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Based on the modification of the infectious disease model, taking into account diffusion
disturbances and logistic dynamics of immunological cells, separate approaches to the dif-
fusion scattering parameters identification for different types of functional dependence of
diffusion coefficients and given redefinition conditions are proposed. A special step-by-step
procedure for numerically asymptotic approximation of the solution to the correspond-
ing singularly perturbed model problem with a delay has been improved. The results of
computer experiments on identifying the unknown diffusion scattering parameters are pre-
sented. It is noted that the identification and application of variable diffusion coefficients
will provide a more accurate prediction of the dynamics of an infectious disease, which is
significant in decision-making regarding the use of various medical procedures.
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1. Introduction

The availability of a well-developed mathematical modeling toolkit for predicting the dynamics of
infectious diseases, taking into account a wide range of potential internal and external influencing
factors, is a significant and relevant precondition for the high-quality assessment of the possible response
of the organism to disease pathogens, the strength of the immune response, and the development of
effective and personalized treatment programs involving special therapeutic procedures to prevent
critical exacerbations of the disease, accelerate the recovery process, and eliminate toxins and viral
elements from the body.

The classical models of infectious diseases, antiviral and antibacterial immune responses described
in [1] allow for the prediction of general trends in viral infections, taking into account the mechanisms
of humoral and cellular types of an immune response. Despite being some of the earliest mathematical
models of an immune response, these models remain powerful tools for investigating various aspects of
immune system function, as well as serving as a basis for improvement and creation of new modifications
and generalizations that take into account various aspects of immune response to infections, oncology,
immunodeficiency states, and immunotherapy. Examples of such modifications and generalizations of
basic models are provided, in particular, in [2]. The general approaches for constructing models of
viral infections developed in [1] were used in [3] to model antitumor immunity. An integrated model
was proposed in [4] to predict processes of local tissue inflammation, in which the Marchuk approach
was applied to describe the systemic immune response. Using the same methodology, a mathematical
model was developed in [5] to predict the dynamics of the immune response to COVID-19 coronavirus
infection under conditions of immunotherapy.

In [6], an approach is proposed that allows taking into account the influence of diffusion disturbances
of active factors on the development of infectious diseases in the body, and it is shown that reducing
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the concentration of active factors in the infection center due to their diffusion scattering provides
a general decrease in the predicted severity of the disease. In addition, in [7, 8], this approach is
generalized to account for various concentrated influences, which allows studying the course of viral
infection when injecting solutions of pharmacological or immunobiological preparations by injection or
through a dropper, and to take into account the conditions of the body’s temperature reaction [9].

The course of infectious diseases, during which periods of rapid exacerbation of the disease often
occur, is determined by the influence of many factors, and depending on the state of the immune system
of a particular organism and the strength of its reaction, it can develop according to different, difficult
to predict scenarios. In order to improve the quality of forecasting the dynamics of viral infection, in
addition to the development of modifications and generalizations of basic models, it is also necessary to
develop a reliable toolkit for determining personalized parameters of corresponding forecasting models.

The objective of this study is to identify the parameters of the diffusion scattering of active factors
in a modified model of infectious disease under the conditions of logistic dynamics of immunological
cells.

2. Modified model of viral infection with consideration of diffusion scattering and lo-
gistic dynamics

The dynamics of the model components of the viral infection process, taking into account their small
diffusive scattering [6–9] and the logistic dynamics of immunological cells, for the convenience of pre-
senting the main provisions, will be described in a simple canonical domain G = {(x, t) : −∞ < x <
+∞; 0 < t < +∞} by the following singularly perturbed system of nonlinear differential equations
with delays:

∂V

∂t
= (β − γF )V + ε

∂

∂x

(

DV ∂V

∂x

)

,

∂C

dt
= ξ(m)αV (x, t− τ)F (x, t− τ)− µC (C − C∗) + ε2

∂

∂x

(

DC ∂C

∂x

)

,

∂F

dt
= ωF + ρC

(

1−
C

C∗∗

)

− (µf + ηγV )F + ε
∂

∂x

(

DF ∂F

∂x

)

,

∂m

dt
= σ V − µmm+ ε2

∂

∂x

(

Dm∂m

∂x

)

(1)

under the conditions:

