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In the present article, the combined influence of the changeable gravity field and
temperature-reliant viscosity on the porous bed is considered for investigation numer-
ically by the Galerkin technique in the presence of upward vertical throughflow. The
temperature-reliant viscosity is known to be exponential. The porous matrix is subjected
to continuous downward gravity fluctuations varying with distance across the medium
and vertical upward throughflow. Four different cases of gravity variance were discussed.
A parametric analysis is conducted by adjusting the following parameters: throughflow
parameter, viscosity parameter, and gravity parameter. Results show that the begin-
ning of the convective moment would be delayed by all three parameters throughflow,
temperature-reliant viscosity, and gravity variance. It has been shown that the fluidic
system is more inconsistent in case (iii) and more consistent in case (iv).
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1. Introduction

Normal convection (convection controlled by buoyancy in which gravitational power assumes a signif-
icant part) in fluid-saturated porous matrix with liquid thickness temperature reliance is of interest
because of its importance in different useful applications, for example, techniques for oil recuperation
in the petrol business, geothermal energy extraction, and reactor vessel protection. In different actual
models for permeable construction, a few researchers investigated the convective stability problems
including Nield [1, 2], Nield and Kuznetsov [3], Shivakumara et al. [4], Vafai [5], Suma et al. [6], Gan-
gadharaiah [7], Wang and Tan [8], Ingham and Pop [9], Celli et al. [10], Mahajan and Sharma [11],
and Banu and Rees [12].

In a large number of the wide-range convection situations present in the climate, the Earth’s mantle,
or the sea, it is known that the gravity field of the Earth alters with elevation from its surfaces Alex
and Patil [13]. Different buoyancy forces will be experienced by the fluid layer at various points when
the gravity field changes Alex et al. [14]. Pradhan and Samal [15] were the first researchers to study
a changeable downward gravity field that affects the initiation of convection. They discovered that
increasing gravity is a destabilizing effect. An extension to the porous medium with thermal diffusion
and gravity gradient was made by Alex and Patil [16]. Rionero and Straughan [17] explored the effect
of heat-generating porous medium with linear and nonlinear gravity field variations. In flows with heat
transfer, it is well recognized that the temperature dependence of the fluid parameters can alter the flow
behavior, particularly its stability features. As viscosity is more sensitive to temperature than heat
capacity and thermal conductivity, it exhibits a rather obvious fluctuation concerning temperature
for the majority of practical fluids. Rossby [18] calculated the viscosity and thermal conductivity
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values for water between 20 and 25◦C and found that the difference in kinematic viscosity between
20 and 25◦C is roughly 10%, while the difference in thermal conductivity of water is only 1.5%.
Torrance and Turcotte [19] found that as temperature increases, liquid thickness decreases, while gases
demonstrate a converse example. Numerous scholars have recently explored the effect of the thickness
of boundary slab changing with temperature on thermal convection (Barletta and Nield [20], Solomatov
and Barr [21], and Booker [22]). Hassan et al. [23] investigated the flow and heat transfer of fluid under
shear over a sheet that is non-linearly stretching and has a variable thickness. Using the Keller–Box
method, Reddy et al. [24] investigated the effect of thermal radiation on the MHD boundary layer flow
of Williamson nanofluid along a stretching surface. Chabani et al. [25] used the Darcy–Brinkman–
Forchheimer model and multi-physics COMSOL software to investigate the MHD flow of a hybrid
nano-fluid in a triangular enclosure. In addition, the theory of throughflow is important and vital
for the regulation of convective mechanisms in science, geophysics, manufacturing, etc. However, the
study of variable gravity throughflow is very restricted. Suma et al. [26] and Gangadharaiah et al. [27]
examined the combined impact of the internal heating and variable downward gravity effects on the
device stability using the perturbation technique. Regardless, nonlinear gravity field variety with
profundity can happen in sedimentary bowls, orogenic and epeirogenic developments of the crustal
designs, and Earth’s outside (Cordell [28], Shneiderov [29], Shi et al. [30], and Nagarathnamma et
al. [31, 32]). Rao et al. [33] analyzed the outstanding, binomial, and illustrative capacities and found
that most crustal constructions coordinated the allegorical model all the more intently. In the presence
of heat sources and temperature profiles for composite layers was extensively studied by Manjunatha
et al. [34, 35] and Yellamma et al. [36, 37]. In large-scale convection phenomena occurring in the
atmosphere, the ocean, or the mantle of the Earth, it becomes imperative to consider gravity as
a variable quantity varying with distance from the surface. Therefore, in this paper, we examine
the mutual impact of variable viscosity, throughflow with variable downward gravity fluctuations for
the four cases: (i) H(z) = −z, (ii) H(z) = −z2, (iii) H(z) = −z3, and (iv) H(z) = −(e−z

− 1).
The simulations have been conducted and tested in-depth for the throughflow parameter, the factor
viscosity parameter, and the gravity variance parameter.

