## УДК 004.032.026

**П. Тимощук** Національний університет "Львівська політехніка", кафедра САПР

# ДИНАМІКА ДИСКРЕТИЗОВАНИХ СИГНАЛІВ МАТЕМАТИЧНОЇ МОДЕЛІ КШТА-НЕЙРОННОЇ СХЕМИ

# © Тимощук П., 2010

Аналізується динаміка дискретизованих сигналів математичної моделі нейронної схеми типу "K-winners-take-all" (KWTA), призначеної для ідентифікації К максимальних серед N невідомих сигналів, де  $1 \le K < N$ . Аналіз здійснюють за допомогою використання відповідної енергетичної функції. Наведено результати комп'ютерного моделювання, які підтверджують теоретичні положення.

Ключові слова: нейронна схема, сигнал, енергетична функція, модель.

Dynamics of mathematical model of discrete-time K-winners-take-all (KWTA) neural circuit that identifies K maximal among N unknown signals, where  $1 \le K < N$ , is analyzed. The analysis is fulfilled by using corresponding energy function.Computer modeling results presented confirm theoretical statements.

Keywords: energy function, model.

## 1. Вступ

Нейронні мережі типу "K-winners-take-all" (КWTA-мережі), як відомо, здійснюють вибір К серед N елементів, де  $1 \le K < N$ , з більшими значеннями активаційних функцій, ніж у решти N – K елементів. Коли K дорівнює одиниці, KWTA-мережа є мережею типу "Winner-takes-all" (WTA-мережею), яка може розрізняти нейрон з максимальною активацією [5, 7, 8]. Вибір K найбільших елементів з множини даних N дійсних чисел є ключовою задачею мереж прийняття рішень, розпізнавання образів, пов'язаних пам'ятей і конкуруючого навчання [9, 11]. Задачі такого типу природно зустрічаються при розв'язанні задач класифікації і застосовуються для розроблення класифікаційних нейронних мереж, для розв'язання задач сортування, розпізнавання і класифікації зразків [4]. КWTA-мережі застосовуються в телекомунікації, особливо для керування пакетними перемикачами даних [1]. КWTA-механізми застосовують у машинному навчанні, зокрема, для розв'язання задач класифікації к значень та ін. [3, 6].

У статті аналізується динаміка дискретизованих сигналів математичної моделі КШТАнейронної схеми. Термін "динамічний" пов'язується з нейронною мережею, що моделюється диференційним рівнянням, яке визначає еволюцію змінної стану, або просто стану. Така еволюція відбувається у просторі станів дискретного часу, і функція, що описує цю еволюцію у просторі станів називається траєкторією (стану), або розв'язком. Динамічна нейронна мережа обробки дискретизованих сигналів має зворотний зв'язок, який схемотехнічно реалізується на базі часової затримки. Частковим випадком динамічної нейронної мережі є статична нейронна мережа. Термін "статична нейронна мережа" визначає нейронну мережу, що функціонує у статичному режимі. Статична нейронна мережа моделюється алгебраїчним рівнянням, тому траєкторія її розв'язку не має ніякого перехідного режиму. Статична нейронна мережа не має ніякого зворотного зв'язку.

# 2. Математична модель КШТА-нейронної схеми обробки дискретизованих сигналів

Нехай задано N дійсних чисел від  $a_1$  до  $a_N$ , N>1, тобто  $a_1, a_2, ..., a_N$  як миттєвих значень невідомих вхідних сигналів і необхідно вибрати K найбільших з них, де  $1 \le K < N$  – ненегативне ціле. Припустимо, що задані числа розподілені у відомому діапазоні  $a \in (A_{\min}, A_{\max})$ . Покладемо, що ці числа не однакові (відрізняються між собою за значеннями) і впорядковані у спадаючому за величиною порядку так, що задовольняються нерівності

$$\mathbf{a}_1 > \mathbf{a}_2 > \dots > \mathbf{a}_N,\tag{1}$$

де індекси 1,2,…, N у загальному випадку можуть відрізнятись від оригінальних номерів входів, означаючи, що компоненти вектора  $a = [a_1, \dots, a_N]$  – впорядковані. Побудуємо математичну модель нейронної схеми, яка обробляє вхідний вектор дискретизованих сигналів а так, що після скінченної кількості ітерацій отримуються вихідні сигнали схеми  $b = [b_1, \dots, b_N]$ , які задовольняють нерівності

$$b_i > 0, i \in 1, 2, \dots, K; b_i < 0, j \in K + 1, K + 2, \dots, N.$$
 (2)

Нерівності (2) виражають КШТА-властивість, тобто що саме вихідні сигнали від  $b_1$  до  $b_K$ "виграють" конкуренцію і той факт, що тільки вони є позитивними компонентами вектора b свідчить про те, що вхідні сигнали від  $a_1$  до  $a_K \in K$  найбільшими компонентами вектора а.