C(x, 0) = C0(x), m(x, 0) = m0(x), V (x, t̃) = V 0(x, t̃), F (x, t̃) = F 0(x, t̃), −τ 6 t̃ 6 0, (2)

where V = V (t, x), F = F (t, x), C = (t, x), m = m(t, x) are the concentrations of antigens (pathogenic
viruses, bacteria, etc.), their corresponding immune agents (antibodies, cell receptors, etc.), immuno-
logical cells that produce immune agents, the value of the relative characteristic of damage to the target
organ by antigens (0 6 m 6 1) at the moment t at the point x; β is the rate of reproduction of antigens;
γ is the coefficient that takes into account the result of the interaction of antigens with immune agents;
τ is the time delay (the time required for the formation of a cascade of immunological cells, which
are stimulated by FV -complexes); µC are the values inverse of the life span of immunological cells; α
is the coefficient of stimulation of the immune system by V F -complexes; C∗ is the concentration of
immunological cells in a healthy body, and C∗∗ is the maximum possible concentration of these cells;
µf is the value inverse of the duration of existence of immune agents; η are costs of immune agents for
neutralization of a single antigen; σ is the rate of damage to cells of the target organ by antigens; µm

is a velocity of recovery of the target organ after its damage by antigens; ρ is the rate of production
of immune agents by one immunological cell; C0(x), m0(x), V 0(x, t̃), F 0(x, t̃) are sufficiently smooth
and bounded functions; εDV , εDF , ε2DC , ε2Dm are diffusion coefficients of antigens, immune agents,
immunological cells, and affected cells of the target organ, respectively, ε is a small parameter that
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determines the degree of smallness of the influence of the corresponding diffusion components on the
process in comparison with others. The function ξ(m) takes into account the effect of reducing the
intensity of plasma cell production in case of significant damage to an immunological organ, and the
function ωF (x, t) serves to describe, in particular, concentrated changes in the concentration of immune
agents [7, 8].

In a situation where the parameters DV , DF , DC , Dm are unknown, in order to find them together
with the sought functions V , F , C, m, the original model problem (1)–(2) must be supplemented
with some additional conditions (so-called “overdetermination conditions”) [10]. We note that such
additional conditions can generally have a different form, which means that there is a need to apply
different methods of finding the solution of the corresponding inverse problems.

3. Identification of diffusion scattering parameters and numerical asymptotic solution
approximation procedure

3.1. First, consider the case DV = DV (t), DF = DF (t), DC = DC(t), Dm = Dm(t), and additional
conditions (overdetermination conditions) have the form:

εDV (t)
∂V

∂x

∣

∣

∣

∣

x=x∗

= εV ∗
∗ (t), ε2DC(t)

∂C

∂x

∣

∣

∣

∣

x=x∗

= ε2C∗
∗ (t),

εDF (t)
∂F

∂x

∣

∣

∣

∣

x=x∗

= εF ∗
∗ (t), ε2Dm(t)

∂m

∂x

∣

∣

∣

∣

x=x∗

= ε2m∗
∗(t),

(3)

where εDV ∂V
∂x

, ε2DC ∂C
∂x

, εDF ∂F
∂x

, ε2Dm∂m
∂x

are densities of the corresponding diffusion flows, x∗ is
a given point (for example, a spot where the taking of biomaterials for laboratory research is carried
out); V ∗

∗ (t), C∗
∗ (t), F ∗

∗ (t) are sufficiently smooth and bounded functions. Hereafter, we will accept
x∗ = 0, which is quite natural.

Let us represent the inverse problem (1)–(3) obtained in this way with a delay τ , similarly to [6–9],
in the form of the following sequence of problems on the intervals kτ 6 t 6 (k + 1)τ (k = 0, 1, . . .):

∂Vk

∂t
= (β − γFk)Vk + εDV

k (t)
∂2Vk

∂x2
,

∂Ck

dt
= ξ(m)αΨk − µC (Ck −C∗) + ε2DC

k (t)
∂2Ck

∂x2
,

∂Fk

dt
= ωF

k + ρCk

(

1−
Ck

C∗∗

)

− (µf + η γ Vk)Fk + εDF
k (t)

∂2Fk

∂x2
,

∂mk

dt
= σ Vk − µmmk + ε2Dm

k (t)
∂2mk

∂x2

(4)

under the conditions:

Ck(x, kτ) = Ck−1(x, kτ), mk(x, kτ) = mk−1(x, kτ),

Vk(x, kτ) = Vk−1(x, kτ), Fk(x, kτ) = Fk−1(x, kτ),

DV
k

∂Vk

∂x

∣

∣

∣

∣

x=0

= V ∗
∗k, DC

k

∂Ck

∂x

∣

∣

∣

∣

x=0

= C∗
∗k(t), DF

k

∂Fk

∂x

∣

∣

∣

∣

x=0

= F ∗
∗k, Dm

k

∂mk

∂x

∣

∣

∣

∣

x=0

= m∗
∗k,

(5)

where C−1(x, 0) = C0(x), m−1(x, 0) = m0(x), V−1(x, 0) = V 0(x, 0), F−1(x, 0) = F 0(x, 0), Ψk(x, t) =
Vk−1(x, t−τ)Fk−1(x, t−τ) (k = 1, 2, . . .), Ψ0(x, t) = V 0(x, t−τ)F 0(x, t−τ). As a result, if the solution
to problem (4)–(5) is found for the previous interval, at the next stage we obtain the problem without
delay. At the same time, the necessary level of smoothness of the solution of the model problem at
the moments of time τ , 2τ , . . . will be ensured, as in [6–9], by imposing additional conditions for the
agreement of the corresponding partial solutions.