2. Conceptual model

The horizontal isotropic porous matrix is bounded between planes at z = 0 and z = d with continuous
constant upward throughflow of vertical velocity w0 and downward gravity g(z). Figure 1 demonstrates

Porous Layer

Fig. 1. Physical configuration.

the physical structure of the current study.
From below, the porous bed is heated; the
temperature T at the bottom surface z = 0
is taken to be T0 and on the top surface
z = d is taken to be Tl, respectively. We
assume that the viscosity depends expo-
nentially on the temperature of the form
µ = µ0 exp [−B(T − T0)] and the gravity
vector g is, g = −g0(1 + λH(z))k, which
spreads with the vertical reverse z-direction.

3. Mathematical formulation

The appropriate basic equations of the asymmetric arrangement of the porous matrix are

∇ · V = 0, (1)

−∇p−
µ(T )

K
V + ρ0 [1− α(T − T0)]g(z) = 0, (2)

A
∂T

∂t
+ (V · ∇)T = κ∇2T, (3)

where V = (u, v, w) is the velocity vector, λ is the variable gravity parameter, µ is the viscosity, p
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is pressure, ρ0 is reference density, K is the permeability, α is the coefficient of thermal expansion, g
is the gravity, T is the temperature, T0 is the reference temperature, A is the heat capacity ratio, B
is the viscosity parameter, κ is thermal conductivity, and µ0 is dynamic viscosity corresponding to a
temperature equal to the mean of temperature at the boundaries.

It is supposed that the basic state be time-independent and of the form:

[u, v, w, P, T ] = [0, 0, w0, Pb(z), Tb(z)]. (4)

Then, the basic temperature field is

κ
d2Tb

dz2
− w0

dTb

dz
= 0. (5)

On solving Eq. (5), we get

Tb(z) =
ePe − ePe z

ePe − 1
, (6)

where Pe = w0d
κ

is the throughflow parameter (Peclet number), and subscript ‘b’ refers to the basic
state. Infinitesimal disruptions are superimposed in the form to explore the stability of the basic state,

V = w0k̂ + V ′, Pb(z) + p′, T = Tb(z) + θ. (7)

Applying Eq. (7) to Eqs. (1)–(3), the linear stability equations become:

f(z)∇2w + f ′(z)
∂w

∂z
= R

[

1 + λH(z)
]

∇
2
hT, (8)

[

A
∂

∂t
+ Pe

∂

∂z
−∇

2

]

T = wPe

[

ePe z

1− ePe

]

, (9)

where f(z) = exp [B(z − 1/2)], B = νmax

νmin
, R = αg0(Tl−Tu)d3

νκ
is the Rayleigh number, B is the viscosity

parameter, ∇2 = ∇
2
h +

∂2

∂z2
is the Laplacian operator, and ∇

2
h = ∂2

∂x2 + ∂2

∂y2
.

4. Normal mode analysis

We assume the solution is of the form

(w, T ) = [W (z),Θ(z)]ei(lx+my) ; (10)

where l and m are wavenumbers in x and y direction, respectively. Substituting Eq. (10) into Eqs. (8)–
(9), we derive

f(z)
(

D2
− a2

)

w + f ′(z)Dw = −R a2 [1 + λH(z)] Θ, (11)

[

D2
− PeD − a2

]

Θ = wPe

[

ePe z

1− ePe

]

, (12)

where Θ is the disturbed temperature amplitude, a is the wavenumber, and W is the disturbed vertical
velocity amplitude. The boundary conditions are

W = Θ = 0 at z = 0, 1. (13)

5. Method of solution

Now we employ the Galerkin weighted residuals procedure to solve the system of Eqs. (11) and (12).
Consequently, W and Θ are considered as

W =
n
∑

i=1

AiWi and Θ =
n
∑

i=1

BiΘi, (14)

with the trial functions

Wi = Θi = sin(iπz), (15)

using the governing parameters (Pe, B, λ, a), the eigenvalue critical Rayleigh number Rc can be ob-
tained.
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6. Results and discussion

Using the higher-order Galerkin process, the collective effect of the downward changeable gravity field
and temperature-reliant viscosity with a steady upward throughflow on the appearance of convective
motion is studied. The viscosity variation is assumed to be exponential type and the four different forms
of linear and non-linear gravity field variation: (i) H(z) = −z, (ii) H(z) = −z2, (iii) H(z) = −z3, and
(iv) H(z) = −(e−z

− 1) are studied. In the present analysis, the governing parameters considered are
the throughflow parameter Pe viscosity parameter (B), and gravity parameter λ. The consistency of
the system is achieved in terms of critical Rayleigh number Rc and critical wavenumber ac by referring
to different values λ, B, and Pe.
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Fig. 2. The plot of the basic state temperature distri-
butions for Pe = 0, 1, 2, 3, 4, 5.

