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The existing, intuitive computation models, that is the virtual machines of Turing, Post, 
Kolmogorov, Schönhage, Aho-Ullman-Hopcroft as well as the algorithms of Markov and 
Krinitski, and the recursive functions, all lack precise, mathematical formulation. 
Consequently, an algebra of algorithms is defined using the axiomatic method. The algebra is 
based on the operations of sequencing, elimination, paralleling and reversing as well as cyclic 
sequencing, cyclic elimination and cyclic paralleling, all of them performed on the so-called 
uniterms. A useful extension is offered in terms of multiconditional elimination. An example 
illustrates the usefulness of the algebra of algorithms. 
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Вказано відомі методи інтуїтивного опису алгоритмів, якими є віртуальні машини 

Т’юрінга, Поста, Колмогорова, Шонгаґе, Ахо-Ульмана-Хопкрофта, а також алгоритми 
Маркова і Крініцкого та рекурсивні функції, засобами яких алгоритми описуються не 
формалізовано. Дефініцію розширеної алгебри алгоритмів подано аксіоматичним 
методом. Алгебра базується на операціях секвентування, багатозначного елімінування, 
паралелення і реверсування, а також циклічного секвентування, циклічного еліміну-
вання та циклічного паралелення, які виконуються над унітермами. Розширення 
торкається введення операції багатозначного елімінування. Прикладом проілюстрована 
ефективність розширеної алгебри алгоритмів. 

Ключові слова: модель, операція, алгоритм, визначення. 
 

1. Introduction 
The algorithms or models of computations are the essence of computer systems. In particular, it is 

important for designers to be able to precisely and formally describe algorithms for the developed 
operating systems, platforms, programming languages and specialized computer systems, including 
monitoring, control and diagnostic systems. The importance results from the fact that the cost of location 
and correction of algorithmic errors when implementing or operating the algorithms is very high. The well-
known existing models of computations are the λ-calculus [1], Turing machine [2,3], Post machine [4,5], 
Kolmogorov machine [6-8], Schönhage machine [9,10], Markov algorithms [11,12], recursive functions 
[1,13-15], the Aho, Ullman and Hopcroft machine (with random access to RAM memory) [16] and the 
analytical algorithm theory of Krinitski [17]. These are specific tools for algorithm presentation that 
occurred between the thirties and nineties of the 20th century. It is well known [18] that the above models 
are equivalent in that they compute ‘the same functions’. It is also known [18] that the algorithms were 
initially described in those models in an intuitive way. Later, the algorithms have been given a precise 
mathematical rigor [3,5,12,19,20], which has had a tremendous impact on the development of functional 
and structural programming languages. In the existing computational models, an algorithm appears as a 
specifically described sequence of specific operations. However, some algorithmic figures like sequencing 
of operations, realized by means of e.g. ‘go to’ instructions or multiple bracketing, are still described in an 
informal, intuitive way. Offering such formal descriptions would contribute to the treatment of algorithms 
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as mathematical formulae, which could in turn lead to the introduction of algebra of algorithms. This could 
give means for transformation of the algorithms and their optimization in the sense of reduction of a 
number of operations and memory occupation, thus contributing to more effective implementation of the 
algorithms. Even if transformation of algorithms is available for some of the existing computation models, 
there exist no tools for formal description of some relations between their operations. A precise, formal 
tool for description, transformation and optimization of algorithms is offered in this paper. An extended 
version of the classical algebra of algorithms [21,22] is presented, in that multiconditional elimination is 
substituted for the elementary, conditonal elimination.  

The alphabet and operations of the extended algebra of algorithms are presented in Section 2. Section 3 
gives intuitive explanations of operations in the algebra of algorithms and Section 4 provides an illustrative 
example of application of the algebra. New results of the paper are summarized in conclusions of Section 5.  

 

2. Algebra of algorithms 
Here we present the (extended) fundamentals of the algebra of abstract algorithms originally 

introduced in Refs. [21,22]. Constructed with the axiomatic method, the algebra enables to describe 
algorithms by means of mathematical formulae.  

 

2.1.  Alphabet 
Definition 1. Any symbols to be subject to ordering will be called uniterms.  
For instance, the following uniterms can be exemplified: -5,-4, -3.1,0, 1,1.25, 7, a, A, c, C, x,…. 

Uniterms are divided into the terminal (or concrete), e.g. p=q+2, S1=2x-3 and abstract ones, e.g. F(x), 
R(x,y). The abstract uniterms are denoted by capital Latin letters (with or without indices). 

Definition 2. The alphabet of the theory of algorithms consists of the following: 
1) symbols of operations:        – sequencing;        – elimination;       – paralleling;     – reversing; ⊄ – 

cyclic sequencing;     – cyclic elimination; Ø – cyclic paralleling; = – equalizing. (Note: Vertical 
arrangement of the denotations for sequencing, elimination and paralleling can also be used.) 

