
 3

АРХІТЕКТУРА ТА КОМПОНЕНТИ
КОМП’ЮТЕРНИХ СИСТЕМ

УДК 681.14

V. Kotsovsky1, F. Geche1, A. Batyuk2, A. Mitsa1

1Uzhgorod National University
2Lviv National University “Львівська політехніка”

BACKPROPAGATION ALGORITHM FOR COMPLEX
NEURAL NETWORKS

© Kotsovsky V., Geche F., Batyuk A., Mitsa A., 2012

Розглянуто комплексні штучні нейронні мережі, функції активації яких є комп-

лексними аналогами раціональної сигмоїди. Наведено алгоритм навчання цих мереж,
заснований на методі зворотного поширення похибки.

Ключові слова: штучний нейрон, штучні нейронні мережі, комплексні нейронні
мережі, алгоритм зворотного поширення помилки.

Neural networks with complex weights and continuously differentiable activation
function have been studied in the paper. Learning algorithm based on the backpropagation
method for rational sigmoid function has been given in the paper.

Key Words: artificial neuron, artificial neural networks, complex neural networks,
learning algorithms, backpropagation.

Introduction
Neural networks are the effective means of solving the task of function approximation, forecasting

the dynamic systems behaviour, multiple attribute set classification, pattern recognition, associative search
and lot of other tasks. At present many types of architecture of neural networks with real weights have
been developed in the information science. The variety of architectures is conditioned by different relation
types between neurons, various activation functions (continuous or discontinuous (threshold type)) and
different functioning mode of the neural networks. In connection with it many learning algorithms have
been offered for neural networks. We introduce the notion of the complex neuron with continuously
differentiable function and consider neural networks being built of these neurons. We also describe the
modification of the well-known algorithm of backpropagation [1] for complex networks. Complex neural
networks can be used for both solving the same tasks as real networks (with possible reduction of the
number of neuron of input and output layers) and specific problem solution with complex initial data (for
example the approximation of functions of complex variable).

Complex neural networks
The complex neuron is the functional element with n inputs nzz ,,1 and one output y, which is

calculated thus:

+=

=

n

j
jj wzwfy

1
0 ,

 4

nw
..........

2w

1w

Σ

1z

2z

nz

Рис.1. Комплексний нейрон.

 f

Figure 1. The complex neuron

where complex numbers nzz ,,1 are input signals,

,,,, 10 nwww – complex weight coefficients

(similarly to [2-3] we can term 0w as the threshold

of neuron element), CCf →: – nonlinear

function, continuous with its partial derivative
which we call the function of activation.

Complex neurons permit the different mode
of connection in neural networks. We confine
ourselves to studying the multilayer feed-forward
neural networks that is the networks satisfying the

following condition: the neurons of each layer are connected with the neurons of previous or next layers by
the rule “each to each”. The first layer is called the input layer, internal layers are called hidden ones and
the last layer is named the output layer. The proceeding of neural network can be described with a
following formula:

kllkj
j

kljkljklkl yxwzwfy =

+= + 1,0 , ,

where the index j denotes the number of input neuron, k is the number of output neuron, l is the layer

index, jkljkljkl yixz += is the value of the j input signal of k neuron in l layer, jkljkljkl viuw += is the

value of the j weight coefficient of k neuron in l layer.

Learning algorithm
Multilayer neural network calculates output vector F(z) on the base of input vector z. We mean the

learning algorithm of instruction the selection of network parameters (weight coefficients jklw) thus that

network puts in correspondence output vectors from the set { }mdd ,,1 for input vectors from the set

},,{ 1 mzz . The collection of the pairs () (){ }mm dzdz ,,,, 11 is called the learning sample. Let t
kf be the

value of output signal of k neuron in the last output layer l in the case, then the network input vector is

equal to tz . Let us introduce the important variable that will be named the network error E.