Виконаємо попередню обробку заданого вектора а вхідних сигналів, віднявши від усіх його компонентів значення A<sub>min</sub> і отримаємо додаткові сигнали

$$c_1 > c_2 > \dots > c_N, \tag{3}$$

де  $c_n = a_n - A_{min}$ , n = 1, 2, ..., N. Неважко побачити, що сигнали (3) знаходяться у діапазоні (0, A), де  $A = A_{max} - A_{min} > 0$ , тобто  $c \in (0, A)$ , де  $c = [c_1, c_2, ..., c_N]$ . Оскільки вхідні сигнали (1) не однакові і розподілені у відомому діапазоні, то сигнали (3) також різні і обмежені в діапазоні (0, A). Отже, для будь-яких  $1 \le K < N$  існують такі значення  $x \in \Re$ , які задовольняють нерівності

$$c_i > x, i \in 1, 2, \dots, K; c_i < x, j \in K + 1, K + 2, \dots, N.$$
 (4)

Віднімання х від (4) дає

$$c_i - x > 0, i \in 1, 2, \dots, K; c_j - x < 0, j \in K + 1, K + 2, \dots, N.$$
 (5)

Як можна побачити з (5), сигнали с<sub>n</sub> – х, де n = 1,2,..., N, володіють КШТА-властивістю. Тому такі сигнали можуть бути використані, як вихідні сигнали моделі КШТА-нейронної схеми, тобто можна записати рівності

$$\mathbf{b}_{i} = \mathbf{c}_{i} - \mathbf{x}, i \in 1, 2, \cdots, K; \mathbf{b}_{j} = \mathbf{c}_{j} - \mathbf{x}, j \in K + 1, K + 2, \cdots, N.$$
(6)

Для побудови моделі КШТА-нейронної схеми необхідно розробити процедуру знаходження значення скалярного динамічного зсуву вхідних сигналів x, який задовольняє нерівності (4). Використаємо для цього вимогу, що такий зсув у встановленому режимі повинен знаходитись у діапазоні (0, A). Спроектуємо траєкторію дискретного часу  $x^{(k)}$ , де k = 1, 2, ..., m- кількість ітерацій до досягнення встановленого режиму, яка може перетнути весь діапазон (0, A). Нехай така траєкторія буде розв'язком відповідного різницевого рівняння  $x^{(k+1)} = \phi(x^{(k)})$  з початковою умовою  $x^{(1)}$ , де  $\phi(x^{(k)})$  – певна функція, яка повинна бути визначена. Припустимо, що у деякий момент дискретного часу  $t^{(m)}$  змінна  $x^{(k)}$  набуває у встановленому режимі значення  $x^{(k)} = x^{(m)}$ , яке задовольняє нерівність (4). Для зупинки обчислювального процесу у момент  $t^{(m)}$  визначимо наступну умову, яка керує кількістю переможців і переможених у кожній дискретній часовій точці протягом обчислювального процесу:

$$R(x^{(k)}) = 2K - N - \sum_{n=1}^{N} sgn(b_n^{(k)}),$$
(7)

де  $R(x^{(k)})$  – k-те дискретне значення нев'язки,  $b_n^{(k)} = c_n - x^{(k)}$  – значення n-го вихідного сигналу моделі на k-й ітерації:

$$\operatorname{sgn}(b_n^{(k)}) = \begin{cases} 1, & \text{if } b_n^{(k)} > 0; \\ 0, & \text{if } b_n^{(k)} = 0; \\ -1, & \text{if } b_n^{(k)} < 0 \end{cases}$$
(8)

– сигнум (жорсткообмежувальна) функція,  $\sum_{n=1}^{N} \text{sgn}(b_n^{(k)})$  – різниця між дійсними кількостями переможців і переможених. Сигнум-функція виконує порівняння між k-м дискретним значенням п-го вихідного сигналу  $b_n^{(k)}$  і нулем. Якщо  $b_n^{(k)} > 0$ , тоді n-на сигнум-функція забезпечує вихідний сигнал  $\text{sgn}(b_n^{(k)})=1$ , якщо  $b_n^{(k)}=0$ , тоді вихідний сигнал n-ї сигнум-функції  $\text{sgn}(b_n^{(k)})=0$ , інакше  $\text{sgn}(b_n^{(k)})=-1$ .

