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Credit scoring models have played a vitally important role in the granting credit by lenders
and financial institutions. Recently, these have gained more attention related to the risk
management practice. Many modeling techniques have been developed to evaluate the
worthiness of borrowers. This paper presents a credit scoring model via one of local
search methods – variable neighborhood search (VNS) algorithm. The optimizing VNS
neighborhood structure is a useful method applied to solve credit scoring problems. By
simultaneously tuning the neighborhood structure, the proposed algorithm generates op-
timized weights which are used to build a linear discriminant function. The experimental
results obtained by applying this model on simulated and real datasets prove its high
efficiency and evaluate its significant value on credit scoring.
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1. Introduction

Nowadays, people in our society have become perfect consumers; the fact which compels individuals
to seek alternative financing solutions to cover the various expenses. One of which is getting loans.
A credit can be the ideal solution, otherwise, it will become a risky operation if its applicant fails to
meet the payment deadlines [1]. Credit scoring is a system analysis developed by statistical methods,
operations research, artificial intelligence and machine learning techniques which enables one to make
a distinction between “good” and “bad” loans, based on information about the borrower [2]. Due
to the increase in demand of consumption credit, along with the rapid development of the storage
infrastructure of the information, the importance of credit scoring has become more and more significant
nowadays and has gained more and more attention. Credit scoring was developed in order to explore
the relationship between the dependent variable describing the risk of a consumer defaulting on a loan,
and independent variables characterizing the information of consumers (e.g. age, number of previous
loans, Salary, Housing etc.) [3].

Many credit scoring models based statistical methods which include discriminant analysis, logistic
regression [4], nonlinear regression, classification trees, nearest-neighbor approach [5]; and non-statistics
based methods which include linear programming, integer programming, neural network [6], genetic
algorithm, expert system and so forth; have been proposed to trade with some consumers whose credit
evaluations are good and gain reasonable benefits [7,8]. The successful use of the credit scoring models
in commercial banks, stockjobbers and other financial organizations depends on the sophisticated
algorithms which can make appropriate decisions to do business with credit appliers or does not.
Having estimated their credits overall, the organizations measure the possibilities for customers not to
pay for their goods or services on time or be in arrears in purpose.

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenovic and Hansen in
1997 [9,10]. VNS systematically changes neighborhood structures during the search for an optimal (or
near-optimal) solution. VNS is easy to be trapped in local optimum or lack of effective local search
mechanism. The used training algorithm is able to rapidly locate good solutions, even for a difficult
search space. It is a method for optimizing numerical functions and real-world problems. Actually, it
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has been successfully applied to solve many hard combinatorial optimization problems such as vehicle
scheduling, vehicle routing problem and timetabling problems, etc. Hence, this paper develops a VNS
model in terms of practical personal credit scoring problem.

Early developed by Efron (1979, 1982) bootstrap procedure is the most widely used among resam-
pling methods. From this time, many works has been introduced to ameliorate statistical shortcomings
of the bootstrap [11,12]. In the last few years, Bootstrap variants were introduced to achieve statistical
consistent estimators [13,14]. Recently, resampling methods using Bootstrap have been used to obtain
more accurate estimates for massive data [15–18].

The paper is organized as follows: section 2 presents the credit scoring problem, section 3 describes
the VNS method and presents the proposed model for the credit scoring, section 4 reports computa-
tional experiments that demonstrate the effectiveness of our methodology on a set of benchmark data
sets, section 5 comes up with final conclusions.

2. Background

2.1. The credit scoring problem

Credit agencies must assess the level of risk associated with granting a loan to a new customer. To
do this, they rely on the old credit records in their possession using classification models that can
distinguish between good and bad customers. Credit scoring problem is a two-group classification
problem assuming that there are two well-defined populations, G1 and G2 (good loans vs bad loans
respectively). We assume that the information is known in advance about the input data. In this
learning category, the objective is usually to provide the best discriminant function using the input
data by measuring p discriminatory variables or attributes for each member of either population.

Each member represents a customer; each client is characterized by a set of attributes (information):
X = (X1,X2, . . . ,Xp) (age, account, job, income, residence and so on). This information is recorded
directly from different customers.