On each of the intervals kτ 6 t 6 (k+1)τ (k = 0, 1, . . .), to approximate the solution of problem (4)–
(5) with a small parameter ε, as in [6–9], we apply the perturbation method. For this purpose, we
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present the formally corresponding solutions in the form of the following asymptotic series:

Vk = V(k,0)(x, t) +

n
∑

i=1

εiV(k,i)(x, t) +RV
(k,n)(x, t, ε),

Ck = C(k,0)(x, t) +
n
∑

i=1

εiC(k,i)(x, t) +RC
(k,n)(x, t, ε),

Fk = F(k,0)(x, t) +

n
∑

i=1

εiF(k,i)(x, t) +RF
(k,n)(x, t, ε),

mk = m(k,0)(x, t) +

n
∑

i=1

εim(k,i)(x, t) +Rm
(k,n)(x, t, ε),

(6)

DV
k = DV

(k,0)(t) +

n
∑

i=1

εiDV
(k,i)(t) +RDV

(k,n)(t, ε), DC
k = DC

(k,0)(t) +

n
∑

i=1

εiDC
(k,i)(t) +RDC

(k,n)(t, ε),

DF
k = DF

(k,0)(t) +
n
∑

i=1

εiDF
(k,i)(t) +RDF

(k,n)(t, ε), Dm
k = Dm

(k,0)(t) +
n
∑

i=1

εiDm
(k,i)(t) +RDm

(k,n)(t, ε),

(7)

where RV
(k,n), R

C
(k,n), R

F
(k,n), R

m
(k,n), R

DV

(k,n), R
DC

(k,n), R
DF

(k,n), R
Dm

(k,n) are the corresponding residual terms

(for 0 < t 6 T < ∞); V(k,i), C(k,i), F(k,i), m(k,i), DV
(k,i), DC

(k,i), DF
(k,i), Dm

(k,i) (i = 0, . . . , n) are the

sought functions (terms of asymptotics). Similarly to [6–9], after substituting (6), (7) into (4)–(5)
and implementing the standard “equation procedure”, for example, in the case ξ(m) = 1 for finding
the functions V(k,0)(x, t), C(k,0)(x, t), F(k,0)(x, t), m(k,0)(x, t), we obtain the following degenerate with
respect to the original problem:

∂V(k,0)

∂t
= β V(k, 0) − γ F(k,0)V(k,0),

∂C(k,0)

dt
= αΨk − µC (C(k,0) − C∗),

∂F(k,0)

dt
= ωF

k + ρ

(

1−
C(k,0)

C∗∗

)

C(k,0) − µfF(k,0) − η γ F(k,0)V(k,0),

∂m(k,0)

dt
= σ V(k,0) − µmm(k,0),

C(k,0)(x, kτ) = Ck−1(x, kτ), m(k,0)(x, kτ) = mk−1(x, kτ),

V(k,0)(x, kτ) = Vk−1(x, kτ), F(k,0)(x, kτ) = Fk−1(x, kτ), kτ 6 t 6 (k + 1)τ,

(8)

and for finding V(k,i)(x, t), C(k,i)(x, t), F(k,i)(x, t), m(k,i)(x, t) (i = 1, . . . , n), which ensure taking into
account the effect of diffusion scattering of active factors, the following problems:

∂V(k,1)

∂t
= β V(k,1) − γ

(

a(k,0)F(k,1) + b(k,0)V(k,1)

)

+ΦV
(k,1),

∂C(k,1)

dt
= −µC C(k,1),

∂F(k,1)

dt
= ρ d(k,0)C(k,1) − µfF(k,1) − η γ

(

a(k,0)F(k,1) + b(k,0)V(k,1)

)

+ΦF
(k,1),

∂m(k,1)

dt
= σ V(k,1) − µmm(k,1),

C(k,1)(x, kτ) = 0, m(k,1)(x, kτ) = 0, V(k,1)(x, kτ) = 0, F(k,1)(x, kτ) = 0, kτ 6 t 6 (k + 1)τ ;

. . . . . . . . . . . . . . . . . . . . . . . .