Визначатимемо динамічний зсув x<sup>(k)</sup> за допомогою такого рекурсивного алгоритму:

$$x^{(k+1)} = x^{(k)} - A\Delta x^{(k)},$$
(9)

де  $\Delta x^{(k)} = sgn(R(x^{(k)}))\alpha^k$ ,  $\alpha$  – параметр, який гарантує збіжність алгоритму до КWTAрозв'язку;  $0 \le x^{(1)} \le A$  – початкова умова; т – число ітерацій до досягнення збіжності пошуковим процесом встановленого режиму.

## 3. Динаміка дискретизованих сигналів математичної моделі КШТА-нейронної схеми

Розглянемо динаміку дискретизованих сигналів математичної моделі КWTA-нейронної схеми, яка описується різницевим рівнянням (9) і рівностями (6). Для цього сформулюємо наступну лему.

*Лема*. Енергетична функція  $|R(x^{(k)})|$ , де k = 1, 2, ..., m є монотонно спадною до нуля функцією дискретного часу для кожного  $0 < \alpha < 1$  і для будь-якого  $0 \le x^{(1)} \le A$ .

Доведення. Нехай початковою точкою буде  $x^{(1)} = A$ . Тоді вихідні сигнали набувають значення  $b_n^{(1)} = c_n - x^{(1)} < 0$  для кожного n = 1, 2, ..., N і функція  $R(x^{(k)})$  набуває значення  $2K - N - \sum_{n=1}^{N} sgn(b_n^{(1)}) = 2K > 0$ . Тому у цій точці траєкторія розв'язку описується різницевим рівнянням  $x^{(k+1)} = x^{(k)} - A\alpha^k$ , і зсув  $x^{(k)}$  буде експоненціально зменшуватись. У точці  $x^{(1)} = c_1$ , де  $c_1$  є максимальним вхідним сигналом згідно з (3), значення вихідних сигналів  $b_1^{(1)} = c_1 - x^{(1)} = 0$  і значення вихідних сигналів  $b_1^{(i)} < 0$ , j = 2, 3, ..., N відповідно до (5) і (6). Тому функція  $R(x^{(k)})$  набуває значення  $2K - N - \sum_{n=1}^{N} sgn(b_n^{(1)}) = 2K - 1 > 0$ , і зсув  $x^{(k)}$  буде продовжувати експоненціально спадати згідно з рівнянням  $x^{(k+1)} = x^{(k)} - A\alpha^k$ . В інтервалі  $c_1 > x^{(1+1)} > c_2$ , де  $c_2$  – другий найбільший вхідний сигнал, вихідний сигнал  $b_1^{(1+1)} = c_1 - x^{(1+1)} > 0$  і решта вихідних сигналів  $b_j^{(1+1)} = c_j - x^{(1+1)} < 0$ , j = 2, 3, ..., N. У цьому інтервалі функція  $R(x^{(k)})$  отримує значення  $2K - N - \sum_{n=1}^{N} sgn(b_n^{(1)}) = 2K - 2 > 0$  ф так далі, поки задовольняється рівність  $R(x^{(1+1)}) = 0$ , тобто якщо  $K \neq 1$ . Інакше, якщо K = 1 і тому  $R(x^{(1+1)}) = 0$ , тоді рівняння (9) набуває вигляду форму  $x^{(k+1)} = x^{(k)}$  надалі не змінюється, зберігаючи постійне значення  $x^{(k+1)} = x^{(m)}$ . У

результаті такої динаміки функція  $R(x^{(k)})$  послідовно отримує ненегативні значення 2K,2K – 1,2K – 2,...,0. Це означає,що функція  $|R(x^{(k)})| = R(x^{(k)})$ , k = 1,2,...,m у цьому випадку є монотонно спадною до нуля для кожного  $0 < \alpha < 1$ .