Given a sample E that includes n customers. This sample will consist of g good customers and b
bad ones; i.e. (n = g+b) and (E = G1∪G2). Each customer i gives answers: Xi = (Xi1,Xi2, . . . ,Xip).
The classification model used by the credit institution must differentiate between data associated
with good customer and data related to bad one. To do this, each attribute is assigned a weight
w = (w1, w2, . . . , wp), and a threshold c is sought/found to separate the good customers from the
bad ones. If

∑p
j=1

wjxij > c then customer i is a good one, and he is a bad one in case he satisfies∑p
j=1

wjxij 6 c.

2.2. Problem formulation

The mathematical programming approach was first applied in classification by Magasarian (1965) [19].
Freed and Glover (1981) [20] presented an evaluation of the LP approach in discriminant analysis. A
classification approach has been proposed based on the idea of reducing the misclassification through
by minimizing the overlaps between two groups [21]. In a linear system, the separating hyperplane
maximizes the distance between two objectives.

It is not evident to perfectly separate the good customers from the bad ones. We can tolerate
eventual errors by introducing positive values ai, then we will have

∑p
j=1

wjxij > c− ai (if customer i
is a good one)

∑p
j=1

wjxij 6 c+ ai (if customer i is a bad one). The objective will be then to find the
values of the weight vector w and the value of the separator c for which

∑n
i=0

ai is minimal. The final
model is then:

Min

n∑

i=1

ai (1)

subject to:
p∑

j=1

wjxij > c− ai ∀i ∈ G1, (2)
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p∑

j=1

wjxij 6 c+ ai ∀i ∈ G2, (3)

p∑

j=1

(
nB

nG∑

i=1
i∈G1

xij − nG

nB∑

i=1
i∈G2

xij

)
wj = 1, (4)

ai > 0 ∀i, c ∈ R∗ and wj ∈ R ∀j. (5)

The objective function aims at minimizing the sum of the distances between the clients from the
population and the hyperplane corresponding to discriminant function. Constraint (2) ensures that the
client will belong to group 1 (good loans), while constraint (3) ensures that the client will be assigned
to group 2 (bad loans). Equation (4) defines the normalization constraint and it is needed to avoid a
trivial solution.

For a problem of classification with two distinguished groups given by a set of observations (i =
1, 2, . . . , n) from group G1 to group G2. The objective is to determine aseparating hyperplane presented
by a linear discriminant function expressed as Z = w1X1+w2X2+ . . .+wpXp. This function provides
the boundary between two groups and will be used to classify the new observations. The goal of
solving the model is to estimate the parameters including a weighting vector W = (w1, w2, . . . , wp)
and a decision rule cutoff value c to minimize the number of misclassifications for given data sets. In
the following we focus on specific combinatorial optimization methodology using VNS to adjust the
parameters that improve the classification performance.

3. VNS approach with bootstrap resampling technique

VNS is a metaheuristic method used for optimization problems. It looks for a local or global minimum
starting from an initial solution W0. It creates a neighborhood of the solution and then checks if
there is solution W ∗ better than the initial solution W0. It crushes W0 by W ∗ if there is solution W ∗

better than the initial solution W0. It restarts until stopping condition is not met (it is defined as the
maximum number of global iterations without finding an improvement in the best known solution).
The algorithm needs initial solution W0. This solution is identified as the null vector W0 = (0, 0, . . . , 0).
The proposed VNS uses three neighborhood structures N1, N2 and N3.

3.1. Neighborhood structures

The neighborhood structure N1 is based on a swap operation which strips a randomly chosen regener-
ator r from location and add it elsewhere. Figure 1 presents an example of neighborhood structure N1.

Let W be a given vector W = (w1, w2, . . . , wp) and i, j are two integers such as 1 6 i, j 6 p. wi

becomes wi + r and wj becomes wi − r.
So, N1 = {(w1, . . . , wi + r, . . . , wj − r, . . . , wp); ∀ i 6= j}.

Fig. 1. Neighborhood structure N1. Fig. 2. Neighborhood structure N2.