(9)
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∂V(k,i)

∂t
= β V(k,i) − γ

(

a(k,0)F(k,i) + b(k,0)V(k,i)s

)

+ΦV
(k,i),

∂C(k,i)

dt
= −µC C(k,i) +ΦC

(k,i),

∂F(k,i)

dt
= ρ d(k,0)C(k,i) − µfF(k,i) − η γ

(

a(k,0)F(k,i) + b(k,0)V(k,i)

)

+ΦF
(k,i),

∂m(k,i)

dt
= σ V(k,i) − µmm(k,i) +Φm

(k,i), i = 2, . . . , n;

C(k,i)(x, kτ) = 0, m(k,i)(x, kτ) = 0, V(k,i)(x, kτ) = 0, F(k,i)(x, kτ) = 0, kτ 6 t 6 (k + 1)τ,

(10)

where

a(k,0)(x, t) = V(k,0)(x, t), b(k,0)(x, t) = F(k,0)(x, t), d(k,0)(x, t) =

(

1−
2C(k,0)(x, t)

C∗∗

)

,

ΦV
(k,1) = DV

(k,0)

∂2V V
(k,0)

∂x2
, ΦF

(k,1) = DF
(k,0)

∂2F(k,0)

∂x2
,

ΦV
(k,i) =

i−1
∑

r=0

DV
(k,r)

∂2V(k,i−r−1)

∂x2
− γ

i−1
∑

r=1

F(k,r)V(k,i−r), ΦC
(k,i) =

i−2
∑

r=0

DC
(k,r)

∂2C(k,i−r−2)

∂x2
,

ΦF
(k,i) =

i−1
∑

r=0

DF
(k,r)

∂2F(k,i−r−1)

∂x2
−

ρ

C∗∗

i−1
∑

r=1

C(k,i−r)C(k,r) − η γ

i−1
∑

r=1

F(k,i−r)V(k,r),

Φm
(k,i) =

i−2
∑

r=0

Dm
(k,r)

∂2m(k,i−r−2)

∂x2
.

Here, the unknown functions DV
(k,i), DC

(k,i), DF
(k,i), Dm

(k,i) (i = 0, . . . , n) are expressed through the
previously found asymptotic terms, namely:

DV
(k,0)(t) =

V ∗
∗ (t)

V(k,0)x(0, t)
, DF

(k,0)(t) =
F ∗
∗ (t)

F(k,0)x(0, t)
, DV

(k,1)(t) = −
DV

(k,0) V(k,1)x(0, t)

V(k,0)x(0, t)
,

DC
(k,0)(t) =

C∗
∗ (t)

C(k,0)x(0, t)
, DF

(k,1)(t) = −
DF

(k,0)(t)F(k,1)x(0, t)

F(k,0)x(0, t)
, Dm

(k,0)(t) =
m∗

∗(t)

m(k,0)x(0, t)
,

DV
(k,i−1)(t) = −

∑i−2
r=0 D

V
(k,r)(t)V(k,i−r−1)x(0, t)

V(k,0)x(0, t)
, DC

(k,i−1)(t) = −

∑i−3
r=0 D

C
(k,r)(t)C(k,s−r−2)x(0, t)

C(k,0)x(0, t)
,

DF
(k,i−1)(t) = −

∑i−2
r=0 D

F
(k,r)(t)F(k,i−r−1)x(0, t)

F(k,0)x(0, t)
, Dm

(k,i−1)(t) = −

∑i−3
r=0D

m
(k,r)(t)m(k,i−r−2)x(0, t)

m(k,0)x(0, t)
.

When considering the model problem in bounded domains and with the presence (in addition to
the conditions (2)) of boundary conditions, the solution of the corresponding inverse problem can be
found similarly to, for example, [11].

3.2. In the cases where the values of the unknown diffusion scattering parameters in the model
problem (1)–(2) depend on the spatial coordinate: DV = DV (x), DF = DF (x), DC = DC(x),
Dm = Dm(x), then we can implement different methods to find them. For example, let the values
of the derivatives of the sought functions be set as the conditions of overdetermination at the initial
moment of time, namely:

∂V

∂t

∣

∣

∣

∣

t=0

= V∆(x),
∂C

∂t

∣

∣

∣

∣

t=0

= C∆(x),
∂F

∂t

∣

∣

∣

∣

t=0

= F∆(x),
∂m

∂t

∣

∣

∣

∣

t=0

= m∆(x), (11)

where V∆(x), C∆(x), F∆(x), m∆(x) are sufficiently smooth functions, as well as the values of these
unknown parameters at a certain characteristic point, for example, at the point of selection of bioma-
terials x∗:

DV (x∗) = DV
∗ , D(x∗) = DC

∗ , DF (x∗) = DF
∗ , Dm(x∗) = Dm

∗ . (12)
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At the same time, two of them, namely V∆(x) and F∆(x) can be determined as one-sided derivatives
of known (given) functions:

V∆(x) =
∂V 0(x, t)

∂t

∣

∣

∣

∣

t=0−0

, F∆(x) =
∂F 0(x, t)

∂t

∣

∣

∣

∣

t=0−0

. (13)

By substituting (2) and (11) into (1), we obtain the system for the instant of time t = 0:

V∆(x) =
(

β − γ F 0(x, 0)
)

V 0(x, 0) + ε
∂

∂x

(

DV (x)
∂V 0(x, 0)

∂x

)

,

C∆(x) = ξ(m)αV 0(x,−τ)F 0(x,−τ)− µC

(

C0(x)− C∗
)

+ ε2
∂

∂x

(

DC(x)
∂C0(x)

∂x

)

,

F∆(x) = ωF + ρC0(x)

(

1−
C0(x)

C∗∗

)

− (µf + η γ V )F 0(x, 0) + ε
∂

∂x

(

DF (x)
∂F 0(x, 0)

∂x

)

,

m∆(x) = σV − µmm0(x) + ε2
∂

∂x

(

Dm(x)
∂m0(x)

∂x

)

,

(14)

after solving which we will find the values of the unknown parameters of diffusion scattering. Further,
using the already found functions DV (x), DF (x), DC(x), Dm(x), as in the previous case, we gradually
find numerical asymptotic approximations of the sought functions Vk(x, t), Ck(x, t), Fk(x, t), mk(x, t)
for each of the intervals kτ 6 t 6 (k + 1)τ (k = 0, 1, . . .) using the perturbation method.

If at the initial moment of time, in addition to conditions (2), local densities of diffusion flows are
also given, namely

DV (x)
∂V

∂x

∣

∣

∣

∣

t=0

= V o
o (x), DC(x)

∂C

∂x

∣

∣

∣

∣

t=0

= Co
o (x),

DF (x)
∂F

∂x

∣

∣

∣

∣

t=0

= F o
o (x), Dm(x)

∂m

∂x

∣

∣

∣

∣

t=0

= mo
o(x),

(15)

then, using the given initial conditions (2), we first find the values of the derivatives of concentrations
of the active factors on the left sides of (15):

∂V

∂x

∣

∣

∣

∣

t=0

=
∂V 0(x, 0)

∂x
,

∂C

∂x

∣

∣

∣

∣

t=0

=
∂C0(x)

∂x
,

∂F

∂x

∣

∣

∣

∣

t=0

=
∂F 0(x, 0)

∂x
,

∂m

∂x

∣

∣

∣

∣

t=0

=
∂m0(x)

∂x
, (16)

and then, substituting (16) into (15), we find the sought parameters of diffusion scattering:

DV (x) =
V o
o (x)

∂V 0(x,0)
∂x

, DC(x) =
Co
o (x)

∂C0(x)
∂x

, DF (x) =
F o
o (x)

∂F 0(x,0)
∂x

, Dm(x) =
mo

o(x)
∂m0(x,0)

∂x

. (17)

Further, with already found parameters of diffusion scattering, similar to the previous one, we suc-
cessively find the numerical asymptotic approximation of the unknown functions Vk(x, t), Ck(x, t),
Fk(x, t), mk(x, t) on each of the intervals kτ 6 t 6 (k + 1)τ (k = 0, 1, . . .).

It is also possible that in order to find the unknown parameters DV (x), DF (x), DC(x), Dm(x) as
overdetermination conditions, from the point of view of practical application, it is appropriate to set
the values of the sought functions V (x, t), C(x, t), F (x, t), m(x, t) at some following moment in time
t = t̄, namely:

V (x, t̄) = V̄ (x), C(x, t̄) = C̄(x), F (x, t̄) = F̄ (x), m(x, t̄) = m̄(x). (18)

For the convenience of exposition, further we assume that 0 < t̄ < τ . Note that the functions V̄ (x),
C̄(x), F̄ (x), m̄(x) in a certain sense must be “close” to the solution of the corresponding degenerate
problem when t = t̄, for example, they can be represented in the form:

V̄ (x) = V̄0(x) + εV̄1(x) + ε2V̄2(x), C̄(x) = C̄0(x) + εC̄1(x) + ε2C̄2(x),

F̄ (x) = F̄0(x) + εF̄1(x) + ε2V̄2(x), m̄(x) = m̄0(x) + εm̄1(x) + ε2m̄2(x),
(19)

By applying similar to the one described for case 3.1 standard “equation procedure”, we obtain the
problem (8) for finding the solution of the corresponding degenerate problem, and also, taking into
account Eq. (19), we establish that V̄0(x) = V(0,0)(x, t̄), C̄0(x) = C(0,0)(x, t̄), F̄0(x) = F(0,0)(x, t̄),
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m̄0(x) = m(0,0)(x, t̄). At the same time, to find the unknown parameters DV , DF , and the sought
functions V(0,1), C(0,1), F(0,1), m(0,1), taking into account Eq. (19), we obtain the following problem:

∂V(0,1)

∂t
= β V(0,1) − γ

(

a(0,0)F(0,1) + b(0,0)V(0,1)

)

+
∂

∂x

(

DV
∂V(0,0)

∂x

)

,

∂C(0,1)

dt
= −µC C(0,1),

∂m(0,1)

∂t
= σ V(0,1) − µmm(0,1),

∂F(0,1)

∂t
= ρ d(0,0)C(0,1) − µfF(0,1) − η γ

(

a(0,0)F(0,1) + b(0,0)V(0,1)

)

+
∂

∂x

(

DF
∂F(0,0)

∂x

)

,

C̄1 = C(0,1)(x, t̄), m̄1 = m(0,1)(x, t̄),

∂V̄0

∂x

∂DV

∂x
+

∂2V̄0

∂x2
DV =

∂V(0,1)(x, t̄)

∂t
− β V̄1 + γ

(

V̄0F̄1 + F̄0V̄1

)

,

∂F̄0

∂x

∂DF

∂x
+

∂2F̄0

∂x2
DF =

∂F(0,1)(x, t̄)

∂t
− ρ

(

1−
2C̄0

C∗∗

)

C̄1 + µf F̄1 + η γ
(

V̄0F̄1 + F̄0V̄1

)

,

C(0,1)(x, 0) = 0, m(0,1)(x, 0) = 0, V(0,1)(x, 0) = 0, F(0,1)(x, 0) = 0,

DV (x∗) = D̄V
∗ , DF (x∗) = D̄F

∗ ,

(20)

and for the parameters DC , Dm and functions V(0,2), C(0,2), F(0,2), m(0,2) we obtain such a problem:

∂V(0,2)

∂t
= β V(0,2) − γ

(

a(0,0)F(0,2) + b(0,0)V(0,2)

)

+
∂

∂x

(

DV
∂V(0,1)

∂x

)

,

∂C(0,2)

dt
= −µC C(0,2) +

∂

∂x

(

DC
∂C(0,0)

∂x

)

,

∂F(0,2)

∂t
= ρ d(0,0)C(0,2) − µfF(0,2) − η γ

(

a(0,0)F(0,2) + b(0,0)V(0,2)

)

+
∂

∂x

(

DF
∂F(0,1)

∂x

)

,

∂m(0,2)

∂t
= σ V(0,2) − µmm(0,2) +

∂

∂x

(

Dm
∂m(0,0)

∂x

)

,

V̄2 = V(0,2)(x, t̄), F̄2 = F(0,2)(x, t̄),

∂C̄0

∂x

∂DC

∂x
+

∂2C̄0

∂x2
DC =

∂C(0,2)(x, t̄)

dt
+ µC C̄2,

∂m̄0

∂x

∂Dm

∂x
+

∂2m̄0

∂x2
Dm =

∂m(0,2)(x, t̄)

∂t
− σ V̄2 + µmm̄2,

C(0,2)(x, 0) = 0, m(0,2)(x, 0) = 0, V(0,2)(x, 0) = 0, F(0,2)(x, 0) = 0,

DC(x∗) = D̄∗, Dm(x∗) = D̄m
∗ .

(21)

Here a(0,0)(x, t) = V(0,0)(x, t), b(0,0)(x, t) = F(0,0)(x, t), d(0,0)(x, t) = (1− 2C(0,0)(x, t)/C
∗∗).