Якщо початкова точка  $x^{(1)} = 0$ , то вихідні сигнали набувають значення  $b_n^{(1)} = c_n - x^{(1)} > 0$ , n = 1, 2, ..., N. Функція  $R(x^{(k)})$  набуває значення  $2K - N - \sum_{n=1}^{N} sgn(b_n^{(1)}) = 2K - 2N < 0$ . Тому різницеве рівняння (9) набуває у цій точці форми  $x^{(k+1)} = x^{(k)} + A\alpha^k$ , і зсув  $x^{(k)}$  експоненціально зростатиме. У точці x<sup>(q)</sup> = c<sub>N</sub>, де c<sub>N</sub> – найменший вхідний сигнал відповідно до (3), вихідний сигнал  $b_N^{(q)} \in b_N^{(q)} = c_N - x^{(q)} = 0$  і вихідні сигнали  $b_j^{(q)}$ ,  $j = 1, 2, ..., N - 1 \in b_j^{(q)} > 0$  згідно з (5) і (6). Тому функція  $R(x^{(k)})$  пробігає значення  $2K - N - \sum_{n=1}^{N} sgn(b_n^{(q)}) = 2K - 2N + 1 < 0$ , і зсув  $x^{(k)}$ продовжує експоненціально зростати відповідно до рівняння  $x^{(k+1)} = x^{(k)} + A\alpha^k$ . У діапазоні  $c_{N} < x^{(q+1)} < c_{N-1}$ , де  $c_{N-1}$  є другим найменшим вхідним сигналом, вихідні сигнали  $b_N^{(q+1)} = c_N - x^{(q+1)} < 0$  і решта вихідних сигналів  $b_i^{(q+1)} = c_i - x^{(q+1)} > 0$ , j = 1, 2, ..., N - 1. У цьому діапазоні функція  $R(x^{(k)})$  набуває значення  $R(x) = 2K - N - \sum_{i=1}^{N} sgn(b_n^{(q+1)}) = 2K - 2N + 2 < 0$  і так далі, якщо тільки не задовольняється рівність R(x<sup>(q+1)</sup>)=0, тобто K ≠ N-1. Інакше, якщо K = N - 1 і тому  $R(x^{(q+1)}) = 0$ , то рівняння (9) трансформується до вигляду  $x^{(k+1)} = x^{(k)}$ , і зсув  $x^{(k)}$  не змінюється надалі, набуваючи постійних значень  $x^{(k)} = x^{(m)}$ . У результаті такої динаміки функція  $R(x^{(k)})$  поступово набуває непозитивних значень 2K - 2N, 2K - 2N + 1, 2K - 2N + 2, ..., 0. Тому у цьому випадку функція  $|R(x^{(k)})| = -R(x^{(k)}), k = 1, 2, ..., m$  є монотонно спадною до нуля для кожного  $0 < \alpha < 1$ .

Отже, енергетична функція  $|\mathbf{R}(\mathbf{x}^{(k)})|$ , k = 1, 2, ..., m є монотонно спадною до нуля функцією дискретного часу для кожного  $0 \le \mathbf{x}^{(1)} \le \mathbf{A}$  і для кожного  $0 < \alpha < 1$ .

Щоби модель, яка описується різницевим рівнянням (9) і рівностями (6), знаходила К переможців, повинні задовольнятись нерівності  $A\alpha^m < c_K - c_{K+1}$ . Взявши логарифм від останньої нерівності за основу  $\alpha$  для  $0.5 < \alpha < 1$ , можна отримати наступну нижню границю для кількості ітерацій траєкторій розв'язків рівняння (9) для досягнення збіжності:

$$m > \log_{\alpha} \frac{c_{K} - c_{K+1}}{A}.$$
(10)

Права частина рівняння (10) є скінченною для кожного  $c_{K} - c_{K+1} \neq 0$ , тобто для кожного вхідного сигналу, який можна розрізнити. Алгоритм, що описується різницевим рівнянням (9) і рівностями (6), має логарифмічну швидкість збіжності, як це випливає з (10).