Example 1. Let W be a given vector W = (1, 2, 3, 4) and r = 1

N1(W ) = {(0, 3, 3, 4), (0, 2, 4, 4), (0, 2, 3, 5), (2, 1, 3, 4), (1, 1, 4, 4), (1, 1, 3, 5),

(2, 2, 2, 4), (1, 3, 2, 4), (1, 2, 2, 5), (2, 2, 3, 3), (1, 3, 3, 3), (1, 2, 4, 3)}.

While the neighborhood structure N2 is obtained by adding a randomly chosen regenerator r to
the solution. Figure 2 presents an example of neighborhood structure N2.

Let W be given vector W = (w1, . . . , wp) and i is given integer 1 6 i 6 p. wi becomes wi + r.
So, N2 = {(w1, . . . , wi + r, . . . , wp);∀i}.
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Example 2. Let W be a given vector W = (1, 2, 3, 4) and r = 1

N2(W ) = {(2, 2, 3, 4), (1, 3, 3, 4), (1, 2, 4, 4), (1, 2, 3, 5)}.

The N3 neighborhood is practically the same as the N1, only this time the regenerator chosen is
randomly stripped from a location then equally added on two other locations.

Example 3. Let W be a given vector W = (1, 2, 3, 4) and r = 2

N3(W ) = {(−1, 3, 4, 4), (−1, 3, 3, 5), (−1, 2, 4, 5), (2, 0, 4, 4), (2, 0, 3, 5),

(1, 0, 4, 5), (2, 3, 1, 4), (2, 2, 1, 5), (1, 3, 1, 5, 5), (2, 3, 3, 2), (2, 2, 4, 2), (1, 3, 4, 2)}.

Figure 3 presents an example of neighborhood structures N3.

Fig. 3. Neighborhood structure N3.

Let W be a given vector such as W =
(w1, w2, . . . , wp) where i, j, k are three dif-
ferent integers such as 1 6 i, j, k 6 p
i 6= j 6= k. wi becomes wi − r, wj becomes
wj + r/2 and wk becomes wk + r/2.

So, N3 = {(w1, . . . , wk + r/2, . . . , wi −
r, . . . , wj + r/2, . . . , wp) ∀ i 6= j 6= k}.

3.2. LocalSearch function

The LocalSearch() function is able to improve the current solution. To do so, it uses one of the already
defined neighborhood structures Nj (j = 1, 2, 3) in order to create the set of neighbors of the current

solution Ŵ . After that, it chooses a better solution from the one already found. This kind of solution
is acquired by using the best improvement method, which compares the elements of Ŵ to each other
in order to find the best element W ′ of this set and returns its value.

3.3. VND function

In order to optimize the current solution, the V ND() function takes vector W as input to improve
it. The next step is to use the neighborhood structures Nj (j = 1, . . . , n) which, in our case, will be
N1 and N2, N3. As long as the function is able to improve W j takes the value 1 in order to use the
neighborhood structure N1 (the iterations will continue as long as j is below the number of structures

defined in the beginning). The function LocalSearch() is then used to create Ŵ and return W ′. If W ′

is better than W , then W is updated to W ′ and j gets the the value 1 to restart as a new iteration with
N1 as neighborhood’s structure or else j is updated to j +1 to use the next neighborhood’s structure.
If there is no possible improvement the algorithm stops. The pseudocode of the VND(W ) function is
provided in Algorithm 1.

Algorithm 1 VND function.

Require:

Ensure:

1: procedure VND(W );
2: while there is a possible improvementt
3: j ← 1
4: while j 6 3
5: W ′ ←LocalSearch(Nj(W ))
6: if W ′ is better than W then

7: W ←W ′

8: j ← 1
9: else

10: j ← j + 1
11: return Wbest;
12: end procedure;
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3.4. BootsVND

Bootstrap procedure. Bradley Elfon introduced the Bootstrap method for the first time, in this
method we generate B samples randomly from the initial dataset (S1, S2, . . . , SB), each sample has the
same size as the initial set. Each time we choose only one individual, then we choose the second one
with replacement until the size of the sample is reached. For each sample Si we compute the parameters
vector of the discriminant function wi = (wi

1
, wi

2
, . . . , wi

p), the use of B samples corresponds to the

generation B vectors of parameter (w1, w2, . . . , wB).
BootsVND function. In this study, we propose a hybridization of Bootstrap and the VNS

(BootsVNS), to be more specific, we use a hybridization of Bootstrap and the VND() function. The
bootstrap procedure applied to generate B samples then the VND() function is used to obtain coefficient
estimates for the parameter W . The pseudocode of the proposed hybridization BootsVND() is shown
in Algorithm 2.

