation of the NIM method
as well as an extension of this method by the introduction of a control parameter called ARNIM. Then
we showed the convergence of our method as a function of the parameter w under certain hypotheses. In
Section 4, we applied the proposed method for the solution of the generalized Burgers—Huxley equation
and we established the convergence of this method by verifying that the hypotheses of Theorem 2 are
true in this case and the new method converges to required solution.
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HoBuii npnckopeHnin itepauiiHuii meToa, 3a/IMWKIB AN
pO3B’si3yBaHHs y3arasibHeHOro piBHsiHHS Broprepca—Xakcni

Podip K.b, Pamin A.2, Jlaapamk M.3

LLASTI-ENSA Xypi6ea, Ynisepcumem Cyamana Myaas Caimana, Mapoxko
2LMFA-FSAC Kacabaanxa, Ynisepcumem Xacana II, Mapoxko
3ENSAM Kacabnanxa, Ynisepcumem Xacana II, Mapoxko

Hemonasuo Batiha B. et al. B Symmetry 15 (3), 688 (2023) sanpononysaJu HoBuii itepa-
witinmii merox (NIM) st pos3s’sa3anns y3araiabHeHOro pisasitns Broprepca—Xaxcesi. 11106
HaJIATU PO3MUPEHY Bepciio 1iel pobotu, mepenucyemo meton NIM B enmerantwiit popmi Ha
[IEPIIIOMY €Talli Ta BBOJMMO KOHTPOJIbOBAHMII IapaMeTp Ha JPYyroMy eTall, SKuil Ha3u-
BAETHCS HOBMM MPHUCKOPEeHUM itepariitaum mertogom samumky (ARNIM). BacrocoByemo
BCTaAHOBJIEHY CTPYKTYDY /IJIS BUPINIEHHS y3arajJbHEHOro piBHAHHA Broprepca—Xaxcii, a
MIOTIM TIPOBOAUMO JOCJIIXKEHHSA 30i>KHOCTI BiAMOBIAHO IO 3HAYEHH KOHTPOJBLHOTO Tapa-
MeTpa.

Kntouosi cnoBa: nosutl imepauitinut memod; memod dexomnosuyii Adomana; npucko-
perutl Memod 3aAuwKis; yazasvhene pishants Bropzepca—Xakcai.
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