 −=
k t

t
k

t
k dfE

2

2

1
. (1)

We shall suppose that () ()VUW ,EEE == , where U is the vector components of which are the real

parts of all coefficients of our neural network, V is the vector components of which are the imaginary parts

 5

of coefficients of the network. During learning we shall change the weight vector in direction of
antigradient of E on every iteration:

()rr VUW ,grad Er
r η−=Δ , rrr WWW Δ+=+1 , (2)

where r is the number of iteration.
Let

t
kl

t
kl

j

t
kl

t
jkl

t
jkl

t
kl sawzws Re,0 =+= , t

kl
t
kl sb Im= , f(z) = g(x,y) + i h(x,y).

Let us put down the components of gradient calculated by applying the last layer weigts

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂=

∂
∂

t jkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl u

b

b

h

u

a

a

h

h

E

u

b

b

g

u

a

a

g

g

E

u

E
, (3)

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂=

∂
∂

t jkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl v

b

b

h

v

a

a

h

h

E

v

b

b

g

v

a

a

g

g

E

v

E
. (4)

Let us adduce calculating formulas for partial derivatives in (3)-(4) (we shall miss the index t for the
simplification of notation):

kkl
kl

kkl
kl

dh
h

dg
g

Im
E

,Re
E −=

∂
∂−=

∂
∂

, (5)

0,,1,
00

=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

kl

kl
jkl

jkl

kl

kl

kl
jkl

jkl

kl

u

a
y

u

b

u

a
x

u

a
, (6)

1,,0,
00

=
∂
∂

=
∂
∂

=
∂
∂

−=
∂
∂

kl

kl
jkl

jkl

kl

kl

kl
jkl

jkl

kl

v

a
x

v

b

v

a
y

v

a
. (7)

Then we set to selection of the activation function. The most popular activation function for real

neural networks are logistic sigmoid curve
xe

xf −+
=

1

1
)(or hyperbolic tangent xtanh (sometimes with

some additional parameters). Unfortunally, the above mentioned functions are discontinuous as functions
of complex variable. Therefore, they can’t be applied in learning algorithms for complex networks which
use the value of the gradient vector. The rational sigmoid

()
1|| +

=
z

z
zf

is stripped of these disadvantages. For rational sigmoide we can write

f(z) = g(x,y) + i h(x,y),

where

()
1

,
22 ++

=
yx

x
yxg , ()

1
,

22 ++
=

yx

y
yxh .

It is necessary to notice than the rational sigmoide possesses the values that lay in unit disk centered
at coordinate origin. In addition, the rational sigmoide compresses proportionally the real and imaginary
parts of its input argument and has the property of reinforcing “weak” input signals and decreasing
“strong” input signals.

 6

Using the rational sigmoide curve we can easily obtain the following expressions for partial
derivatives:

() () ()23

2

3

2

1||||
,

1||

||
,

1||

||

+
−=

∂
∂

=
∂
∂

+
+

=
∂
∂

+
+

=
∂
∂

klkl

klkl

kl

kl

kl

kl

kl

klkl

kl

kl

kl

klkl

kl

kl

ss

ba

b

g

a

h

s

sa

b

h

s

sb

a

g
. (8)

The values of derivatives
jklu

E

∂
∂

 and
jklv

E

∂
∂

, calculated according to the formulas (3)-(8) let compute

the corrections jkluΔ і jklvΔ for neurons of the last (output) layer. Let us show, how we can calculate the

corrections of weight coefficients of other layers of our neural network by the instrumentality of the value

of partial derivatives
jklu

E

∂
∂

 and
jklv

E

∂
∂

. For the last layer we have:

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂=

∂
∂

t jkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl x

b

b

h

x

a

a

h

h

E

x

b

b

g

x

a

a

g

g

E

x

E

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂=

∂
∂

t jkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl

t
kl

t
kl

t
kl

jkl

t
kl

t
kl

t
kl

t
kljkl y

b

b

h

v

a

a

h

h

E

y

b

b

g

y

a

a

g

g

E

y

E

In the last two formules the partial derivatives
kl

kl

kl

kl

klkl b

g

a

g

h

E

g

E

∂
∂

∂
∂

∂
∂

∂
∂

,,, ,
kl

kl

kl

kl

b

h

a

h

∂
∂

∂
∂

, are already calculated

by the formules (6)-(8). The other partial derivatives are equal:

jkl
jkl

kl
jkl

jkl

kl
jkl

jkl

kl
jkl

jkl

kl u
y

b
v

y

a
v

x

b
u

x

a
=

∂
∂

−=
∂
∂

=
∂
∂

=
∂
∂

,,, .