Algorithm 2 BootsVND.

Require:

Ensure:

1: procedure BootsVND(W )
2: i← 1
3: while i <= B
4: Si ← randomly generate a sample from the initial dataset
5: wi ← V ND(W,Si)
6: i← i+ 1
7: W ∗ ←

∑B

i=1

wi

B

8: return W ∗

9: end procedure;

3.5. Shaking function

The Shaking() function is able to unsettle the current solution. To do so, it follows the same procedure

to create the set of solution Ŵ . Only this time, it chooses randomly a solution from this set and
repeats the process m times to make sure that it moves away from the current solution. The use of
this function guarantees a certain escape from blocking domains and even avoids minimum locals. The
pseudocode of the Shaking() function is provided in Algorithm 3.

Algorithm 3 Shaking(k,Wbest).

Require:

Ensure:

1: procedure Shaking(k,Wbest)
2: i← 1
3: W ←Wbest

4: while i 6 m
5: Ŵ ← Nk(W )

6: W ← randomly select one vector from Ŵ
7: i← i+ 1
8: return W
9: end procedure;

3.6. VNS/Bootstrap procedure

To find an optimal solution, the algorithm starts by initializing W as the null vector (W0 = 0, 0, . . . , 0),
then assigns its value to Wbest. Next, it defines the neighborhood’s structures Nj (j = 1, . . . , n) which,
in our case, are N1, N2, N3. While the algorithm is able to find an improvement to Wbest, k gets the
values from 1 up to Kmax so it can shake the initial solution using the Shaking() function. Afterwards,
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the BootsVND() function is then used to find the local minimum W ′. After that, we check if W ′ is
better than Wbest. If the condition is met, Wbest is updated to w and k gets 1 as value, or else k gets
k + 1 and restart the Shacking() function so we can move away from the local minimum solutions.
Finally, if we use the Shaking() function Kmax time without any improvements, we will assume that
there will not be any possible improvements thus the algorithm stops. The pseudocode of the proposed
approach is provided in Algorithm 4.

Algorithm 4 VNS/Bootstrap algorithm.

Require:

Ensure:

1: procedure VNS(S)
2: Initialize W
3: define a set of neighborhood structures Nj , (j = 1, 2, 3) of the current solution
4: while stopping condition is not met
5: k ← 1
6: while k 6 kmax

7: W ← Shaking(k)
8: j ← 1
9: W ′ ← BootsVND(Nj(W ))

10: if W ′ is better than Wbest then

11: Wbest ←W ′

12: k ← 1
13: else

14: k ← k + 1
15: return Wbest;
16: end procedure;

We extend the VNS approach for the resolution of a specific case classification problems: credit
scoring [22]. The vector weight W and the value c representing the classifier model will be coded
and optimized in accordance with the VNS procedure using the training set until reaching the best
considered neighborhood. Once W is estimated, the discriminant function is determined. Then, the
model must be tested and its performance checked. Recall in our situation, that an optimal solution
is determined by a discriminant function that better distinguish between good and bad customers and
provide as low rate of misclassification as possible. A local search method is responsible of locally
improving the measures performance of classifier.

4. Computational experiment and results analysis

VNS algorithm with combination Bootstrap resampling estimation method (BootsVNS) is used to
identify parameters estimates for a discriminant mathematical programming model using a training
sample data. The proposed model (BootsVNS) was coded in C++ and the executions were carried out
on Intel Core i7-7500U processor on 2.7GHz with 8GB RAM memory under Windows 10 operating
system. The resultant models are then further used to test the classification power of these models
based on their performance in the testing sample data.