2) uniterms not related with the cyclic operations, that is variables, coefficients and constants, with 
or without indices, denoted with lower-case letters from the beginning of the Latin alphabet: a, b, co, c1, … 
, cj, c

0, c1, …, cI, ci
j, … 

3) uniterms related with the cyclic operations, that is variables, with or without indices, denoted with 
lower-case letters from the end of the Latin alphabet: x, xo, … , xj, x

0, …, zi
j, … 

4) uniterms dependent on one or more variables, with or without indices, denoted with capital letters 
from the Latin alphabet: P(a), P(a,b), … 

5) conditional uniterms assuming two values (0 or 1): u, uo, u1, … , uj, u
i
j . 

6) * – empty uniterm;   
7) coma (,), semicolon (;), colon (:) (Note: Coma and semicolon are used to separate commutative 

and noncommutative uniterms, respectively, whereas colon is used to denote either coma or colon.) 
 

2.2. Operations 
Definitions of the operations in the algebra of algorithms are given below. 
 

2.2.1. Equalizing is an operation on uniterms having the following properties: 
1) identity:  A = A, 
2) symmetry:  if A = B, then B = A, 
3) transitivity:  if A = B and B = S, then A = S. 
 

2.2.2. Sequencing is an operation having the following properties: 
1) commutativity:  

 
Note: Two noncommutative operations on uniterms will be separated by semicolon (rather than 

coma), so that 

 

⊃
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2) associativity: 

 
3) idempotency:  

 
4) absorption of the empty uniterm: 

, 
where the symbol “:” means comma or semicolon; 

5) extracting a common uniterm: 

, 

. 
2.2.3. Elimination is an operation having the following properties: 
1) selection of a conditional uniterm: 

 
2) selection of a multiconditional uniterm: 

 
where v0, v1, ... , vn-1 are the values of the multiconditional uniterm w.  

3) selection of empty multiconditional uniterm(s)  

. 
4) idempotency (absorption of a conditional uniterm): 

 
5) absorption of a multiconditional uniterm (multiconditional idempotency): 

 
6) selection of a condition: 
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7) absorption of a uniterm (under two eliminations): 

 
8) distributivity: 

 
9) extraction of a uniterm outside the multiconditional elimination operation: 

 
  
2.2.4. Paralleling is an operation having the following properties: 
1) idempotency:  

 
2) absorption of the empty uniterm:  

 
3) commutativity:  

. 
4) associativity:  

. 

5) extracting a common uniterm: 

 

.            
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2.2.5. Reversing is an operation having the following properties: 
1) reversing of sequencing: 

 . 
2) reversing of elimination: 

 
3) reversing of paralleling: 

 
4) double reversing of uniterms:  

 

   

  
5) reversing of uniterms in multiconditional elimination:  

 
6) selection of a uniterm based on a reversive condition: 

    

 
 
2.2.6. Cyclic sequencing (⊄), cyclic elimination (   ) and cyclic paralleling (Ø) are cyclic 

operations having the following properties: 
1) reversing of a variable related with a cyclic operation:  

, 

, 

. 
where x is the cycle variable and R and S are the uniterms (repeated in each cycle); 

2) double reversing: 

 

         

 

⊃
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3) empty loop: 

 

 

  
 

2.3. Abstract algorithm 
An algorithm is defined abstract or formal if it is composed of one or more (possibly all) 

expressions specified below, executed in a finite number of iterations (in particular, once).  
1. If S and R are uniterms, then 

 
are algorithms. 
2. If A , B, …, Z are uniterms or algorithms and u, w are conditional uniterms with the number of values w 

equal to the number of elimination uniterms under the condition w, then 

 
are algorithms.  

3. If A, B, Q, L, … , T are the uniterms or algorithms and u, w are the conditional uniterms with the 
number of values w equal to the number of elimination uniterms under the condition w, then  

 

  
are algorithms.  

3. If M and N are the uniterms or algorithms, x is the variable related to the cycle operation and ux is 
the condition related to the cycle operation, then  

 

 

 
are algorithms.  

5. If F, S, T are the uniterms or algorithms such that F = S and S = T, then F = T is the algorithm. 
6. An algorithm can be only such an expression that can be presented in form of a finite number of 

operations specified in the above items 1 to 5.  
 
The algebra of algorithms is defined as a system of the above specified operations on the uniterms. 

It provides means for formal transformation of algorithms and their minimization in terms of a minimum 
number of uniterms.  

 

3. Intuitive explanation of operations 
Here we give an intuitive rationale for explanation of the meaning of the operations for our algebra 

of algorithms, in terms of the classical block-diagram framework. 
a. Equalizing is a classical operation not requiring additional explanation. 
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b. Sequencing is executed according to the block diagram as in Fig. 1. 
 

 
 x=5 

 y=x 

                 or  
                                                     a)                                               b) 

Fig.1. Diagram of a two-block algorithm (a) and its (horizontal and vertical)  
representations in terms of noncommutative sequencing (b) 

 
c. Elimination is executed according to the block diagram as in Fig. 2. 