We have plotted Figure 2 for basic temper-
ature distribution Tb(z), it is noted that mod-
ulation of throughflow merely modifies the dis-
tribution quantitatively within the porous bed.
Figures 3–6 illustrate the deviation of the Rc

and ac with respect to λ for different values of
B and Pe for four types of gravity fluctuation.
From these figures, we observe that the Rc in-
creases with the increase of all three parameters
Pe, B, and λ. Hence, the configuration became
stable for all considered parameters. This is due
to the fact that an increase in the gravity pa-
rameter, causes a decrease in the gravity fluc-
tuation. Consequently, the system dissatisfac-
tion and opposing tendency are notable with a
reduction in a gravity field, and this causes in-
stability in the system, and the same behavior

is noted for upward throughflow impact. A rise in the viscosity parameter results in an increase in
the temperature of the flow between porous walls. Therefore, viscosity has a stabilizing effect on the
configuration. From these figures, it is noted that the gravity fluctuation parameter and throughflow
parameter have a dual impact on wave number. In addition, the configuration is more inconsistent for
case (iii), while case (iv) is found to be more consistent.
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Fig. 3. The plot of (a) Rc and (b) ac with respect to λ for Pe = 0, 0.5, 1, 2 for case (i) H(z) = −z.

In order to validate the numerical approach used in the current analysis, the results are obtained in
the restricted case. The persistent viscosity and lack of constant upward throughflow were compared
with those stated by Rionero and Straughan [17] in Table 1. It is seen in the table that the agreement
is very strong and thus confirms the precision of the tool used.
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Table 1. Comparison of critical Rayleigh number Rc and critical wavenumber ac with λ
in the case of constant viscosity case B = 0 and nonexistence of throughflow (Pe = 0).

H(z) λ
Present study Rionero and Straughan [17]

Rc a2c Rc a2c
Case (i) 0 39.478 9.872 39.478 9.870

1 77.080 10.208 77.020 10.209
1.5 132.020 12.213 132.020 12.314
1.8 189.908 17.198 189.908 17.198
1.9 212.281 19.475 212.280 19.470

Case (ii) 0 39.478 9.872 39.478 9.870
0.2 41.832 9.872 41.832 9.874
0.4 44.455 9.885 44.455 9.887
0.6 47.389 9.916 47.389 9.915
0.8 50.682 9.960 50.682 9.961
1 54.390 10.036 54.390 10.034

Case (iv) 0 39.478 9.872 39.478 9.870
0.1 42.331 9.872 42.331 9.872
0.2 45.607 9.885 45.607 9.883
0.3 49.398 9.904 49.398 9.904
0.4 53.828 9.941 53.828 9.942
0.5 59.053 10.005 59.053 10.005
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Fig. 4. The plot of (a) Rc and (b) ac with respect to λ for Pe = 0, 0.5, 1, 2 for case (ii) H(z) = −z2.
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Fig. 5. The plot of (a) Rc and (b) ac with respect to λ for Pe = 0, 0.5, 1, 2 for case (iii) H(z) = −z3.
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Fig. 6. The plot of (a) Rc and (b) ac with respect to λ for Pe = 0, 0.5, 1, 2 for case (iv) H(z) = −(ez − 1).

7. Conclusions

A mathematical examination of the appearance of convective unsteadiness in a porous matrix with
the joint influence of the downward gravity fluctuations and viscosity with upward vertical consistent
throughflow is carried out in this paper. The findings reveal that the impacts of raising the parameter
of the throughflow, the parameter of gravity variance, and the viscosity parameter delay the beginning
of convection, although there is a dual effect of these parameters on the convection cell size. It is noted
that the fluidic system is more consistent for case (iv), while the fluidic system is more inconsistent for
case (iii).

[1] Nield D. A., Bejan A. Convection in Porous Media. Springer, New York (2006).

[2] Nield D. A., Kuznetsov A. V. The effect of vertical throughflow on the onset of convection in a porous
medium in a rectangular box. Transport in Porous Media. 90, 993–1000 (2011).