Зазначимо, що коли необхідно ідентифікувати К переможців у випадку, коли k-й найбільший і (k+1)-й найбільший сигнали відрізнити тяжко, тобто якщо діапазон  $[c_{K+1}, c_K]$  є дуже малим, то кількість ітерацій m, необхідних для того, щоб змінна  $x^{(k)}$  потрапила у цей діапазон, буде скінченною, але може бути дуже великою. Однак, властивість монотонності і спадання до нуля енергетичної функції дискретного часу  $|R(x^{(k)})|$  спільно з логарифмічною швидкістю збіжності алгоритму, що описується

різницевим рівнянням (9) і рівністю (6), приводить до знаходження К-1 переможців після значно меншої, ніж m кількості ітерацій, якщо проміжок  $[c_{\kappa}, c_{\kappa-1}]$  є не дуже вузьким.

Використовуючи (10), можна встановити, що для досягнення умови  $R(x^{(k)})=0$  не більше, ніж за m ітерацій для будь-яких заданих вхідних сигналів  $a_n, n=1,2,...,N$ , повинно бути задано значення коефіцієнта загасання

$$\alpha > m \sqrt{\frac{c_{\mathrm{K}} - c_{\mathrm{K}+1}}{A}} \,. \tag{11}$$

Період повторення вхідних сигналів  $a_n$ , n = 1, 2, ..., N, які можуть оброблятись коректно моделлю, описаною різницевим рівнянням (9) і рівностями (6), повинен задовольняти нерівність

$$T > \log_{\alpha} \frac{c_{K} - c_{K+!}}{A} \tau, \qquad (12)$$

де  $\tau = t^{(k+1)} - t^{(k)}$  – період дискретизації.

Припустимо, що усі вхідні сигнали є випадково розподіленими на інтервалі [0,А]. Як це було показано вище, якщо виконується умова  $0.5 < \alpha < 1$  і вхідні сигнали неоднакові, то можна гарантувати, що експоненціальний пошук може досягти будь-якого значення з [0,А] для кожного  $x^{(1)} \in [0, A]$  за скінченну кількість ітерацій. За статистикою [5, 10], що значення математичного сподівання с<sub>K+1</sub> N однорідно розподілених вхідних сигналів, позначене через  $\mu_{K+1,N}$  для  $0 \le c_{K+1} \le A$ , можна визначити як

$$\mu_{K+1,N} = \frac{(N-K)A}{N+1}.$$
(13)

3 тієї ж причини математичне сподівання К-го максимального вхідного сигналу  $\mu_{K,N} = \frac{(N-K+1)A}{N+1}$ . Різниця між математичними сподіваннями К-го і (К+1)-го максимальних сигналів  $\mu_{K,N} - \mu_{K+1,N} = \frac{A}{N+1}$ . Якщо модуль  $\Delta x^{(k)}$  стає меншим від цієї різниці, то пошукова точка може потрапити в діапазон ( $\mu_{K+1,N}, \mu_{K,N}$ ), тоді збіжність може бути гарантована у сенсі середнього. Замінивши в (10) с<sub>K</sub> - с<sub>K+1</sub> на  $\frac{A}{N+1}$ , математичне сподівання числа ітерацій до досягнення збіжності для однорідно розподілених вхідних сигналів можна визначити як

$$m > \log_{\alpha} \frac{1}{N+1}.$$
(14)

Для однорідно розподілених вхідних сигналів математичне сподівання числа ітерацій до досягнення збіжності зменшується із зменшенням розмірності задачі N, оскільки  $\frac{d}{dN}\left(\log_{\alpha}\frac{1}{N+1}\right) = -\frac{1}{(N+1)\ln\alpha} > 0$ для кожного  $0.5 < \alpha < 1$ , N>0. 3 іншого боку, для однорідно розподілених вхідних сигналів математичне сподівання кількості ітерацій, необхідних для значення збіжності. зменшується із зменшенням параметра α. оскільки  $\frac{d}{d\alpha}\left(\log_{\alpha}\frac{1}{N+1}\right) = \frac{\alpha(\ln(N+1))^3}{(\ln \alpha)^2} > 0$ . I, нарешті, для однорідно розподілених вхідних сигналів математичне сподівання числа ітерацій до досягнення збіжності не залежить від кількості переможців, оскільки  $\frac{d}{dK} \left( \log_{\alpha} \frac{1}{N+1} \right) = 0$ .