But the partial derivatives of E with respect of the value of input values jklx and jkly for the output layer

coincide by implicity with the derivatives of the function of network error with respect of the real and
imaginary parts of respective output values of neurons of previous layer. Therefore

 ∂
∂=

∂
∂

∂
∂=

∂
∂

−− k jklljk jkllj y

E

h

E

x

E

g

E

1,1,

, . (9)

The formulas (9) is similar to (5) for the previous layers and provide the passage from the calculation
of the coordinates of the current layer gradient to the calculation of the respective coordinates of the
previous layer gradient (the method of quick gradient calculation). The received algorithm of the correction
of weight coefficients in according to formules (2)-(9) is the complex modification of well-known back
propagation error algorithm, described in [1].

The question of the choice of the value of rη (coefficient of the speed of the learning) in (2) is a very

important one in connection with the application of complex weight neural networks. The traditional

forthright approaches of searching rη as the solution of the task of one-dimensional optimization are

unacceptable because they require the multiple calculations of the network error Е that is very difficult for

networks with the bundle of neurons. Therefore we can set ηη =r , where η is any preassigned number

from the segment]1;01,0[. In addition, for selectioning of the value of rη we can offer the same approach

that can be found in [3].
The learning of the neural network with the error function of the form (1) needs the consumption of

considerable volume of the additional memory (one complex number for each parameter of the network).

 7

Therefore for the complex neural networks with the great number of complex neurons it is possible to feed
input vectors in random order and limit ourselves to calculating the gradient of the network error with

respect of the only current element ()tt dz , of the learning sample. In this case we can simplify the

formulas (3)-(4):

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂=

∂
∂

jkl

kl

kl

kl

jkl

kl

kl

kl

kljkl

kl

kl

kl

jkl

kl

kl

kl

kljkl u

b

b

h

u

a

a

h

h

E

u

b

b

g

u

a

a

g

g

E

u

E
,

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂=

∂
∂

jkl

kl

kl

kl

jkl

kl

kl

kl

kljkl

kl

kl

kl

jkl

kl

kl

kl

kljkl v

b

b

h

v

a

a

h

h

E

v

b

b

g

v

a

a

g

g

E

v

E

It will be observed that it is possible to use the various modification of back propagation algorithm
similar to the algorithms detailed in publication [2-5] changing its properly for use in learning of complex
neural networks.

Conclusion
Artificial neural networks with complex weights is enough simple and powerful architecture. This

architecture is extension of real weights network with continuously differentiable activation function and
provides high precision approximation of nonlinear functions. We used the complex activation function
similar to the well-known rational sigmoid and elaborated earning algorithm based on the backpropagation
of the error of our network. Our method can be applied to networks with different activation functions. The
batch-learning is also possible for our nets.

1. Rumelhart, D.E. Learning internal representations by error propagation / D. E. Rumelhart, G.
E. Hinton, R. J. Williams // Parallel distributed processing, vol. 1, Cambridge, MA: MIT Press, 1986. p 318-
362. 2. Уоссермен, Ф. Нейрокомпьютерная техника: теория и практика / Ф. Уоссерман – М.:
Мир,1992. – 240 c. 3. Haykin, S. Neural networks, a comprehensive foundation / S. Haykin. – N.Y.: MacMillan
College Publishing Company, 1994. – 1104 c. 4. Горбань, А. Н, Нейронные сети на персональном ком-
пьютере / А. Н. Горбань, Д.А. Россиев. – Новосибирск: Наука, 1996. – 225 c. 5. Anthony, M. Discrete
Mathematics of Neural Networks / M. Anthony. – Philadelphia: SIAM, 2001. – 132 c.