3.3. In a situation where the unknown parameters of diffusion scattering can be represented by a
product, namely:

DV = D
∼

V (x) D̃V (t), DF = D
∼

F (x) D̃F (t), DC = D
∼

C(x) D̃C(t), Dm = D
∼

m(x) D̃m(t),

and the overdetermination conditions are given in the form:

D
∼

V (x)
∂V

∂x

∣

∣

∣

∣

t=0

= Ṽ o
o (x), D

∼

C(x)
∂C

∂x

∣

∣

∣

∣

t=0

= C̃o
o (x),

D
∼

F (x)
∂F

∂x

∣

∣

∣

∣

t=0

= F̃ o
o (x), D

∼

m(x)
∂m

∂x

∣

∣

∣

∣

t=0

= m̃o
o(x),

(22)

D̃V (t)
∂V

∂x

∣

∣

∣

∣

x=x∗

= Ṽ ∗
∗ (t), D̃C(t)

∂C

∂x

∣

∣

∣

∣

x=x∗

= C̃∗
∗ (t),

D̃F (t)
∂F

∂x

∣

∣

∣

∣

x=x∗

= F̃ ∗
∗ (t), D̃m(t)

∂m

∂x

∣

∣

∣

∣

x=x∗

= m̃∗
∗(t),

(23)
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as in the corresponding situation in 3.2, using the initial conditions (2), first we find the following
values of the diffusion scattering parameters depending on the spatial variable:

D
∼

V (x) =
Ṽ o
o (x)

∂V 0(x)
∂x

, D
∼

F (x) =
F̃ o
o (x)

∂F 0(x)
∂x

, D
∼

C(x) =
C̃o
o (x)

∂C0(x)
∂x

, D
∼

m(x) =
m̃o

o(x)
∂m0(x)

∂x

. (24)

Further, by applying a step-by-step numerical asymptotic approximation procedure for the solution of
the corresponding model problem similar to the one described in 3.1, we find the required functions
Vk(x, t), Ck(x, t), Fk(x, t), mk(x, t) for each of the intervals kτ 6 t 6 (k + 1)τ (k = 0, 1, . . .) and the
values of the unknown parameters D̃V

(k,i), D̃
C
(k,i), D̃

F
(k,i), D̃

m
(k,i) (i = 0, . . . , n), which are also expressed

in terms of the previously found asymptotic terms, namely:

DV
(k,0)(t) =

Ṽ ∗
∗ (t)

D
∼

V (0)V(k,0)x(0, t)
, D̃F

(k,0)(t) =
F̃ ∗
∗ (t)

D
∼

F (0)F(k,0)x(0, t)
,

D̃V
(k,1)(t) = −

D̃V
(k,0)(t)V(k,1)x(0, t)

V(k,0)x(0, t)
, D̃C

(k,0)(t) =
C̃∗
∗ (t)

D
∼

C(0)C(k,0)x(0, t)
,

D̃F
(k,1)(t) = −

D̃F
(k,0)(t)F(k,1)x(0, t)

F(k,0)x(0, t)
, D̃m

(k,0)(t) =
m̃∗

∗(t)

D
∼

m(0)m(k,0)x(0, t)
,

D̃V
(k,i−1)(t) = −

∑i−2
r=0 D̃

V
(k,r)(t)V(k,i−r−1)x(0, t)

V(k,0)x(0, t)
, D̃C

(k,i−1)(t) = −

∑i−3
r=0 D̃

C
(k,r)(t)C(k,s−r−2)x(0, t)

C(k,0)x(0, t)
,

D̃F
(k,i−1)(t) = −

∑i−2
r=0 D̃

F
(k,r)(t)F(k,i−r−1)x(0, t)

F(k,0)x(0, t)
, D̃m

(k,i−1)(t) = −

∑i−3
r=0 D̃

m
(k,r)(t)m(k,i−r−2)x(0, t)

m(k,0)x(0, t)
.

Note that the solutions to problems (8)–(10) for each time interval kτ 6 t 6 (k+1)τ (k = 0, 1, . . .)
can be found by known numerical methods with the use of reliable packages of the corresponding
software (see, for example, [12]) and using already found values of the sought functions for the previous
interval. In the case when the basic functions are specified in a discrete form (in particular, as the
results of laboratory methods of observation), for them we apply the procedure, for example, of the
Chebyshev approximation of the function by the sum of a polynomial and an expression, similarly
to [13, 14]. Establishing the space-time intervals of convergence and evaluating the residual terms is
carried out similarly to [6–9,15].

4. Results of numerical experiments

In the modifications and generalizations of the basic infectious disease models presented in [6–9], the
proposed approach for taking spatial effects into account referred to the case when there is a diffusion
dispersion of active factors with constant coefficients. When applying such an approach to practical
situations, it is more expedient to assume the diffusion coefficient to be dependent on both spatial and
temporal variables. For example, the dependence of diffusion coefficients on the biological structure
of the target organ, as well as on the temperature in it, is quite natural. Therefore, an important
condition for qualitative forecasting of the development of a viral infection and the development of
effective personalized treatment programs, in addition to appropriate mathematical models, is the
availability of reliable tools for identifying their personalized parameters.