4.1. Datasets description

In this study, four popular credit scoring datasets were used to evaluate the performance of our pro-
posed approach: Australian, German, Taiwan, and Tomas datasets. The Australian dataset comprises
690 customers, with 307 (44.5%) are good clients and the remaining 387 (55.5%) are bad ones, featuring
15 distinct characteristics. The German dataset contains total of 1000 observations, consisting of 700
(70%) good loans and 300 (30%) bad loans, with 21 variables. The Taiwan dataset includes data from
30 000 borrowers, with 23 364 (78%) good loans and 6 636 (22%) bad loans, it comprises 23 distinct
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characteristics. While the Tomas dataset comprises 1 225 customers, with 967 (79%) good clients and
258 (21%) bad ones, with 15 features. These datasets can be accessed on the UCI Machine Learning
Repository website: https://archive.ics.uci.edu/ml/datasets. Further details about these credit scoring
datasets are provided in Table 1.

Table 1. Statistics of selected credit scoring and simulated datasets.

DATASET
Sample No. Training set Testing set Goods(%)/

size features size size Bads(%)
Australian 690 15 552 138 44.5/55.5
German 1000 21 800 800 70/30
Tomas 1225 15 980 245 79/21
Taiwan 30000 23 24000 6000 78/22

4.2. Performance evaluation metrics

Different evaluation metrics have been used in the literature to evaluate the performance of classification
techniques in credit scoring. They include accuracy, error type I, error type II, cost function and AUC.
In this study we used three of them: average accuracy, type I error and type II, which are the most
used in credit scoring [23].

A: The Average Accuracy. The criterion for measuring the performance rate of a model is
accuracy and is used to compare models. The following equation allows to calculate it,

Accuracy =
The number correctly classified cases

The total number of cases
.

B: Type I Error and Type II Error. The following equation is used to calculate the rate of
type I error:

Type I error =
FP

FP + TN
.

Where FP (False Positive) is the number of customers mistakenly classified as “good”, and who are
actually “bad” and TN (True Negative) is the number of customers classified as “bad” and who are
indeed “bad” (well-classified), and 1− Type I error is defined as Specificity.

The following equation is used to calculate the rate of type II error:

Type II error =
FN

FN + TP
,

where FN (False Negative) is the number customers mistakenly classified as “bad” and who are actually
“good” customers and TP (True Positive) is the number of customers classified as “good”, and who are
indeed “good” (well-classified), and 1− Type II error is defined as Sensitivity.

C: Cost function. The following equation is used to calculate the cost function:

Cost function = Pb CtypeI Type I error rate+ Pg CtypeII Type II error rate,

where Pb and Pg are the population proportion of “good” and “bad” customers respectively, and CtypeI

and CtypeII are the cost of Type I error and Type I error. In credit scoring applications, Type I error
is considered the higher cost with and we set CtypeI = 5 and CtypeII is set to a small value (CtypeII = 1).

4.3. Results and analysis

In the present section, we present experimental results of our proposed evolutionary model comparing
it to other existing classifiers. Before that, we split the datasets to training and test sets using the most
common split ratio is 80 : 20 generated by a random selection from the whole datasets. The training
set was used for models construction and the resulting models were then validated using testing sample
set.

A: Resampling parameters obtained by BootsVNS. In order to harness the benefits of the
Bootstrap procedure, it is crucial to determine the best value of the parameter B. The results in
Figures 4 and 5 show the accuracy of the algorithm as a function of B. Specifically, Figure 4 reveals
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an increasing trend in accuracy with the increment of B for the Australian dataset, reaching a peak at
B = 180. Similarly, Figure 5 demonstrates a similar behavior for the Tomas dataset, wherein accuracy
improves until reaching its maximum at B = 240. These observations indicate that increasing the
value of B increase the model accuracy and improve its performance.
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Fig. 4. Accuracy of BootsV NS for various B using Australien dataset.
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Fig. 5. Accuracy of BootskV NS for various B using tomas dataset.

B: Results obtained by BootsVNS. Table 2 presents the results of classification performance
(Accuracy, two type error rates and cost function) and shows the comparison of the best performances
using VNS and BoostVNS for four real datasets used. From Table 2, the obtained results proves the
hypothesis that, our proposed BoostVNS can improve the classification performance of credit scoring
model. We have used a special notational convention whereby the best testing set metrics performance
per data set is denoted in bold.