[3] Nield D. A. Onset of convection in a fluid layer overlying a layer of a porous medium. Journal of Fluid
Mechanics. 81 (3), 513–522 (1977).

[4] Shivakumara I. S., Suma S. P., Indira R., Gangadharaiah Y. H. Effect of internal heat generation on the
onset of Marangoni convection in a fluid layer overlying a layer of an anisotropic porous medium. Transport
in Porous Media. 92, 727–743 (2012).

[5] Vafai K. Handbook of Porous Media. Boca Raton, Crc Press (2015).

[6] Suma S. P., Gangadharaiah Y. H., Indira R., Shivakumara I. S. Throughflow effects on penetrative convec-
tion in superposed fluid and porous layers. Transport in Porous Media. 95, 91–110 (2012).

[7] Gangadharaiah Y. H. Onset of Benard-Marangoni convection in composite layers with anisotropic porous
material. Journal of Applied Fluid Mechanics. 9 (3), 1551–1558 (2016).

[8] Wang S., Tan W. Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium
heated from below. Physics Letters A. 372 (17), 3046–3050 (2018).

[9] Ingham D. B., Pop I. Transport Phenomena in Porous Media. Pergamon, Elsevier (1998).

[10] Celli M., Barletta A., Rees D. Local thermal non-equilibrium analysis of the instability in a vertical porous
slab with permeable sidewalls. Transport in Porous Media. 119, 539–553 (2017).

[11] Mahajan A., Sharma M. K. Penetrative convection in magnetic nanofluids via internal heating. Physics of
Fluids. 29 (3), 221–228 (2017).

[12] Banu N., Rees D. A. S. Onset of Darcy–Bénard convection using a thermal non-equilibrium. International
Journal of Heat and Mass Transfer. 45 (11), 2221–2228 (2002).

[13] Alex S. M., Patil P. R. Effect of a variable gravity field on convection in an anisotropic porous medium
with internal heat source and inclined temperature gradient. ASME Journal of Heat and Mass Transfer.
124 (1), 144–150 (2002).

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 19–26 (2024)



The variable viscosity and variable gravity field on the onset of convective motion in a porous layer . . . 25

[14] Alex S. M., Patil P. R., Venkatakrishnan K. Variable gravity effects on thermal instability in a porous
medium with internal heat source and inclined temperature gradient. Fluid Dynamics Research. 29 (1),
244–250 (2001).

[15] Pradhan G., Samal P. Thermal stability of a fluid layer under variable body forces. Journal of Mathematical
Analysis and Applications. 122 (2), 487–495 (1987).

[16] Alex S. M., Patil P. R. Effect of variable gravity field on Soret driven thermosolutal convection in a porous
medium. International Communications in Heat and Mass Transfer. 28 (4), 509–518 (2001).

[17] Rionero S., Straughan B. Convection in a porous medium with internal heat source and variable gravity
effects. International Journal of Engineering Science. 28 (6), 497–503 (1990).

[18] Rossby H. T. A study of Bénard convection with and without rotation. Journal of Fluid Mechanics. 36

(2), 309–335 (1969).

[19] Torrance K. E., Turcotte D. L. Thermal convection with large viscosity variations. Journal of Fluid Me-
chanics. 47 (1), 113–125 (1948).

[20] Barletta A., Nield D. A. Variable viscosity effects on the dissipation instability in a porous layer with
horizontal throughflow. Physics of Fluids. 24 (10), 104102 (2012).

[21] Solomatov V. S., Barr A. C. Onset of convection in fluids with strongly temperature-dependent, power-law
viscosity. Physics of the Earth and Planetary Interiors. 155 (1–2), 140–145 (2006).

[22] Booker J. R. Thermal convection with strongly temperature-dependent viscosity. Journal of Fluid Mechan-
ics. 76 (4), 741–754 (1976).

[23] Hassan M., Mebarek-Oudina F., Faisal A., Ghafar A., Ismail A. I. Thermal energy and mass transport of
shear-thinning fluid under effects of low to high shear rate viscosity. International Journal of Thermofluids.
15, 100176 (2022).

[24] Reddy Y. D., Mebarek-Oudina F., Goud B. S., Ismail A. I. Radiation, velocity and thermal slips effect
toward MHD boundary layer flow through heat and mass transport of Williamson nanofluid with porous
medium. Arabian Journal for Science and Engineering. 47, 16355–16369 (2022).

[25] Chabani I., Mebarek-Oudina F., Ismail A. I. MHD flow of a hybrid nano-fluid in a triangular enclosure
with zigzags and an elliptic obstacle. Micromachines. 13 (2), 224 (2022).