У випадку, коли вхідні сигнали вибираються випадково з іншого розподілу, кількість ітерацій, необхідних для збіжності станів моделі, залежна від математичного сподівання роздільної здатності ( $\mu_{K+1,N}, \mu_{K,N}$ ), може бути подана як

$$m > \log_{\alpha} \frac{\mu_{K,N} - \mu_{K+1,N}}{A}, \qquad (15)$$

де  $\mu_{K+1,N}$  і  $\mu_{K,N}$  – статистичні середні.

Алгоритм (9) можна розглядати як експоненціальний пошук для визначення динамічного зсуву x<sup>(k)</sup>. Такий алгоритм може бути спрощений шляхом заміни в (9)  $\alpha^k$  на  $\alpha$ , де параметр  $\alpha$  повинен задовольняти нерівності  $\alpha < \frac{r}{A}$  для гарантованого потрапляння зсуву х в діапазон  $(x^{(k)}, x^{(k+1)})$ . Отриманий так алгоритм буде частковим випадком алгоритму (9). У цьому випадку процедура визначення зсуву x<sup>(k)</sup> є лінійним пошуковим процесом, який призводить до низької швидкості збіжності.

На основі вищенаведеного можна стверджувати, що існує таке  $t^{(m)} > 0$ , що задовольняє нерівність

$$b_{1}(t^{(k)}) > \dots > b_{K}(t^{(k)}) > 0 > b_{K+1}(t^{(k)}) > \dots > b_{N}(t^{(k)})$$
(16)

для кожного  $t^{(k)} > t^{(m)}$ , де  $b_n(t^{(k)}) = c_n - x(t^{(k)})$ , n = 1, 2, ..., N, оскільки число переможців K = 1, 2, ..., N - 1 і вектор вхідних сигналів а є впорядкованим. Це означає, що змінна  $x^{(k)}$  рівняння (9) стартує з початкового значення  $x^{(1)}$  і фінішує в стані  $x^{(m)}$ , що відповідає компонентам вихідного вектора b, розщепленим у позитивну і негативну площини відповідно до (2). У будь-який момент часу після  $t^{(m)}$  вихідні сигнали, що визначаються з рівняння (9) і рівностей (6), володіють КШТА-властивістю.

Зазначимо, що для будь-якого k > 0 нерівності (16) описують властивість збереження впорядкування сигналів, тобто для будь-яких заданих сигналів  $a_n, n = 1, 2, ..., N$  впорядкування вихідних сигналів є тим самим, що й впорядкування вхідних сигналів. Така властивість є очевидною, оскільки задовольняється умова  $b_n^{(k)} = c_n - x^{(k)} = a_n - A_{min} - x^{(k)}$ , n = 1, 2, ..., N для кожного  $t^{(k)} \ge 0$ . Інакше кажучи, вихідні сигнали дорівнюють вхідним сигналам мінус динамічний зсув, який є однаковим для усіх вхідних сигналів, а тому він не змінює впорядкування сигналів. Це призводить до того, що задовольняються нерівності (1). Отже, впорядкування вихідних сигналів моделі і впорядкування відповідних вхідних сигналів є однаковим для кожного  $x^{(k)} \in [0, A]$ .

Отримані результати, які грунтуються на лемі, гарантують, що різницеве рівняння (9) і рівності (6) описують модель КШТА-схеми обробки дискретизованих сигналів. Цей факт можна подати у вигляді теореми.

*Теорема.* Нехай коефіцієнт загасання  $\alpha$  різницевого рівняння (9) задовольняє обмеження  $0.5 < \alpha < 1$ . Тоді для заданого вхідного вектора  $a \in \Re$  з нерівними компонентами і позитивним цілим  $1 \le K < N$  це рівняння і рівності (6) описують модель КШТА-нейронної схеми обробки дискретизованих сигналів.

#### 4. Результати комп'ютерного моделювання

Для ілюстрації теоретичних результатів, представлених у статті, розглянемо конкретний приклад з відповідним комп'ютерним моделюванням, який демонструє динаміку дискретизованих сигналів моделі КWTA-нейронної схеми.