Table 2. Results of VNS and BoostVNS method for credit scoring datasets.

Datasets
VNS BoostVNS

Accuracy Error Error Cost Accuracy Error Error Cost
TypeI TypeII function TypeI TypeII function

Australian 86.05 9.76 20.43 30.23 88.63 7.01 17.93 27.02
German 72.33 49.68 18.96 85.53 74.50 47.87 15.5 83.25
Thomas 60.32 9.20 69.32 58.8 68.98 5.76 64.76 53.04
Taiwan 74.11 13 74 72.51 75.54 11.32 72.44 70.67
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C: Comparison of BootsVNS method with other existing classifiers. To examine the
performance of the used method, the VNS model is compared to the well-known method, such as
linear discriminant analysis (LDA), logistic regression (LR), K-nearest neighbor(knn), Decision tree
(DT), Neural-Network Analysis (ANN), support vector machines (SVM) for both linear (Lin SVM)
and RBF kernels (RBF SVM) and least square support vector machines (LS-SVM) for both linear (Lin
LS-SVM) and RBF kernels (RBF LS-SVM) for credit scoring. All the experiments are performed with
training data and test data. All computations were carried out in the Matlab software environment.

Table 3. Results of VNS and other classifiers for Australian and German datasets.

Dataset
Australian German

Accuracy Error Error Cost Accuracy Error Error Cost
TypeI TypeII function TypeI TypeII function

BoostVNS 88.63 7.01 17.93 27.02 74.50 47.87 15.5 83.25
LDA 86.47 19.8 5.49 46.59 74.00 24.73 26.57 56.66
LR 85.99 10.34 18.68 33.19 79.33 23.65 19.32 49.98

knn 82.60 6.03 31.86 31.10 71.66 83.87 3.38 132.33
DT 84.54 9.48 23.07 33.76 71.33 48.38 19.80 88.65
LinSVM 84.54 23.27 5.49 54.22 77.00 54.83 8.69 90.98
RBFSVM 85.50 20.68 6.59 49.14 72.00 29.03 27.53 63.99
LinLS-SVM 86.47 18.10 7.69 44.09 77.33 56.98 7.24 93.31
RBFLS-SVM 85.99 10.34 18.68 33.19 76.33 50.53 11.59 86.31
ANN 83.09 16.37 17.58 45.83 72.33 62.36 12.07 104.98

Table 4. Results of VNS and other classifiers for Thomas and Taiwan datasets.

Dataset
Thomas Taiwan

Accuracy Error Error Cost Accuracy Error Error Cost
TypeI TypeII function TypeI TypeII function

BoostVNS 68.98 5.76 64.76 53.04 75.54 11.32 72.44 70.67
LDA 59.67 41.80 37.39 94.89 71.65 24.07 42.84 58.67
LR 67.30 47.95 2.43 81.95 80.18 22.62 10.25 31.27

knn 66.21 2.86 95.12 68.02 82.61 3.56 64.33 54.81
DT 62.12 23.36 66.66 83.45 74.57 17.05 53.83 60.24
LinSVM 66.75 17.62 64.22 72.21 82.52 2.31 68.97 57.22
RBFSVM 59.40 40.57 40.65 94.99 81.17 1.98 76.01 62.48
LinLS-SVM 66.75 0.40 98.37 66.06 76.91 4.34 74.38 63.60
RBFLS-SVM 66.48 1.63 96.74 67.04 75.38 7.13 83.97 74.08
ANN 66.48 0.40 99.18 66.60 83.66 3.98 58.28 50.42

Tables 3 and 4 give experimental results of the performance of the different classifiers on four
credit datasets. Notably, BoostVNS outperforms author classifiers using the Australian and Thomas
datasets, with highest accuracy rates of 88.63% and 68.98%, respectively. In addition, BoostVNS
has lower cost functions (27.02% and 53.04%, respectively). These robust results demonstrate the
effectiveness of BoostVNS in accurately classifying instances in these datasets. Although BoostVNS
performs relatively well in terms of accuracy and cost function on the German and Taiwanese datasets,
its performance is comparable to that of other approaches. BoostVNS, as mathematical approach,
holds promising potential for future applications.