[26] Suma S. P., Gangadharaiah Y. H., Indira R. Effect of throughflow and variable gravity field on thermal
convection in a porous layer. International Journal of Engineering Science and Technology. 3, 7657–7668
(2003).

[27] Gangadharaiah Y. H., Suma S. P., Ananda K. Variable gravity field and throughflow effects on penetrative
convection in a porous layer. International Journal of Computers & Technology. 5 (3), 170–191 (2013).

[28] Cordell L. Gravity analysis using an exponential density-depth function-San Jacinto Graben, California.
Geophysics. 38, 684–690 (1973).

[29] Shneiderov A. J. The exponential law of gravitation and its effects on seismological and tectonic phenomena:
a preliminary exposition. Eos, Transactions American Geophysical Union. 24 (1), 61–88 (1943).

[30] Shi L., Li Y., Zhang E. A new approach for density contrast interface inversion based on the parabolic
density function in the frequency domain. Journal of Applied Geophysics. 116, 1–9 (2015).

[31] Nagarathnamma H., Gangadharaiah Y. H., Ananda K. Effects of variable internal heat source and variable
gravity field on convection in a porous layer. Malaya Journal of Matematik. 8, 915–919 (2020).

[32] Nagarathnamma H., Ananda K., Gangadharaiah Y. H. Effects of variable heat source on convective motion
in an anisotropic porous layer. IOP Conference Series: Materials Science and Engineering. 1070, 012018
(2021).

[33] Visweswara Rao C., Chakravarthi V., Raju M. L. Forward modeling: gravity anomalies of two-dimensional
bodies of arbitrary shape with hyperbolic and parabolic density functions. Computers & Geosciences. 20

(5), 873–880 (1994).

[34] Manjunatha N., Yellamma, Sumithra R., Yogeesha K. M., Rajesh Kumar, Naveen Kumar R. Roles and
impacts of heat source/sink and magnetic field on non-Darcy three component Marangoni convection in a
two-layer structure. International Journal of Modern Physics B. 37 (19), 2350186 (2023).

Mathematical Modeling and Computing, Vol. 11, No. 1, pp. 19–26 (2024)



26 Gangadharaiah Y. H., Manjunatha N., Mebarek-Oudina F.

[35] Manjunatha N., Sumithra R., Nazek Alessa, Loganathan K., Selvamani C., Sonam Gyeltshen. Influence
of temperature gradients and heat source in a combined layer on double component-magneto-Marangoni-
convection. Journal of Mathematics. 2023, 1537674 (2023).

[36] Yellamma, Manjunatha N., Khan U., Elattar S., Eldin S. M., Chohan J. S., Sumithra R., Sarada K. Onset
of triple-diffusive convective stability in the presence of a heat source and temperature gradients: an exact
method. AIMS Mathematics. 8 (6), 13432–13453 (2023).

[37] Yellamma, Manjunatha N., Abdulrahman A., Khan U., Sumithra R., Gill H. S., Elattar S., Eldin S. M.
Triple diffusive Marangoni convection in a fluid-porous structure: Effects of a vertical magnetic field and
temperature profiles. Case Studies in Thermal Engineering. 43, 102765 (2023).

Змiнна в’язкiсть i змiнне гравiтацiйне поле при настаннi
конвективного руху в пористому шарi з наскрiзним потоком

Гангадхарайа Ю. Х.1, Манджунатха Х.2, Мебарек-Удiна Ф.3
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У цiй статтi розглядається комбiнований вплив змiнного гравiтацiйного поля та за-
лежної вiд температури в’язкостi на пористий шар для чисельного дослiдження мето-
дом Галеркiна за наявностi висхiдного вертикального потоку. Вiдомо, що залежна вiд
температури в’язкiсть є експоненцiальною. Пориста матриця пiддається постiйним
коливанням сили тяжiння вниз, що змiнюється залежно вiд вiдстанi через середовище
та вертикального висхiдного потоку. Було обговорено чотири рiзнi випадки дисперсiї
сили тяжiння. Параметричний аналiз проводиться шляхом регулювання наступних
параметрiв: параметра потоку, параметра в’язкостi та параметра сили тяжiння. Ре-
зультати показують, що початок конвективного моменту буде затримуватися всiма
трьома параметрами: потоком, залежною вiд температури в’язкiстю та дисперсiєю
сили тяжiння. Було показано, що рiдинна система є бiльш суперечливою у випадку
(iii) та бiльш узгодженою у випадку (iv).

Ключовi слова: змiнна в’язкiсть; протiкання; технiка Гальоркiна; змiнний век-

тор сили тяжiння; лiнiйна стiйкiсть.
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