Приклад. Нехай необхідно ідентифікувати чотири найбільші сигнали, тобто K = 4 вектора а = [-1.1,1.7,-0.3,-1.8,0.2], тобто N = 5, використавши модель, що описується різницевим рівнянням (9) і рівностями (6). Задамо для цієї моделі A<sub>min</sub> = -2, A = 4, початкову умову  $x^{(1)} = A$  і коефіцієнт загасання  $\alpha = 0.6$ , вибраний з обмеження леми. Визначимо траєкторії дискретного часу зсуву  $x^{(k)}$  і вихідні сигнали  $b_i^{(k)}$ , і = 1,2,3,4,5 згідно з різницевим рівнянням (9) і рівностями (6). Такі траєкторії в нормалізованих одиницях показані на рис. 1. Як можна побачити, у встановленому режимі сигнали  $b_1 > 0, b_2 > 0, b_3 > 0, b_5 > 0$  відповідають чотирьом найбільшим компонентам вектора а – переможцям, а сигнал  $b_4 < 0$  відповідає переможеному згідно з KWTA– властивістю (2). Збіжності пошукового процесу до встановленого режиму досягають за m = 5 ітерацій відповідно до оцінки (12).



Рис. 1. Траєкторії дискретного часу зсуву х<sup>(k)</sup> і вихідних сигналів b<sub>i</sub><sup>(k)</sup>, і = 1,2,3,4,5, які представляють КWTA-властивість моделі, що описується різницевим рівнянням (9) і рівностями (6)

На рис. 2 представлено фазовий портрет траєкторії дискретного часу зсуву  $x^{(k)}$ . Як можна побачити, фазова крива змінної  $x^{(k)}$  є скінченною закрученою спіраллю кусково-лінійної форми, що гарантує стабільну динаміку зсуву  $x^{(k)}$ . Зміна зсуву  $\Delta x^{(k)} = x^{(k+1)} - x^{(k)}$  демонструє стрибки на початку і в кінці кожного горизонтального сектора.

Отже, результати комп'ютерного моделювання підтверджують теоретичні положення.



Рис. 2. Фазова крива траєкторії зсуву х<sup>(k)</sup>

#### Висновки

У статті проаналізовано динаміку дискретизованих сигналів математичної моделі нейронної схеми типу "К-winners-take-all". Схема придатна для обробки будь-яких неоднакових сигналів із скінченними значеннями і володіє властивістю збереження впорядкування сигналів. Отримано оцінки для кількості ітерацій до досягнення збіжності пошукового процесу до встановленого режиму.

1. Bihn L.N., Chong H.C. A neural-network contention controller for packet switching networks, IEEE Trans. on Neural Networks 6 (1995) 1402-1410. 2. David H.A. Order Statistics, 2nd ed. (New York: Wiley, 1980). 3. Hu X., Wang J. An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application, IEEE Trans. on Neural Networks, 19 (2008) 2022-2031. 4. Kwon T.M., Zervakis M. A parallel sorting network without comparators: A neural-network approach, in: Proc. Int. Joint Conf. on Neural Networks, Vol. 1 (1992) 701–706. 5. Lippmann R.P., Gold B., Malpass M.L. A comparison of Hamming and Hopfield neural nets for pattern classification, MIT Lincoln Laboratory Technical report TR-769 (1987) 1-37. 6. Liu S., Wang J.A simplified dual neural network for quadratic programming with its KWTA application, IEEE Trans. on Neural Networks, 17 (2006) 1500-1510. 7. Tymoshchuk P., Kaszkurewicz E. A Winner-take-all circuit based on second order Hopfield neural networks as building blocks, in: Proc. Int. Joint Conf. on Neural Networks, Vol. II (2003) 891-896. 8. Tymoshchuk P. and Kaszkurewicz E. A winner-take-all circuit using neural networks as building blocks, Neurocomputing 64 (2005) 375-396. 9. Urahama K., Nagao T. K-Winner-take-all circuit with 0(n) complexity, IEEE Trans. on Neural Networks 6 (1995) 776-778. 10. Yang J.F, Chen C.M. A Dynamic K-Winners-Take-All Neural Network, IEEE Trans. on Syst., Man and Cyb. 27 (1997) 523–526. 11. Yen J.C., Guo J.I., Chen H.-C. A new k-Winners-take all neural network and its array architecture, IEEE Trans. on Neural Networks 9 (1998) 901-912.