5. Conclusion

In this paper, we have used VNS to solve the linear mathematical model for credit scoring problem
as described in subsection 2.2. The VNS metaheuristic has proved its performance in estimating the
values of the weight vector of our model. For the linearly separable data, the VNS algorithm found
the model that perfectly separates the customers. Also, for the linearly inseparable data and the real
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data it found a model that separates the data with great performance. The application of VNS with
bootstrap method has brought improvements, so it is an appropriate way to apply to the field of credit
scoring.
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[10] Hansen P., Mladenović N. Variable neighborhood search: principles and applications. European Journal
of Operational Research. 130 (3), 449–467 (2001).

[11] Bickel P. J., Götze F., van Zwet W. R. Resampling fewer than n observations: Gains, losses, and remedies
for losses. Statistica Sinica. 7 (1), 1–31 (1997).

[12] Politis D., Romano J., Wolf M. Subsampling. Springer, New York (1999).

[13] Bickel P. J., Sakov A. Extrapolation and the bootstrap. Sankhya: The Indian Journal of Statistics, Se-
ries A. 64 (3), 640–652 (2002).

[14] Bickel P. J., Sakov A. On the choice of m in the m out of n bootstrap and confidence bounds for extrema.
Statistica Sinica. 18, 967–985 (2008).

[15] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. The big data bootstrap. Preprint arXiv:1206.6415 (2012).

[16] Kleiner A., Talwalkar A., Sarkar P., Jordan M. I. A scalable bootstrap for massive data. Journal of the
Royal Statistical Society: Series B (Statistical Methodology). 76 (4), 795–816 (2014).

[17] Sengupta S., Volgushev S., Shao X. A Subsampled Double Bootstrap for Massive Data. Journal of the
American Statistical Association. 111 (515), 1222–1232 (2016).

[18] Caravagna G., Ramazzotti D. Learning the structure of Bayesian Networks via the bootstrap. Neurocom-
puting. 448, 48–59 (2021).

[19] Magasarian O. L. Linear and non linear separation of patterns by linear programming. Operations Re-
search. 13 (3), 444–452 (1965).

[20] Freed N., Glover F. Simple but powerful goal programming models for discriminant problems. European
Journal of Operational Research. 7 (1), 44–60 (1981).

[21] Freed N., Glover F. Evaluating alternative linear, programming models to solve the twogroup discriminant
problem. Decision Science. 17 (2), 151–162 (1986).
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Гiбридний пошук за змiнною околицею з технiкою
повторної вибiрки початкового завантаження

для проблеми кредитного рейтингу

Бархдадi М., Беньякуб Б., Узiнеб М.

Нацiональний iнститут статистики та прикладної економiки, Рабат, Марокко

Моделi кредитного рейтингування зiграли життєво важливу роль у наданнi кредитiв
кредиторами та фiнансовими установами. Останнiм часом їм придiляють бiльше ува-
ги у зв’язку з практикою управлiння ризиками. Було розроблено багато методiв моде-
лювання для оцiнки добробуту позичальникiв. У цiй статтi подано модель оцiнки кре-
дитоспроможностi за допомогою одного з методiв локального пошуку — алгоритму
пошуку за змiнною околицею (VNS). Оптимiзацiя структури околицi VNS є корисним
методом, застосованим для вирiшення проблем кредитного рейтингування. Одночас-
но налаштовуючи структуру околицi, запропонований алгоритм генерує оптимiзованi
ваги, якi використовуються для побудови лiнiйної дискримiнантної функцiї. Експери-
ментальнi результати, отриманi шляхом застосування цiєї моделi на змодельованих i
реальних наборах даних, доводять її високу ефективнiсть i високо оцiнюють її зна-
чення для кредитного рейтингування.

Ключовi слова: кредитне рейтингування; математичне моделювання; алгоритм

пошуку за змiнною околицею; лiнiйна класифiкацiя; технiка повторної вибiрки.
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