 

(r≠0) 

z=x/r  z=x 

     or    
                                                   a)                                                 b) 

Fig.2. Diagram of an algorithm with a conditional block (a)  
and its (horizontal and vertical) descriptions in terms of the elimination operation (b) 

 
d. Paralleling is intuitively illustrated in Fig. 3.  

 
z=cos t y= sin x 

     or    
                                                      a)                                b) 

Fig.3. Diagram of two parallel algorithms (a) and their (horizontal and vertical)  
representations in terms of noncommutative paralleling (b) 

 
e. Reversing is intuitively illustrated for reversing of sequencing in Fig. 4. 

            
                                                    a)                              b) 

Fig.4. Diagram of a reverse-order algorithm of Fig. 2 (a) and its representation in terms  
of reversing of sequencing (b) 

 
f. Operations of reversing of elimination and reversing of paralleling can be intuitively explained in 

a similar way. 
g. Cyclic sequencing, cyclic elimination and cyclic paralleling are the operations executed in a 

classical loop. 
 

4. Example 
Algorithm for solving the quadratic equation ax2+bx+c=0, consisting of the sequencing and 

elimination stages as below. 
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A) Synthesis of sequences: 
- sequence describing calculation of two roots: 

 
- sequence describing calculation of a single root (for Δ=0): 

 
- sequence valid for the case Δ<0: 

 
where M1 is the message “(Δ<0) – no real solutions”, 
- sequence describing calculation of a solution for the case w2=0: 

 
- sequence describing calculation of a solution for the case w1=0: 

 
- sequence valid for the case (-w2/w0)<0: 

 
where M2 is the message “(w1=0 and (-w2/w0) < 0) – no solution”, 

- sequence describing calculation of a solution for the case w0=0 and w1≠0: 

 
- sequence valid for the case w0=0 and w1=0: 

 
where M3 is the message “(w0=0 and (w1= 0)) – no quadratic equation”. 
B) Synthesis of elimination. 
We eliminate all the sequences (S0, S1,..., S7) under a general condition for m: 

                      .                                     (1) 
Firstly, we set a value m1 for the condition m, for which the sequence S0 (describing the calculation of 

two roots) will not be eliminated. Obviously, this concerns the case when the parameters a, b and c are nonzero 
(a≠0, b≠0 i c≠0) and the discriminant Δ is positive. Fulfillment of the condition (a≠0) will be written as (a≠0)=1. 
Fulfillment of all other conditions will be denoted in a similar way, e.g. (b≠0)=1 and (c≠0)=1, whereas failing 
to fulfill a condition will be denoted as e.g. (b≠0)=0. Thus, we have the following sequences: 

S0, if (a≠0)=1 and (b≠0)=1 and (c≠0)=1 and (Δ>0)=1; 
S1, if (a≠0)=1 and (b≠0)=1 and (c≠0)=1 and (Δ>0)=0 and (Δ=0)=1; 
S2, if (a≠0)=1 and (b≠0)=1 and (c≠0)=1 and (Δ>0)=0 and (Δ=0)=0; 
S3, if (a≠0)=1 and (b≠0)=1 and (c≠0)=0; 
S4, if (a≠0)=1 and (b≠0)=1 and (c≠0)=0 and ((-w2/w0) ≥ 0)=1; 



 299 

S5, if (a≠0)=1 and (b≠0)=1 and (c≠0)=0 and ((-w2/w0) ≥ 0)=0; 
S6, if (a≠0)=0 and (b≠0)=1; 
S7, if (a≠0)=0 and (b≠0)=0. 
C) Transformation of the algorithm 
Allowing for the above specified expressions of the sequences and three-time applying the property 

of extraction of a uniterm outside the multiconditional elimination operation, the algorithm (1) can be 
minimized to obtain  

 
Thanks to the introduced multiconditional elimination operation, the algorithm minimization process 

is essentially simplified as compared to the original one employing the conditional elimination only 
[21,22]. Specifically, a single multiconditional elimination is used here instead of seven conditional 
eliminations applied before. 

 

5. Conclusions 
In this paper, a number of the existing, intuitive computation models have been recalled, including 

the virtual machines of Turing, Post, Kolmogorov, Schönhage, Aho-Ullman-Hopcroft as well as the 
Markov and Krinitski algorithms and the recursive functions, all of them lacking a formal, mathematical 
presentaion. In pursue of precise mathematical formulation, a universal notion of a uniterm has firstly been 
introduced. Using the axiomatic method, various operations on the uniterms have been defined, thus 
contributing to the definition of an abstract or formal algorithm and the introduction of a new idea of the 
algebra of algorithms. The algebra enables to treat algorithms as mathematical formulae and it provides 
tools for formal transformation and possible minimization of the algorithms.  

An important extension of the elimination operation has been introduced in the paper, namely a 
multiconditional elimination has been offered. The extension contributes to the reduction of a number of 
elimination operations and it simplifies the algorithm minimization process, while improving the 
readability of algorithms. 

An example illustrates the efficiency of the proposed theory and the underlying methodology for 
processing of the algorithms. Some other application examples are presented/reported in a complementary 
paper [23]. 
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