In this regard, the computer experiments were focused on the study of the features of the practical
application of the above-presented procedures for identifying the parameters of diffusion scattering of
the active factors of an infectious disease in various situational conditions. In particular, in Figure 1,
the model dynamics is presented for antigen concentration in the epicenter of infection for different
values of the diffusion coefficient. As expected, the highest model severity of the disease occurred in
the case when the influence of diffusion scattering of factors was not taken into account. For computer
modeling of the situation when the diffusion coefficients of the active factors are known to be dependent
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only on time, the density of the diffusion flow of antigens in the condition (3) was put according to the
model dependence of the form V ∗

∗ (t) = a (sin(b(t+ c))/(1+dtν )−p) (here a = 6.12 ·10−4, b = 1.17 ·10,
c = 1.9 · 10−1, d = 5.7 · 10−3, ν = 2.35, p = 0.5). The values of the diffusion coefficient of the antigens
for the model (1)–(2) being identified in accordance with 3.1 are presented in Figure 2. The intensity of
the antigens concentration growth in this model case is the lowest, which causes the lowest severity of
the course of the disease in the initial period of time. Such an effect is possible with a higher intensity
of diffusion scattering of antigens in the infection zone, which is confirmed by correspondingly higher
values of the identified diffusion coefficient in this period.
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Fig. 1. Dynamics of antigens for different diffusion
coefficients: DV = 0 (curve 1); DV = 1 (curve 2);

DV = DV (t) (curve 3).

Fig. 2. The value of diffusion coefficient DV = DV (t)
at ε = 0.025.

5. Conclusions

In this work, based on the modification of the infectious disease model, which takes into account
diffusion disturbances and logistic dynamics of immunological cells, individual approaches to the iden-
tification of unknown parameters of diffusion scattering of active factors are proposed for different
types of functional dependence of the diffusion coefficient and given redefinition conditions. To find
the solution to the original model singularly perturbed problem with delay and unknown parameters,
a modernized step-by-step procedure of numerical asymptotic approximation of the corresponding
sequence of problems without delay is proposed.

The presented results of computer modeling illustrate the effectiveness of the proposed approaches
in identifying diffusion scattering parameters. It is shown that, under other identical conditions, a
decrease in the concentration of antigens over a certain period of time leads to the observing higher
values of the corresponding diffusion coefficient over this period. We should also emphasize that
taking into account variable diffusion coefficients in models of infectious diseases provides a more
accurate prediction of the course of the disease, and, therefore, the possibility of forming more effective
treatment programs. At the same time, for the qualitative identification of unknown parameters of
diffusion scattering, additional information is needed, which can be obtained by conducting additional
laboratory studies according to an individual procedure.

A natural prospect for the development of the presented approach is its development for cases
of infectious disease simulation taking into account convection, the body’s temperature reaction, and
mixed infections in the conditions of pharmacotherapy and immunotherapy. It is also promising to
consider random factors [16, 17].
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Iдентифiкацiя параметрiв дифузiйного розсiювання
модифiкованої моделi вiрусної iнфекцiї в умовах логiстичної

динамiки iмунологiчних клiтин

Барановський С. В., Бомба А. Я.

Нацiональний унiверситет водного господарства та природокористування,

вул. Соборна, 11, 33028, Рiвне, Україна

На основi модифiкацiї моделi iнфекцiйного захворювання з урахуванням дифузiйних
збурень та логiстичної динамiки iмунологiчних клiтин запропоновано окремi пiдходи
щодо iдентифiкацiї параметрiв дифузiйного розсiювання для рiзних типiв функцiо-
нальної залежностi коефiцiєнтiв дифузiї та заданих умов перевизначення. Модернi-
зовано спецiальну покрокову процедуру для чисельно асимптотичного наближення
розв’язку вiдповiдної сингулярно збуреної модельної задачi iз запiзненням. Представ-
ленi результати комп’ютерних експериментiв щодо iдентифiкацiї невiдомих парамет-
рiв дифузiйного розсiювання. Зазначено, що iдентифiкацiя та застосування змiнних
коефiцiєнтiв дифузiйного розсiювання забезпечить бiльш точне прогнозування дина-
мiки iнфекцiйного захворювання, що є важливим у системi прийняття рiшень щодо
застосування рiзного роду лiкувальних процедур.

Ключовi слова: модель iнфекцiйного захворювання; iдентифiкацiя параметрiв; ди-

намiчнi системи iз запiзненням; асимптотичнi методи; сингулярно збуренi задачi;

логiстична динамiка.
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